A3—Photometric Stereo

CS 43400, Spring 2013

Due on Wednesday March 20 at 7:00am

Summary: implement a program that calculates a photometric reconstruction of a simple scene and enables relighting.

1. General Acquisition Setup
a. Using a static camera and a movable light source (e.g., a flashlight, a lamp, etc.) put a close-to-convex diffuse object on a table. Then, place the camera "in front of the object" at a static location. Place the light source in one of 3 or more positions that roughly form a triangle (or square, or pentagon, etc...) in front of the camera and at about the same distance as the camera is to the scene/object. At each light position, take a picture of the scene using the same camera settings (or as close as possible) - do not move the camera! The result will be 3 or more high-resolution pictures of the same object under different illumination conditions. It is to your advantage to choose an interesting, colorful object and to take "good" pictures.
2. 3-image Gray-Scale Photometric Stereo
a. Take a set of 3 grayscale images of a scene, using 3 different light directions, and perform a photometric stereo reconstruction. This means each camera pixel will have 3 intensity values. For light directions, use manually estimated vectors (note: remember they should point towards the light and normals should point away from the surface). Estimate the per-pixel normal numerically. You will need to invert a 3×3 matrix. You can use a math library to do such.
b. Provide an interactive program where you can use the mouse (or a GUI) to alter the illumination direction and then create a newly illuminated scene.

3. 5-image Color Photometric Stereo
a. Similar to 3-image case, but take 5 images of the object and ignore the weakest and strongest value for each camera pixel in a simplified effort to omit shadows and any potential specularities. In this case, use the "gray-scale" value to estimate normals but then re-light the intensity of the colored pixels.
b. Show a similar interactive program but using color.

4. Visualizations

a. Generate at least some simple form of additional re-lighting schemes that yield interesting and compelling visuals. You may make the re-lighting vary depending on the normal direction, local curvature, closeness to end of object (i.e., silhouette) - use your imagination! Below are some tentative results:

a) input image, b) more specular appearance, c) illuminate "far side", d) illuminate "middle range", e) illuminate with a striped red-pattern

5. Extra Credit

a. Expand your method to not require an estimated light direction as input; e.g., enable unknown light direction photometric stereo
b. Develop more complex visualizations to part ' 4 ', such as the red-stripes example or others you can imagine
c. Reduce the "noise" in the solution process by ensuring neighboring normals are similar unless explicitly different (e.g., across a discontinuity)
6. Turn in
a. Source code and executable
b. 3 input images for task ' 2 ' (labeled testA-1.jpg, testA-2.jpg, and testA-3.jpg)
c. 5 input images for task ' 3 ' (labeled testB-1.jpg, testB-2.jpg,..., and testB-5.jpg)
d. Sample screen shots of your visualizations for task ' 4 '.
e. The TA will run your program using testA or testB and will play with interactive relighting and your visualizations (make the GUI clear and easy to use).
f. Extra credit as described above, with appropriate extra image files, if any, and instructions.
g. Turn in a single zipped archive with all your files via Blackboard

