GEARS: A General and Efficient
Algorithm for Rendering Shadows

Reference

* GEARS.pdf
* GEARS.mov

Fig. 1: Soft shadows rendered with our method (left for each pair) and with ray tracing (right
for each pair), for comparison. The average frame rate for our method vs. ray tracing is 15.7fps
vs. 0.5fps for the Bird Nest scene and 32.7fps vs. 2.7fps for the Spider scene.

Shadows

* Important effect in graphics
* Difficult to render

— Require estimating visibility from light source

Hard shadows

* Point light sources

e Usually rendered using shadow mapping
— Z-buffer rendered from light point

— Output sample unprojected to 3-D then projected
to shadow map

— Inaccurate when shadow map texel is magnified in
output image

Pixel-accurate hard shadows

* Render scene from output view, w/o shadows

* Unproject/re-project output image samples to
shadow plane

* Define grid on shadow plane

* Assign output image samples to grid cells
* Render scene from light; For all triangles t

* Projecttontogridtot’
— For all grid cells c touched by t’
» For all output samples sinc
 Mark s as in shadow if covered by t’

Soft shadows

* Area light source

 Umbra (full shadow), penumbra (in between),
and light regions

 Computationally expensive

— Estimating visibility from light source requires
many rays

Soft shadows approaches

Trace k x k rays for each pixel

— Ray tracing is expensive, HW unfriendly, acceleration
difficult, especially for dynamic scenes

Construct k x kK conventional shadow maps
— Expensive to render scene k x k times
— Approximation errors of conventional shadow maps

Render scene at k x k resolution for each output
image sample

— Approach taken by our technique
k should be at least 16

Algorithm overview

Given a 3-D scene S modeled with triangles, an area
light source modeled with a rectangle (LoL; in Fig. 2).
and a desired view with eye E and image plane Io/;.
our algorithm renders soft shadows with the following
approach:
|. Compute the output image without the soft shadows.
a. Render S from E to obtain image Ip/,.
. Unproject each pixel p in Ip/; to pixel sample P.
. Assign potentially blocking tris. to pixel samples P.
. For each P, compute the frac. visibility v, of LoLy.
a. Construct camera PLoL; with eye P and image
plane LoL; (orange frustum in Fig. 2).
b. Render with PLyL; all blocking triangles
assigned to P on visibility bit mask Mp.
Fig. 2: Soft shadow computation c. Compute v, as the percentage of unoccluded
overview for light L,L,, output image light samples in Mp. In Fig. 2, v, = LLy / L Ly.
loll with viewpoint E, blocker BoBlr . Add tl}e contribution of l}ght'LnLl t.o .vi‘i'lC'h pixel p of
. Ipl; using the computed fractional visibility v,
and receiver R R;. !

L 9

.

N

Acceleration scheme

Ay
AY
AY
Ay
AY
AY
Ay
Ay
AY
i \!
Ay
: edl.~
A -
A (\ P
\ -
A ’d‘
\ -
\
3
\ - 2
\ -,»’
\ S~
\\ L e
g 1
AY
Ay
-4 \
- m\
A
\
0 ;
\
\
\
Ay
N
\
L]
° L
[]
[] L]
° L4 . *
. £t
-
. L
L) . -
Y -
0° .
1 -
' -
1 -
| 1
1 -
-
-
i -

Fig. 3: Camera used to define
and populate grid.

Given

a scene S, a rectangular area light source

LoL L>L3, and the pixel samples P of the output image,
the acceleration scheme computes a regular 2-D grid G that
stores at each cell (u,v) a set of pixel samples P, and a set
of potentially blocking triangles 7,,, for the pixel samples
in P,,. The acceleration scheme proceeds as follows:

A.l.
A.2.
a.
b.
A3,
a.

b.

(@]

Construct camera C with grid G as image plane.
For each pixel sample P

Project P with C to P’.

o = Po U P, where P'eG(u,v).

For each triangle 7 in S

For each vertex B; of T and each light vertex L;

i. Compute 3-D points F;; = B; +|| B;-L;|/d;;.

Project vertices B; and points F;; with C and
compute the 2-D AABB of the projections.

. For each G(u,v) touched by the AABB

1. Tm- = Iy U T.

10

Acceleration scheme

Given a scene S, a rectangular area light source
LoLL>L3, and the pixel samples P of the output image,
the acceleration scheme computes a regular 2-D grid G that
stores at each cell (u,v) a set of pixel samples P, and a set
of potentially blocking triangles 7, for the pixel samples
in P,,. The acceleration scheme proceeds as follows:

A.l. Construct camera C with grid G as image plane.
A.2. For each pixel sample P
Q, Q; a. Project P with C to P
) b. Py = Py U P, where P'eG(u,v).
A.3. For each triangle 7 in S
a. For each vertex B; of T and each light vertex L;
i. Compute 3-D points F;; = B; +|| B;-L||d;;.
b. Project vertices B; and points F;; with C and
compute the 2-D AABB of the projections.
. For each G(u,v) touched by the AABB
I. Tm' = Iy U r.

(@]

Ye| Qs Qo

XG

Fig. 4: Top: projection of shadow volume of triangle B.B:B-onto 2-D
grid with axes xsand ys. Bottom: 2-D AABB Q.Q:Q:Q:is a tight
approximation of the shadow volume projection. 11

Acceleration scheme

G3

Gy

Go

Fig.5: Pixel sample and triangle
assignment to grid.

Given a scene S, a rectangular area light source
LoL L>L3, and the pixel samples P of the output image,
the acceleration scheme computes a regular 2-D grid G that
stores at each cell (u,v) a set of pixel samples P, and a set
of potentially blocking triangles 7,,, for the pixel samples
in P,,. The acceleration scheme proceeds as follows:

A.l. Construct camera C with grid G as image plane.

A.2. For each pixel sample P
a. Project P with C to P’
b. Py = Py U P, where P'eG(u.v).

A.3. For each triangle T in S
a. For each vertex B; of T and each light vertex L;

i. Compute 3-D points F;; = B; +|| B;-L;|/d;;.
b. Project vertices B; and points F;; with C and
compute the 2-D AABB of the projections.
. For each G(u,v) touched by the AABB
I. Tur = Iy U T.

g

12

Results: quality

(a) 4x4 (b) 8x8

(c) 16x16 (d) 32x32

Fig. 6: Quality dependence on resolution of visibility
masks.

13

Results: quality

Fig. 7: Additional scenes used to test out method.

14

Results: performance

TABLE 1: Frame rate [fps] for various output resolutions.

Output res. 256 512 1024 1280

X256 x512 x1024 x1280
Cow Matrix 33.5 24.0 12.5 6.60
Chess 29.1 19.7 10.3 6.10
Church 32.2 20.1 12.0 6.50
Dragon 51.6 243 13.5 7.43
Bird Nest 349 15.7 4.6 3.16
Spider 60.8 32.7 14.4 11.0

TABLE 2: Frame rate [fps] for various visibility mask
resolutions.

Bit mask res. 4x4 8x8 16x16 32x32
Cow Matrix 27.6 26.2 24 20.1
Chess 31.1 23.7 19.7 16.2
Church 34.5 26.3 20.1 15.7
Dragon 36.9 32.7 24.3 16.6
Bird Nest 234 18.9 15.7 8.9
Spider 45.8 40.3 32.7 18.6

Results: performance

TABLE 3: Frame rate [fps] for various light source sizes.

Light diagonal 1 2 3 4 5
Cow Matrix 27.2 24 214 19.1 17.2
Chess 24.3 19.7 15.3 12.4 7.8
Church 31.2 | 20.1 159 | 10.1 7.6
Dragon 357 | 243 | 184 | 128 9.3
Bird Nest 20.1 15.7 9.8 7.5 5.2
Spider 48.7 32.7 24.3 20 16.8 (a) Diagonal=2 (b) Diagonal=3

TABLE 4: Frame rate [fps] for various grid resolutions.

Grid res. 256x256 128x128 | 64x64 | 32x32
Cow Matrix 21.1 24 19.7 124
Chess 18.2 19.7 17.2 15.3
Church 18.6 20.1 19.1 15.2
Dragon 214 243 22.1 17.5
Bird Nest 13.1 15.7 12.2 8.7
Spider 20.6 32.7 28.3 23.8

(¢c) Diagonal=4 (d) Diagonal=5

Fig. 8: Soft shadows with various light source sizes.

16

Results: performance

TABLE 5: Number of triangles and of pixel samples per
arid cell.

Scene Triangles Pixel Samples
Max ‘ Average Max ‘ Average

Cow Matrix | 539 70 278 16
Chess 1333 54 103 I
Church 2121 54 146 9
Dragon 2844 60 283 16
Bird Nest 501 25 243 16
Spider 506 9 244 16

Fig. 9: Visualization of pixel sample distribution over grid.

Results: performance

TABLE 6: Triangle to pixel sample assignments [x1,000].

Scene Necessary Total Percentage
Cow Matrix 2,523 22,435 1%
Chess 6,249 44,636 14%
Church 11,554 109,748 1%
Dragon 19,139 91,007 21%
Bird Nest 9.562 35,313 27% ¢ !
Spider 1,673 9.260 18%
— -9
€ .

[

Fig. 10: Visualizations of actual projections of triangle
shadow volumes onto grid plane. The difference (orange)
between the convex hull (grey) and the AABB are small.

as predicted by Fig. 4.

18

Results: performance

TABLE 6: Triangle to pixel sample assignments [x1,000].
Scene NCCCSSHI’}" TOtlll PC]'CCIITngC
Cow Matrix 2,523 22,435 11%
Chess 6,249 44,636 149
Church 11,554 109,748 11%
Dragon 19,139 91.007 21%
Bird Nest 9.562 35,313 27%
Spider 1,673 9.260 18%

YaG

Fig. 11: Triangle shadow volume approximated conserva-

tively with a frustum (red).

19

Performance: comparison to ray tr'ng

TABLE 7: Performance comparison between our method
and ray tracing for the same light sampling resolution.

GEARS | RT static _ RT dyn. _
Scene (fps] [fps] Speedup [fps] Speedup
(A)/(B) (A)(C)
(A) (B) (C)
Cow Matrix 24.0 1.70 14 1.29 18
Chess 19.7 1.79 11 1.46 14
Church 20.1 2.10 10 1.75 12
Dragon 243 2.56 10 1.90 12
Bird Nest 15.7 0.50 31 0.46 34
Spider 32.7 2.70 12 1.80 18

Performance: comparison to ray tr’'ng

TABLE 8: Light sampling resolution comparison between

our method and ray tracing for the same frame rate.

Scene Frame rate GEARS Ray tracing

[fps] Bitmask res. N. of light rays
Cow Matrix 8.3 32x32 = 1,024 48
Chess 10.5 32x32=1,024 50
Church 11.0 32x32=1,024 90
Dragon 10.0 32x32=1,024 72
Bird Nest 15.7 16x16 =256 12
Spider 32.7 16x16 =256 18

Fig. 12: Quality comparison between GEARS (left) and ray
tracing (right) for equal performance.

21

