
Real-Time Relief Mapping on Arbitrary Polygonal Surfaces

Fábio Policarpo∗

Paralelo Computação
Manuel M. Oliveira†

Instituto de Inforḿatica
UFRGS

Jõao L. D. Comba‡

Instituto de Inforḿatica
UFRGS

Figure 1: Teapot rendered with different relief textures using per-pixel lighting and self-shadowing.

Abstract

This paper presents a technique for mapping relief textures onto
arbitrary polygonal models in real time. In this approach, the map-
ping of the relief data is done in tangent space. As a result, it
can be applied to polygonal representations of curved surfaces pro-
ducing correct self-occlusions, interpenetrations, shadows and per-
pixel lighting effects. The approach can be used to consistently add
surface details to geometric models undergoing deformations, such
as in the case of animated characters commonly found in games.
The technique uses an inverse formulation (i.e., pixel driven) based
on an efficient ray-height-field intersection algorithm implemented
on the GPU. It supports extreme close-up views of the surfaces,
mip mapping and anisotropic texture filtering. Also, contrary to
high-dimensional representations of surface details, the low mem-
ory requirements of the proposed technique do not restrict its use to
tiled textures.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: image-based rendering, relief mapping, motion paral-
lax, real-time rendering, surface details.

1 Introduction

Texture mapping [Catmull 1974] is a fundamental component of
modern image synthesis systems, playing a major role in enhanc-
ing the realism of scenes. It adds significant amount of details to
surfaces by simulating the appearance of different materials, the

∗e-mail:fabio@paralelo.com.br
†e-mail:oliveira@inf.ufrgs.br
‡e-mail:comba@inf.ufrgs.br

existence of surface wrinkles [Blinn 1978] or even by modifying
the underlying geometric model [Cook 1984]. In recent years, a
few texture mapping extensions have been introduced, for instance,
for rendering texture appearance under different lighting orienta-
tion [Malzbender et al. 2001] and 3D surface details [Oliveira et al.
2000]. Relief texture mapping [Oliveira et al. 2000] simulates the
existence of 3D surface details using image warping techniques.
Thus, correct views of geometrically rich objects can be obtained
by rendering just a few textured polygons.

Figure 2: Bronto’s tea hour. The surface details for the character,
the teapot and the walls were rendered using relief mapping.

In this paper, we show how relief textures can be mapped onto ar-
bitrary polygonal models by performing the mapping in tangent
space [Peercy et al. 1997]. Figures 1 and 2 show several objects
rendered with different surface details. These images also include
per-pixel lighting and shadows cast by the surface relief. Com-
pared to other recently proposed techniques to represent surface de-

tails [Wang et al. 2003; Wang et al. 2004], our approach presents
several desirable features. In particular, it uses a much more com-
pact representation, is easy to implement, supports arbitrary close-
up views without introducing noticeable texture distortions, and
supports mip mapping and anisotropic texture filtering.

The contributions of this paper include:

• A technique for mapping relief textures onto arbitrary polyg-
onal models in real time (Section 3). The resulting render-
ings present correct self-occlusions, interpenetrations, shad-
ows and per-pixel lighting. Moreover, it supports extreme
close-up views of the added surface details;

• An efficient algorithm for computing ray-height-field inter-
sections using programmable graphics hardware (Section 3);

• A new relief texture representation based on two depth layers
(Section 4). Such a representation significantly improves the
rendering quality of single-depth-layer relief textures when
mapped onto single polygons. This is achieved with no ex-
tra storage cost and small additional computational cost.

2 Related Work

Bump mapping [Blinn 1978] simulates the existence of surface de-
tails using normal perturbation. Since the actual surface is not mod-
ified, self-occlusions, shadows and silhouettes are not accounted
for. Horizon maps [Max 1988] provide a solution for shadowing
bump-mapped surfaces and can be implemented using the graphics
hardware [Sloan and Cohen 2000]. An alternative solution that can
also be implemented using hardware acceleration was presented by
Heidrich et al. [Heidrich et al. 2000].

Displacement mapping [Cook 1984] changes the actual geometry
of the underlying surface and as a result produces correct self-
occlusions, shadows and silhouettes. Unfortunately, the use of
displacement maps requires rendering a large number of micro-
polygons, which is undesirable for interactive applications. In re-
cent years, several approaches have been devised to accelerate the
rendering of displacement maps and to avoid explicit rendering of
micro-polygons. These approaches are based on ray tracing [Pat-
terson et al. 1991; Pharr and Hanrahan 1996; Heidrich and Seidel
1998; Smits et al. 2000], 3D inverse image warping [Schaufler and
Priglinger 1999] and 3D texture mapping [Meyer and Neyret 1998;
Kautz and Seidel 2001]. The demonstrated ray-tracing and inverse-
warping-based approaches are computationally expensive and not
appropriate for real-time applications. The 3D-texture approaches
render displacement maps as stacks of 2D texture-mapped poly-
gons. This may introduce objectionable artifacts depending on the
viewing direction. Hirche et al. [Hirche et al. 2004] use graph-
ics hardware to ray cast displaced surfaces inside extruded tetra-
hedra and Gumhold [Gumhold 2003] implemented a pixel shader
ray-caster to render ellipsoids.

More recently, Wang et al. [Wang et al. 2003] presented a technique
that pre-computes the distances from each displaced point to a ref-
erence surface. These distances are computed along many sampling
viewing directions. The result is a five-dimensional function called
a view-dependent displacement map (VDM) that can be queried at
rendering time. Due to the large sizes of these datasets, VDMs
need to be compressed before they can be stored in the graphics
card memory. The compression is done using principal component
analysis techniques. This approach works in real time and can pro-
duce nice results, but has some drawbacks: it introduces significant
texture distortions and can only be applied to closed surfaces. Due
to the large sizes of these representations, usually a single patch

is created and tiled over the entire surface. Also, due to the pre-
computed resolution of these representations, they are intended for
rendering from a certain distance and should not be used for close-
up renderings.

In order to reduce texture distortions and handle surfaces with
boundaries, Wang et al. [Wang et al. 2004] introduced another five-
dimensional representation called GDM for rendering non-height-
field structures. GDM also produces large sampling databases that
need to be compressed. Likewise, GDMs are more appropriate for
tiling and renderings from a certain distance.

Parallax mapping [Kaneko et al. 2001] uses textures augmented
with per-texel depth. In this approach, the texture coordinates along
the view direction are shifted based on the depth values using an
approximate solution. While this technique can produce interesting
results at very low cost, it is only appropriate for noisy irregular
bumps, as the surfaces are inaccurately and dynamically deformed
as the viewing position changes. No support for shadows has been
demonstrated for parallax mapping.

2.1 Review of Relief Texture Mapping

Relief texture mapping [Oliveira et al. 2000] uses image warping
techniques and textures enhanced with per-texel depth to create the
illusion of complex geometric details when mapped onto flat poly-
gons. The depth information is computed as the distance from a
reference plane to the sampled surface. Figure 3 shows an example
of a relief texture. On the left, one sees a diffuse pre-shaded color
texture with its corresponding depth data on the right.

Figure 3: A relief texture: diffuse pre-shaded color (left) and depth
map (right). In the depth map, dark means closer.

Ideally, portions of a relief texture should only be warped on de-
mand. However, the rendering of a height field is not as simple
as conventional texture mapping, requiring a search for the closest
surface along any given viewing ray. In order to avoid this search,
which tends to be computationally expensive, Oliveira et al. fac-
tored the mapping into a two-step process [Oliveira et al. 2000].
First, the height field is converted into a regular 2D texture using a
forward transformation. Then, the resulting texture is mapped onto
the polygon in the conventional way. Figure 4 compares the ren-
derings produced by different techniques from the same viewpoint.
In (a), the image was conventionally texture-mapped onto a quadri-
lateral. Figure 4 (b) shows the result obtained when applying relief
texture mapping to the same polygon. For comparison, Figure 4 (c)
shows the color and depth data presented in Figure 3 rendered as a
mesh of micro-polygons. Essentially, the results in (b) and (c) are
indistinguishable from each other.

Oliveira et al. [Oliveira et al. 2000] represented 3D objects by relief
texture-mapping the visible faces of parallelepipeds. This situation
is illustrated in Figure 5, where one sees an object rendered as two

(a) (b) (c)

Figure 4: Rendering comparison from the same viewpoint. (a)
Color image rendered as a conventional texture. (b) Relief texture
mapping rendering. (c) Rendering of the color and depth data in
Figure 3 as a mesh of micro-polygons.

relief texture-mapped polygons. The borders of the two polygons
are shown on the left. This method, however, has not been extended
to arbitrary surfaces. ElHew and Yang [ElHelw and Yang 2003]
used cylindrical versions of relief textures (i.e., cylindrical images
with depth measured along the normal directions to the cylinder)
to render images of endoscopic simulations. They create inside-
looking-outside renditions by warping the cylindrical textures ac-
cording the the viewer’s position and by texture-mapping the result
onto a reference cylinder. Their technique cannot be generalized to
arbitrary surfaces.

Figure 5: 3D objects are rendered by relief texture-mapping the vis-
ible faces of a parallelepiped. Object rendered showing the borders
of the quads (left) and without borders (right).

3 Relief Mapping on Polygonal Surfaces

We exploit the programmability of modern graphics hardware to
effectively render surface details onto arbitrary polygonal surfaces.
Since the rendering is performed using fragment shaders, we can
also perform per-pixel shading and compute shadows. Thus, the
color texture originally used to store pre-computed diffuse shading
can be discarded and replaced by a normal map. Any 2D texture can
be mapped onto the resulting representation. Figure 6 shows a relief
texture represented by its corresponding depth and normal maps.
The depth map is quantized and represented using the alpha channel
of the RGBα texture used to store the normal map. This way, a
single 32-bit per texel texture suffices to represent the structure of a
relief texture.

We normalize the height values to the[0,1] range. Figure 7 shows
the representation (cross-section) of such a height-field surface.

Figure 6: A relief texture represented by a depth (left) and a normal
map (right). The normals are mapped to the [0,1] range and stored
as an RGB image.

From top to bottom, the depth values vary from 0.0 to 1.0.

The process of mapping relief data to a polygonal surface can be
conceptually understood as following. For each fragment to be ren-
dered:

• compute the viewing direction (VD) as the vector from the
viewer to the 3D position of the point on the polygonal sur-
face;

• transform VD to the tangent space (defined by the tangent,
normal and bi-normal vectors) associated with the current
fragment;

• use VD’ (the transformed VD) and A, the(s, t) texture coordi-
nates of the fragment, to compute B, the(u,v) texture coordi-
nates where the ray reaches the depth value 1.0 (see Figure 7);

• compute the intersection between VD’ and the height-field
surface using a binary search starting with A and B;

• perform the shading of the fragment using the attributes (e.g.,
normal, depth, color, etc.) associated with the texture coordi-
nates of the computed intersection point.

This process is illustrated in Figure 7. Point A has an associated
depth equal to zero, while B has depth equal to 1.0. At each step,
one computes the midpoint of the current interval and assigns it
the average depth and texture coordinates of the endpoints. In the
example shown in Figure 7, the circle marked ”1” represents the
first midpoint. The averaged texture coordinates are used to access
the depth map. If the stored depth is smaller than the computed
one, the point along the ray is inside the height field surface, as in
the case of point 1 in Figure 7. The binary search proceeds with
one endpoint inside and other outside the surface. In the example
shown in Figure 7, the numbers indicate the order in which the mid-
points are obtained. In practice, we have found that eight steps of
binary subdivision is sufficient to produce very satisfactory results.
This is equivalent to subdivide the depth range of the height field
in 28 = 256 equally spaced intervals. Other researchers have used
64 axis-aligned equally-spaced 2D texture slices to render displace-
ment maps using 3D textures [Meyer and Neyret 1998; Kautz and
Seidel 2001]. The reader should also notice that our approach takes
advantage of texture interpolation. Thus, while in techniques based
on 3D texture mapping one may see in between slices, our tech-
nique does not suffer from this problem. As the depth map is treated
and accessed as a texture, texture filtering (e.g., bilinear) guarantees
that the height-field surface will be continuous. As a result, the pro-
posed technique can be used to produce extreme close-up views of
the surface without noticeable artifacts (see Figures 16 and 17).

The binary search procedure just described may lead to incorrect
results if the viewing ray intersects the height field surfaces in more
than one point, as illustrated in Figure 8. In this example, the depth
value associated with the first midpoint has a depth value smaller

Figure 7: Ray intersection with a height-field surface using binary
search. Starting with A and B, the numbers indicate the sequence
of computed midpoints.

than the one retrieved from the depth map. Since the point is above
the height field surface, the binary search would continue its way
going deeper into the bounding box and find point 3 as the intersec-
tion, which is clearly incorrect. In order to avoid missing the first
intersection, we start the process with a linear search. Beginning
at point A, we step along the AB line at increments ofδ times the
length of AB looking for the first point inside the surface (Figure 9).
If the graphics card supports shading model 3.0,δ varies from frag-
ment to fragment as function of the angle between VD’ and the
interpolated surface normal at the fragment. As this angle grows,
the value ofδ decreases. In our current implementation, no more
than 32 steps are taken along the segment AB. Notice that since
the linear search does not involve any dependent texture accesses,
this process is very fast as we can make several texture fetches in
parallel.

Figure 8: Problem with binary search. The midpoint between A and
B is outside the height-field surface but the viewing ray has already
pierced the surface.

Once the first point under the height field surface has been identi-
fied, the binary search starts using the last point outside the surface
and current one. In this case, a smaller number of binary subdivi-
sions is needed. For example, if the depth interval between two lin-
early searched points is 1/8, a six-step binary search will be equiv-
alent to subdividing the interval into 512 (23 × 26) equally spaced
intervals.

3.1 Surface Self-Shadowing

Rendering shadows is a visibility problem [Williams 1978]. There-
fore, a similar procedure can be used to determine whether a frag-

Figure 9: Linear search, from A to B, for the first point inside the
height-field surface.

ment is lit or in shade. In this case, we check if the light ray inter-
sects the height-field surface between point C and the actual point
being shaded (Figure 10). In case an intersection exists, the point
must be in shade. Notice that there is no need to find the actual inter-
section point, but simply decide whether such an intersection exists,
which can also be done using a similar strategy. Figure 14 and 19(c)
show examples of relief renderings containing self-shadowing.

Figure 10: Shadow computation. One needs to decide if the light
ray intersects the height-field surface between point C and the point
where the viewing ray first hits the surface.

4 Dual-Depth Relief Textures

This section introduces an extension to relief textures that uses two
layers of depth information. Such an extension, calleddual-depth
relief textures, can be used to produce approximate representations
for opaque, closed-surface objects using only one relief-mapped
polygon.

Figure 11: Dual-depth relief textures. The combined use of front
and back depth layers produces tight bounds for an object represen-
tation.

As one tries to sample an object using a single relief texture, not
enough information will be available to produce a proper recon-
struction. In particular, no information will exist about what lays
behind the object (Figure 11 left). In these cases, inverse ren-
dering techniques may extend the ends of these surfaces forming
“skins” [McMillan 1997]. The occurrence of skins can be elimi-
nated with the use of one extra layer of depth that represents the
back of the object (Figure 11 (center)). The combined effect of the
two depth layers produces a much tighter boundary for the object
(Figure 11 (right)) and leads to better quality renderings.

Notice that this representation is not exactly a layered-depth im-
age (LDI) [Shade et al. 1998]: the two layers of depth are com-
puted as orthographic distances measured with respect to one of the
faces of the depth bounding box and it does not store color infor-
mation. Moreover, the second depth layer is not used directly for
rendering, but for constraining the search for ray-height-field inter-
sections. Like other impostor techniques, this representation is not
intended to be seen from arbitrary viewpoints. However, we show
that they can be used for quite large range of angles.

The two depth maps and the normals can be stored in a single tex-
ture. Since all normals are unit length, we can store only thex and
y components in the normal map, using the other two channels to
represent the two depth layers. The z component of the normal can
be recovered in the shader asz=

√
1− (x2 +y2). Figure 12 shows

dual-depth maps for two models: angel (top) and Christ (bottom).
The depth values of both layers are defined with respect to the same
reference plane. In Figure 12, the maps on the left represent the
front of the object, while the ones on the right represent the back
surface. The rendering process using two depth layers is similar to
what was described in Section 3. In this case, however, a point is
considered inside the represented object iffront depth≤ point depth
≤ back depth.

(a) (b)

(c) (d)

Figure 12: Dual-depth maps. Front (left) and back (right) layers.
The top row samples an angel model. The bottom row is the sam-
pling of a Christ model.

Figure 13 compares the renderings of the sampled objects shown in
Figure 12 using single and dual-depth relief textures. In the case
of single, only the front depth was used. In all cases, the images
were created by rendering a single texture-mapped polygon. On
the left, one sees the renderings produced with the use of a single
depth layer. Notice the existence of skins on the angel’s hair and
over its right wing, and on Christ’s hair and silhouettes. The Christ
image was cropped to focus on some details.

(a) (b)

(c) (d)

Figure 13: Renderings produced using single (left) and dual-depth
(right) relief textures. Notice the existence of skins on the left im-
ages, which are not present in the right ones. A 2D wooden texture
was added to the models.

5 Results

We have implemented the techniques described in the paper as frag-
ment programs written in Cg and used them to map surface details
to several polygonal objects. The mapping process is straightfor-
ward, using the texture coordinates and the tangent, normal and
binormal vectors associated to the vertices of the model. Except for
the rock relief texture used to render Bronto, the character shown
in Figures 2 and 15, and the teapots in Figures 1 (right) and 17, all
textures used in the paper were 512x512 RGBα textures. This in-
cludes the dual-depth relief representations. The stone texture used
for Bronto was a 256x256 texture. The depth maps were quantized
using 8 bits per texel. The quantized values represent evenly spaced
depths, which can be scaled during the rendering using a parameter
of the shader. All scenes were rendered at a resolution of 800x600
pixels at 85 frames per second, which is the refresh rate of our mon-
itor. These measurements were made on a 3 GHz PC with 512 MB
of memory using a GeForce FX6800 GT with 256 MB of memory.

Figure 1 shows the Utah teapot rendered using three different re-
lief textures with per-pixel shading and shadows. Figure 2 shows a
scene where all surfaces details for the character, the teapot and the
brick walls were produced using relief mapping. The relief mapped
objects naturally integrate themselves with the other elements of the
scene. Notice the shadows on the teapot, which are cast by its own
relief. Figure 14 shows a closer view of the same teapot, where all
the surface details can be appreciated. Notice the correct shadows
and occlusions due to parallax. The relief used for the teapot was
obtained from the depth map shown in Figure 3.

Figure 15 shows another view of Bronto with its stone texture. Note
how the texture correctly adjusts itself to the polygonal surface, pro-
ducing a very realistic look. The relief details are emphasized by
the per-pixel lighting.

Figure 19 compares the renderings of a single polygon with the data
shown in Figure 6 using three different techniques. This height field
contains both smooth and sharp features and tests the ability of the

Figure 14: A close view of the same teapot from the scene shown
in Figure 2. Note the shadows. The relief used for the teapot was
obtained from the depth map shown in Figure 3.

Figure 15: Bronto, a game character rendered using relief mapping.

techniques to correctly represent surface details. The images were
created from the same viewpoint using: (a) bump mapping, (b) par-
allax mapping and (c) relief mapping with self-shadowing. Notice
how relief mapping succeeds in producing a correct image for this
object, while both bump and parallax mapping fail. The images
produced by these techniques present some flatening. In Figure 19
(c) one can also observe the shadows properly cast by the surface
relief. The accompanying videos provide some more examples of
scenes containing shadows and per-pixel lighting recorded in real
time.

Figure 16 and 17 show two extreme close-ups of relief mapped
surfaces. The resolutions of the textures used to produce these
renderings are 512x512 and 256x256, respectively. Notice how
sharp these close-up images are. Correct interpenetration of relief-
mapped surfaces (e.g., involving multiple relief-textured objects)
can be achieved by appropriately modulating the Z-buffer. The 3D
coordinates associated with a fragment corresponding to the polyg-
onal surface are available to the fragment program. From this, we

can compute the 3D position of the intersected point at the surface
height field. We then compute its corresponding depth value to test
and/or update the Z-buffer. Figure 18 shows a relief mapped sur-
face interpenetrated by three textured spheres. Notice the correct
interpenetration boundaries.

Figure 16: Relief texture-mapped teapot (top). Close-up view pro-
duced with a 512x512 stone relief texture (bottom).

If a feature represented by a height field is too thin, it might be
possible that the linear search misses it. This is an aliasing problem
for which there is no perfect solution. In practice, although we have
modeled and rendered sharp features, we have not encountered such
artifacts.

Since we use mip mapping [Williams 1983], texture minification
causes the resampling of the height-field surface to be done on a
filtered version of the depth map. While this is not strictly correct,
it saves us the need to create a separate version of the depth map
for each level of the mip map (which would then have to be inter-
polated anyway) and helps to reduce animation aliasing artifacts. It
also improves rendering performance, as the use of smaller textures
tends to increase cache coherence.

6 Conclusion

We have presented a technique for mapping relief textures onto ar-
bitrary polygonal models in real time. The mapping is done in tan-
gent space [Peercy et al. 1997], guaranteeing its generality and ap-
plicability to deforming surfaces. The technique produces correct
self-occlusions, interpenetrations, shadows and all standard per-
pixel lighting and filtering effects. We also described an efficient
algorithm for finding the intersection between a ray and a height
field based on binary search. Since the depth maps representing the
heights undergo texture filtering, the resampled height-field surface
is continuous, allowing the user to obtain extreme close-up views of
the surface details. The compactness and ease of implementation of
the presented technique make it an attractive alternative for games.

We have also extended relief textures with dual-depth maps. This
new representation allows for approximate representations of 3D
objects using a single texture. Renderings of these objects can be

(a) (b) (c)

Figure 19: One polygon rendered from the same viewpoint using three different techniques: (a) Bump mapping, (b) Parallax mapping and (c)
Relief mapping with self-shadowing. A 2D wooden texture was mapped to the surface.

Figure 17: Relief texture-mapped teapot (top). Close-up view pro-
duced with a 256x256 rock relief texture (bottom).

generated rendering a single polygon, while producing dynamic im-
postors that can be used for a considerable angular range.

Our current implementation still does not add details to the underly-
ing object’s silhouette. This is a valuable feature to enhance realism
and we are exploring ways of changing the silhouettes to correctly
represent these details.

References

BLINN , J. F. 1978. Simulation of wrinkled surfaces. InProceed-
ings of the 5th annual conference on Computer graphics and in-
teractive techniques, ACM Press, 286–292.

CATMULL , E. 1974.A Subdivision Algorithm for Computer Dis-
play of Curved Surfaces. PhD thesis, University of Utah, Salt
Lake City, Utah.

COOK, R. L. 1984. Shade trees. InProceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 223–231.

ELHELW, M. A., AND YANG, G.-Z. 2003. Cylindrical relief
texture mapping.Journal of WSCG 11(feb).

Figure 18: Interpenetration among a relief mapped surface and
some textured spheres. Notice the correct boundaries.

GUMHOLD , S. 2003. Splatting illuminated ellipsoids with depth
correction. In8th International Fall Workshop on Vision, Mod-
elling and Visualization, 245–252.

HEIDRICH, W., AND SEIDEL, H.-P. 1998. Ray-tracing procedural
displacement shaders. InGraphics Interface, 8–16.

HEIDRICH, W., DAUBERT, K., KAUTZ , J., AND SEIDEL, H.-P.
2000. Illuminating micro geometry based on precomputed visi-
bility. In Siggraph 2000, Computer Graphics Proc., 455–464.

HIRCHE, J., EHLERT, A., GUTHE, S., AND DOGGETT, M.
2004. Hardware accelerated per-pixel displacement mapping.
In Graphics Interface, 153 – 158.

KANEKO, T., TAKAHEI , T., INAMI , M., KAWAKAMI , N.,
YANAGIDA , Y., MAEDA , T., AND TACHI :, S. 2001. Detailed
shape representation with parallax mapping. InProceedings of
the ICAT 2001, 205–208.

KAUTZ , J., AND SEIDEL, H.-P. 2001. Hardware accelerated dis-
placement mapping for image based rendering. InProceedings
of Graphics Interface 2001, 61–70.

MALZBENDER, T., GELB, D., AND WOLTERS, H. 2001. Polyno-
mial texture maps. InSiggraph 2001, Computer Graphics Pro-
ceedings, 519–528.

MAX , N. 1988. Horizon mapping: shadows for bump-mapped
surfaces.The Visual Computer 4, 2, 109–117.

MCM ILLAN , L. 1997. An Image-Based Approach to Three-
Dimensional Computer Graphics. PhD thesis, University of
North Carolina at Chapel Hill, Chapel Hill, NC.

MEYER, A., AND NEYRET, F. 1998. Interactive volumetric tex-
tures. InEurographics Rendering Workshop 1998, 157–168.

OLIVEIRA , M. M., BISHOP, G., AND MCALLISTER, D. 2000.
Relief texture mapping. InSiggraph 2000, Computer Graphics
Proceedings, 359–368.

PATTERSON, J., HOGGAR, S., AND LOGIE, J. 1991. Inverse
displacement mapping.Comp. Graphics Forum 10, 2, 129–139.

PEERCY, M., A IREY, J., AND CABRAL , B. 1997. Efficient bump
mapping hardware. InSIGGRAPH ’97, 303–306.

PHARR, M., AND HANRAHAN , P. 1996. Geometry caching
for ray-tracing displacement maps. InEurographics Rendering
Workshop 1996, Springer Wien, 31–40.

SCHAUFLER, G., AND PRIGLINGER, M. 1999. Efficient displace-
ment mapping by image warping. InEurographics Rendering
Workshop 1998, Springer Wein, 175–186.

SHADE, J. W., GORTLER, S. J., HE, L.-W., AND SZELISKI , R.
1998. Layered depth images. InSiggraph 1998, Computer
Graphics Proceedings, 231–242.

SLOAN , P.-P. J.,AND COHEN, M. F. 2000. Interactive horizon
mapping. InProceedings of the Eurographics Workshop on Ren-
dering Techniques 2000, Springer-Verlag, 281–286.

SMITS, B. E., SHIRLEY, P., AND STARK , M. M. 2000. Direct
ray tracing of displacement mapped triangles. InProceedings
of the Eurographics Workshop on Rendering Techniques 2000,
Springer-Verlag, 307–318.

WANG, L., WANG, X., TONG, X., L IN , S., HU, S., GUO, B.,
AND SHUM , H.-Y. 2003. View-dependent displacement map-
ping. ACM Trans. Graph. 22, 3, 334–339.

WANG, X., TONG, X., L IN , S., HU, S., GUO, B., AND SHUM ,
H.-Y. 2004. Generalized displacement maps. InEurographics
Symposium on Rendering 2004, EUROGRAPHICS, 227–233.

WILLIAMS , L. 1978. Casting curved shadows on curved surfaces.
In Siggraph 1978, Computer Graphics Proceedings, 270–274.

WILLIAMS , L. 1983. Pyramidal parametrics. InSIGGRAPH ’83:
Proceedings of the 10th annual conference on Computer graph-
ics and interactive techniques, ACM Press, 1–11.

Appendix: Fragment Shaders in Cg

f2s main frag relief(v2f IN,
uniform sampler2D rmtex:TEXUNIT0, // rm texture map
uniform sampler2D colortex:TEXUNIT1, // color texture map
uniform float4 lightpos, // light position in view space
uniform float4 ambient, // ambient color
uniform float4 diffuse, // diffuse color
uniform float4 specular, // specular color
uniform float2 planes, // near and far planes info
uniform float tile, // tile factor
uniform float depth) // scale factor for height-field depth

{
f2s OUT;
float4 t,c; float3 p,v,l,s; float2 dp,ds,uv; float d;
// ray intersect in view direction
p = IN.vpos; // pixel position in eye space
v = normalize(p); // view vector in eye space
// view vector in tangent space
s = normalize(float3(dot(v,IN.tangent.xyz),

dot(v,IN.binormal.xyz),dot(IN.normal,-v)));
// size and start position of search in texture space
ds = s.xy*depth/s.z;
dp = IN.texcoord*tile;

// get intersection distance
d = ray intersect rm(rmtex,dp,ds);
// get normal and color at intersection point
uv=dp+ds*d;
t=tex2D(rmtex,uv);
c=tex2D(colortex,uv);
t.xyz=t.xyz*2.0-1.0; // expand normal to eye space
t.xyz=normalize(t.x*IN.tangent.xyz+

t.y*IN.binormal.xyz+t.z*IN.normal);
// compute light direction
p += v*d*s.z;
l=normalize(p-lightpos.xyz);

#ifdef RM DEPTHCORRECT
// planes.x=-far/(far-near); planes.y =-far*near/(far-near);
OUT.depth=((planes.x*p.z+planes.y)/-p.z);

#endif
// compute diffuse and specular terms
float att=saturate(dot(-l,IN.normal));
float diff=saturate(dot(-l,t.xyz));
float spec=saturate(dot(normalize(-l-v),t.xyz));
float4 finalcolor=ambient*c;

#ifdef RM SHADOWS
// ray intersect in light direction
dp+= ds*d; // update position in texture space
// light direction in texture space
s = normalize(float3(dot(l,IN.tangent.xyz),

dot(l,IN.binormal.xyz),dot(IN.normal,-l)));
ds = s.xy*depth/s.z;
dp-= ds*d; // entry point for light ray in texture space
// get intresection distance from light ray
float dl = ray intersect rm(rmtex,dp,ds.xy);
if (dl<d-0.05) // if pixel in shadow

{ diff*=dot(ambient.xyz,float3(1.0,1.0,1.0))*0.3333; spec=0; }
#endif

finalcolor.xyz+=att*(c.xyz*diffuse.xyz*diff+
specular.xyz*pow(spec,specular.w));

finalcolor.w=1.0;
OUT.color=finalcolor;
return OUT;

}

float ray intersect rm(in sampler2D reliefmap, in float2 dp, in float2 ds)
{

const int linear search steps=10;
const int binary search steps=5;
float depth step=1.0/linear search steps;
float size=depth step; // current size of search window
float depth=0.0; // current depth position
// best match found (starts with last position 1.0)
float best depth=1.0;
// search from front to back for first point inside the object
for (int i=0; i< linear search steps-1;i++){

depth+=size;
float4 t=tex2D(reliefmap,dp+ds*depth);
if (best depth>0.996) // if no depth found yet
if (depth ≥ t.w)

best depth=depth; // store best depth
}
depth=best depth;
// search around first point (depth) for closest match
for (int i=0; i<binary search steps;i++) {

size*=0.5;
float4 t=tex2D(reliefmap,dp+ds*depth);
if (depth≥ t.w) {

best depth = depth;
depth -= 2*size;}

depth+=size;
}
return best depth;

}

