CS434 Visualizing Flows

Xavier Tricoche

04/10/2013

CS 53000 - Introduction to Scientific Visualization - 09/08/2011

Flow Visualization - Origins

A Little Bit of Math

flow velocity at x at time t

• Differential equation associated with smooth vector field

- with $\mathbf{x}: I\!\!R \to I\!\!R^n$: trajectory (or streamline)
- Steady: \vec{v} does not depend on time vs. unsteady (''time-dependent'', ''transient'')
- Initial conditions: $\mathbf{x}(0) = \mathbf{x_0}$

Streamline Computation

- Previous equation is an ordinary differential equation (ODE)
- Closed form solutions (analytic) are not available in general
- <u>Numerical</u> ODE solvers are needed

Runge Kutta 4 (RK4)

• Multiple intermediate steps to achieve higher accuracy

$$\vec{k}_{1} = h\vec{v}(\mathbf{x}_{n}, t_{n})$$

$$\vec{k}_{2} = h\vec{v}(\frac{1}{2}\vec{k}_{1}, t_{n} + \frac{1}{2}h)$$

$$\vec{k}_{3} = h\vec{v}(\mathbf{x}_{n} + \frac{1}{2}\vec{k}_{2}, t_{n} + \frac{1}{2}h)$$

$$\vec{k}_{4} = h\vec{v}(t_{n} + h, \vec{x}_{n} + \vec{k}_{3})$$

$$\vec{x}_{n+1} = \vec{x}_n + \frac{1}{6}\vec{k}_1 + \frac{1}{3}\vec{k}_2 + \frac{1}{3}\vec{k}_3 + \frac{1}{6}\vec{k}_4 + O(h^5)$$

Streamlines

Basic idea: visualizing the flow directions by releasing particles and calculating a series of particle positions based on the vector field

Streamline Seeding

- Isolated streamlines provide poor picture of the flow continuum
- Large number of streamlines create visual clutter
- Seeding strategy is important to effectively leverage streamlines in visualization

Hand Drawn Flows

Automated Results

Streamline Seeding

Turk and Banks, SIGGRAPH 1996

Stream Surface

- Surface spanned by union of infinite many streamlines integrated from a curve
- Everywhere tangential to the flow
- "Natural" extension of streamlines in 3D

initial curve

(Naïve) Implementation

- Sparse set of streamlines integrated independently
- Ribbons connecting neighboring streamlines
- Corresponds to a triangulation in parameter space
- Extremely inaccurate and/or inefficient

Stream Surface

Advancing Front

Advancing Front

Path Surface

C. Garth et al., Generation of Accurate Integral Surfaces in Time-Dependent Vector Fields. IEEE Visualization 2008

Path Surface

Path Surface

Texture Mapping on Path Surfaces

Comparative visualization of vortex formation

steady simulation

unsteady simulation

Texture Mapping

C. Garth et al., IEEE Visualization 2008

Streak and Time Surfaces

• Similar adaptive front refinement principle

H. Krishnan et al., IEEE Visualization 2009

Strad Jima Surfacas

Coherent Structures in Flows

Lagrangian Coherence

von Kármán vortex street

Interactive Computation and Rendering of Lagrangian Coherent Structures

Samer Barakat, Xavier Tricoche

Computer Science Department Purdue University Christoph Garth

Institute for Data Analysis & Visualization University of California, Davis

