
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 1

GEARS: A General and Efficient Algorithm for
Rendering Shadows

Lili Wang, Ze Wang, Yulong Shi and Voicu Popescu

Fig. 1: Soft shadows rendered with our method (left for each pair) and with ray tracing (right for each pair), for
comparison. The average frame rate for our method vs. ray tracing is 15.7fps vs. 0.5fps for the Bird Nest scene and
32.7fps vs. 2.7fps for the Spider scene.

Abstract—We present a soft shadow rendering algorithm that is general, efficient, and accurate. The algorithm supports fully
dynamic scenes, with moving and deforming blockers and receivers, and with changing area light source parameters. The
algorithm computes for each output image pixel a tight but conservative approximation of the set of triangles that block the light
source as seen from the pixel sample. The set of potentially blocking triangles allows estimating visibility between light points
and pixel samples accurately and efficiently. As the light source size decreases to a point, our algorithm converges to rendering
pixel accurate hard shadows.

Index Terms—Soft shadows, interactive rendering, hard shadows.

F

1 INTRODUCTION

R ENDERING accurate soft shadows at interactive rates
remains an open research problem. The core challenge

is to estimate what fraction of an area light source is
visible from each of the surface samples captured by the
output image pixels. Consider a 3-D scene modeled with
N triangles, a rectangular light source sampled uniformly
with kxk light samples, and an output image of resolution

• L. Wang, Z. Wang and Y. Shi are with the State Key Laboratory of
Virtual Reality Technology and Systems, School of Computer Science
and Engineering, Beihang University, Beijing China, 100191.
E-mail: wanglily@buaa.edu.cn

• V. Popescu is with the Computer Science Department, Purdue Univer-
sity, West Lafayette, Indiana, USA, IN 47907.
E-mail: popescu@purdue.edu

wxh. The challenge is to compute whether there is a direct
line of sight from each of the kxk light samples to each of
the wxh pixel samples.

One approach is to trace kxk rays from each of the wxh
pixels. Considering all wxh x kxk x N possible ray-triangle
pairs is prohibitively expensive and an acceleration scheme
is needed to avoid considering most ray-triangle pairs that
do not yield an intersection. Another approach is to render
the scene kxk times to obtain kxk conventional shadow
maps that allow approximating visibility from light samples
to pixel samples. Each shadow map needs to be rendered at
a resolution comparable to w x h, and, even so, shadow map
undersampling artifacts can occur. The cost of a brute force
implementation of the approach is prohibitive: the entire
scene has to be rendered k x k times at w x h resolution.
For quality soft shadows typical k values are 16 and above,



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 2

which implies rendering the scene hundreds of times. A
third approach is to render the scene from each of the w x
h pixel samples at k x k resolution, which computes directly
and accurately the visibility masks needed for each pixel
sample. The cost of a brute force implementation of the
approach is, again, prohibitive: the entire scene has to be
rendered w x h times, albeit at the lower k x k resolution.

In this paper we propose a soft shadow rendering method
that accelerates this third approach. Whereas a brute force
method renders all scene triangles in order to estimate
the light visibility mask of a given pixel sample P, our
method only renders triangles that might block the light
as seen from P. The set of triangles rendered for a pixel
sample is conservative, in the sense that it contains all
triangles that block the light. The set of potentially blocking
triangles is determined by projecting pixel samples and
triangle shadow volumes onto a regular grid. All pixel
samples that project at a given grid cell are assigned all
triangles whose shadow volume projections intersect the
grid cell. The projection of a shadow volume of a triangle
is approximated conservatively, which ensures that a pixel
sample is assigned all triangles that block the light as seen
from the pixel sample. Our method is (1) accurate, (2)
efficient, and (3) general. We also refer the reader to the
accompanying video.

(1) Our method is accurate in the sense that it accurately
assesses visibility from each pixel sample to each light
sample. All approximations employed are conservative.
Fig. 1 shows that soft shadows rendered with our method
are identical to soft shadows rendered with a ray tracer (i.e.
NVIDIA’s OptiX) for the same visibility bit mask resolution
(i.e. 16x16).

(2) Our method is efficient because the approximations
employed are not only conservative, but they are also tight
and fast to compute. First, the set of blocking triangles
is not computed per pixel sample but rather per group of
pixel samples, leveraging pixel to pixel coherence. Second,
the regular grid is designed such that the projection of a
triangle’s shadow volume be approximated well with a sim-
ple axis aligned bounding box (AABB), which precludes
unnecessary triangle to pixel sample assignments without
resorting to expensive convex hull computations. Third,
graphics hardware advances have brought programmability
flexibility that enables an efficient implementation of our
method. In particular, the atomic operations and the mem-
ory model provided by parallel programming environments
such as CUDA enable storing and processing efficiently a
variable number of pixel samples and a variable number
of triangle ID’s at each cell of a regular grid. This avoids
the cost of constructing and using a hierarchical data struc-
ture (e.g. kd-tree) to model the non-uniform distribution
of pixel sample and blocking triangle data. Our method
renders complex soft shadows at interactive rates. In all our
experiments, our method is substantially faster than OptiX.
The ray tracing performance reported in Fig. 1 does not
account for the time needed to construct the kd-tree. The
performance gap is even wider for dynamic scenes.

(3) Our method is general, as it works with any scene

modeled with triangles, without requiring a partitioning
of the scene into blockers and receivers, and without
restrictions on scene geometry such as planarity of receivers
or strong connectivity of blocker meshes. Moreover the
method supports fully dynamic scenes, including moving
and deforming blockers and receivers, as well as light
sources with changing size, location, and orientation. As the
light source area decreases, our method naturally conver-
gences to the irregular z-buffer method for rendering hard
shadows [1], [2], [3], producing pixel-accurate results, and
avoiding the classic shadow map resolution issues.

2 RELATED WORK

Several excellent surveys provide a comprehensive and in
depth review of existing soft shadow rendering methods
[4], [5]. In this brief overview, we distinguish between
image space and geometry space methods. Image space
methods, such as shadow map methods [6], [7], [8],
project the 3-D scene onto planes to compute z-buffers used
to determine visibility. Geometry space methods estimate
visibility in 3-D space to determine umbra and penumbra
regions, e.g. the penumbra wedge and shadow volume
based methods [9], [10], [11]. Our method uses triangle
shadow volumes, thus it is a geometry space method.

Based on result accuracy, soft shadow methods can be
divided into three categories: shadow simulation meth-
ods, shadow approximation methods, and accurate shadow
methods. Shadow simulation methods usually start from
hard shadows which are fitted with penumbra regions [12],
[13], [9]. For example soft shadows can be simulated
by blurring hard shadow edges [14], [15]. Simulation
methods are fast and are thus suitable for applications where
performance is at a premium, but the shadows rendered can
be substantially wrong.

Shadow approximation methods approximate the block-
ing geometry to facilitate visibility querying. For example,
back projection methods approximate blocking geometry
with shadow mapping. Guennebaud et al. [6] estimate the
visibility between the light source and the pixel sample
by using shadow map samples that are back projected
onto the light image plane. Back projection was later
improved for more accurate and faster soft shadows by
smooth contour detection and radial area integration [16].
Schwarz and Stamminger [17] approximate model the
shadow map samples with micro-quads and micro-triangles,
which improves quality. All these approaches rely on a
single shadow map to model blocker geometry, which is
not conservative. Heuristic strategies are employed to fill
in gaps in the shadows and to generate more accurate
contours of blockers. Yang et al. [18] use multiple shadow
maps to reduce the artifacts of sampling blocking geometry
from a single viewpoint. A concern is rendering efficiency,
which is alleviated by grouping coherent pixels in tiles and
by computing a single visibility factor per tile. Shadow
approximation methods produce shadows that are based
on actual visibility computation and achieve interactive
frame rates at the cost of approximating the blocking



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 3

geometry. We do not approximate blocking geometry, but,
like Schwarz and Stamminger [19], we do use bitmasks to
estimate partial light source visibility.

Accurate soft shadow methods rely on the accurate
computation of visibility between pixel samples and light
samples. Our method belongs to the category of accurate
soft shadow methods. Ray tracing [20] naturally supports
accurate soft shadows by tracing rays between pixel sam-
ples and light points, but peformance is a concern. Laine
and Aila [21] describe a method based on hierarchical
occlusion volumes for triangles to accelerate the estimation
of whether a triangle blocks the ray between a pixel
sample and the light source. Increasing the size of the
area light source decreases the efficiency of this algorithm.
The same researchers propose another acceleration scheme,
dubbed soft shadow volumes, which is based on finding and
working with silhouette edges as opposed to triangles [22].
The approach takes advantage of the observation that soft
shadow computation does not need to worry about trian-
gles whose projection is landlocked by the projection of
neighboring connected triangles when seen from the light.
However, performance is limited by the overall complexity
of the method that implies finding silhouette edges, tracing
one ray per pixel, and reconstructing and resampling the
visibility function. Other limitations of the method include
limited scalability with light source area, and poor perfor-
mance for fragmented meshes, when virtually all triangle
edges are silhouette edges. Forest et al. [23] accelerate the
soft shadow volumes approach to interactive rates using
depth complexity sampling. The method eliminates the
need to trace a ray per pixel, it streams silhouette edges as
opposed to constructing a data structure for storing them,
and it provides a good quality/performance tradeoff.

Eisemann and Decoret [24] developed a method for esti-
mating visibility between two rectangular patches, which
can be applied to soft shadows. They approximate the
shadow volume of a blocking triangle with 4 rays per
triangle vertex, one for each of the corners of a rectangular
light. We use the same approximation and we also show
that the approximation is conservative. Their method is
not fully general: the method only allows casting shadows
on a plane or a height field, and the method requires a
separation between blocker and receiver, which precludes
self-shadowing. Johnson et al. [10] use a point light source
and edges of blockers to estimate penumbra regions, and
then refine penumbra pixel intensities with extra visibility
tests involving the actual area light source. The chal-
lenge of the method is a stable and efficient detection
of silhouettes. Like the method we present, Benthin and
Wald [25] construct frusta at pixel samples. However, they
estimate the fractional light visibility from pixel samples
by shooting rays whereas we determine and rasterize the
set of potentially blocking triangles.

Sintorn et al. [26] propose alias-free shadow maps
(AFSM), a method for rendering accurate hard and soft
shadows which, like our method, takes the approach of
accelerating the computation of per pixel visibility masks.
Like in our method, pixel samples are first projected onto

the AFSM, which is a regular grid in front of the light. An
AFSM location stores a variable number of pixel samples
using a list. Then, the shadow volume of each blocking
triangle is projected onto the AFSM. Finally, visibility
bitmasks are updated for all pixel samples stored at an
AFSM location covered by the shadow volume projection.
One important difference between AFSM and our method
is in the way the projection of the shadow volume of
blocking triangles is approximated. AFSM approximates
the projection by inscribing the light source into a bounding
ellipsoid, by computing extremal points for the shadow
volume projection, and by computing the 2-D convex hull
of the extremal projection points. The convex hull is then
rasterized to determine the AFSM locations covered. Our
method designs the regular grid such that the shadow
volume can be approximated well with a simple AABB of
the projection of extremal points. This makes the expense
of computing and of rasterizing the convex hull unneces-
sary. A second fundamental difference between the AFSM
method and ours is that AFSM does not bound the number
of rendering passes. A rendering pass can only update a
constant number of visibility bitmasks. For example, for
8 render targets, 4 channels per pixel, and 32 bits per
channel, a rendering pass can update only 4 16x16 visibility
bitmasks. Additional rendering passes are needed until the
AFSM location with the most pixel samples is fully treated.
Our experiments show that, for a 512x512 output image
resolution, even if an AFSM with a resolution of 512x512
is used, the maximum number of pixel samples in an AFSM
location remains high (e.g. 31, which implies 8 rendering
passes). Our method assigns triangles to pixel samples in a
first pass and completes the soft shadow computation in a
second pass, executed in parallel over all pixel samples.

3 ALGORITHM OVERVIEW

Given a 3-D scene S modeled with triangles, an area
light source modeled with a rectangle (L0L1 in Fig. 2),
and a desired view with eye E and image plane I0I1,
our algorithm renders soft shadows with the following
approach:

1. Compute the output image without the soft shadows.
a. Render S from E to obtain image I0I1.

2. Unproject each pixel p in I0I1 to pixel sample P.
3. Assign potentially blocking tris. to pixel samples P.
4. For each P, compute the frac. visibility vp of L0L1.

a. Construct camera PL0L1 with eye P and image
plane L0L1 (orange frustum in Fig. 2).

b. Render with PL0L1 all blocking triangles
assigned to P on visibility bit mask MP.

c. Compute vp as the percentage of unoccluded
light samples in MP. In Fig. 2, vp = LL1 / L1L0.

5. Add the contribution of light L0L1 to each pixel p of
I0I1 using the computed fractional visibility vp.

Step 1 is part of the regular rendering of the current
frame. Step 2 is a simple pass over the output image
pixels to compute a 3-D point per pixel by unprojection



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 4

Fig. 2: Soft shadow computation overview for light L0L1,
output image I0I1 with viewpoint E, blocker B0B1, and
receiver R0R1.

using the pixel’s z-value. Step 3 computes which triangles
should be considered for each output image pixel. Step 3
is an acceleration scheme that avoids having to consider
all triangles for each output image pixel. The acceleration
scheme is described in the next section. Step 4 computes
a visibility bit mask for every pixel by rendering the
potentially blocking triangles determined at Step 3. Step
5 takes a final pass over the output image pixels to finalize
the deferred soft shadow computation.

We compute for every pixel sample a conservative but
tight approximation of the set of triangles that block the
light with the following acceleration scheme.

4 ACCELERATION SCHEME
The acceleration scheme finds a superset of the triangles
that block the light as seen from each pixel’s 3-D sample
point. We target fully dynamic scenes where blocker and
receiver geometry can move and deform, and where the
light rectangle position, orientation, size, and aspect ratio
can change from frame to frame. For this, we have devel-
oped an acceleration scheme that runs from scratch at the
beginning of every frame.

Given a scene S, a rectangular area light source
L0L1L2L3, and the pixel samples P of the output image,
the acceleration scheme computes a regular 2-D grid G that
stores at each cell (u,v) a set of pixel samples Puv and a set
of potentially blocking triangles Tuv for the pixel samples
in Puv. The acceleration scheme proceeds as follows:

A.1. Construct camera C with grid G as image plane.
A.2. For each pixel sample P

a. Project P with C to P′.
b. Puv = Puv ∪ P, where P′∈G(u,v).

A.3. For each triangle T in S
a. For each vertex Bi of T and each light vertex L j

i. Compute 3-D points Fi j = Bi +‖ Bi-L j‖di j.
b. Project vertices Bi and points Fi j with C and

compute the 2-D AABB of the projections.
c. For each G(u,v) touched by the AABB

i. Tuv = Tuv ∪ T .
(A.1) Camera C is used to decide whether a pixel

sample is inside the shadow volume of a triangle, and it
is constructed as follows.

Fig. 3: Camera used to define and populate grid.

In order to estimate visibility from pixel samples P to
light samples L, the view frustum of camera C must contain
all segments PL. We satisfy this condition by constructing
the view frustum of camera C such that it contains the 3-D
AABB of the four light vertices L j and of all pixel samples
P, see A0A1A2A3 in Fig. 3.

A second requirement that the construction of camera
C has to satisfy is that of minimizing the projection of
the shadow volumes of the triangles. The smaller the
projection, the fewer grid cells to which the triangle is
assigned, and the more effective the acceleration scheme.
Small shadow volume projections are obtained when the
rays of camera C approximate the light rays well. Whereas
the pinhole C cannot approximate the light rays with high
fidelity for a large area light source, the rays of camera C
have to converge to the light rays as the size of the light
decreases. To the limit, when the light source becomes a
point, the eye C has to be the light point. We place eye
C on the line connecting the center O of A0A1A2A3 to
the center of the light Lm, with distance CLm proportional
to the diagonal of the area light source. This way, as the
light source decreases to a point, our algorithm converges to
the irregular z-buffering algorithm for pixel-accurate hard
shadows [1], [2], [3].

A third requirement that the construction of camera C has
to satisfy is to provide a simple and accurate approximation
of the projection of the shadow volume of each triangle. For
this, we choose the image plane of camera C to be parallel
to the light plane, with the image frame edges being parallel
to the edges of the light rectangle. In other words, the grid
axes are parallel to the light rectangle axes. This way, the
4 light corners L0, L1, L2, and L3, project the 3 vertices
B0, B1, and B2 of a blocking triangle to 3 axis aligned
rectangles (Fig. 4, left). Moreover, as it is typically the
case for the detailed scenes of interest in today’s graphics
applications, blocking triangles are small, which makes that
the projection of the shadow volume is approximated well
by the 2-D AABB of the 3 projected rectangles. In Fig. 4,
right, the 2-D AABB Q0Q1Q2Q3 is an excellent approxima-
tion of the actual projection of the shadow volume, shown
in grey. Q0Q1Q2Q3 only overestimates the shadow volume
projection by the 3 small corner triangles, shown in orange.

The far plane of camera C is given by the farthest corner



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 5

Fig. 4: Left: projection of shadow volume of triangle
B0B1B2 onto 2-D grid with axes xG and yG. Right: 2-D
AABB Q0Q1Q2Q3 is a tight approximation of the shadow
volume projection.

of the 3-D AABB (i.e. A1 in Fig. 3). The near plane is set
to the light plane, as the light is single sided and only casts
rays in one of the half spaces define by light plane.

(A.2) Step 2 assigns pixel samples to grid cells. A pixel
sample is assigned to the grid cell where the pixel sample
projects with camera C. Fig. 5 uses the same notation as
before. The image plane of camera C, i.e. the grid, is
illustrated on the far plane. There are 4 grid cells G0-G3,
G0 is assigned 4 pixel samples, and G3 none.

(A.3) Step 3 assigns potentially blocking triangles to grid
cells. For this, the current triangle T is first extruded by
computing a 3-D point for each triangle vertex/light vertex
pair, a total of 3 x 4 = 12 points Fi j (Step 3.a). Point Fi j
is on the line connecting triangle vertex Bi and light vertex
L j, at a distance di j from Bi and away from the light; di j
is chosen such that Fi j lie on the far plane of camera C.
In Fig. 2, which is 2-D, there are 2x2 extrusion points F01,
F11, F00, and F10. At Step 3.b, the 3 vertices Bi and the
12 points Fi j are projected with C and the 2-D AABB of
the 15 projections is computed. Finally, T is assigned to all
grid cells touched by the AABB (Step 3.c). In Fig. 5 the
triangle whose shadow volume is shown shaded in grey is
assigned to grid cells G0 and G1. The shadow volume of a
triangle is by definition the union of all lines connecting a
point inside the triangle to a point inside the light rectangle,
clipped by the triangle plane to the half space away from
the light. Step 3 does not compute an approximation of the
triangle’s shadow volume, but rather an approximation of
the projection of the shadow volume. The approximation is
conservative, see proof in Appendix.

As a result of the algorithm above, a pixel sample is
assigned to exactly one grid cell. Not all triangles are
assigned to a cell, as not all are blocking triangles. A
triangle can be assigned to more than one grid cell, as the
same triangle can block the light for two or more pixel
samples stored at different cells. All pixel samples in a cell
are assigned the same set of potentially blocking triangles.

Fig. 5: Pixel sample and triangle assignment to grid.

5 RESULTS AND DISCUSSION

In this section we discuss the quality of the shadows
rendered by our method, we give a brief overview of the
implementation, we report performance measurements, and
we discuss limitations.

5.1 Quality
Our method is accurate in the sense that it correctly
estimates visibility between light source samples and output
image pixel samples. This results in soft shadows that are
identical to those computed by ray tracing, when using the
same number of light rays (see Fig. 1 and accompanying
video). A quantiative analysis of the difference between an
image rendered with our method and one rendered with
ray tracing revealed identical pixel values except for 3
pixels whose intensity differed by 1, which we attribute to
numerical precision differences between the two methods.

The only approximation made by our method that in-
fluences quality is the resolution of the visibility masks
(Fig. 6). Whereas a resolution of 4x4 is insufficient, 8x8
produces good results, and there is virtually no improve-
ment beyond 16x16.

5.2 Implementation overview
Referring back to the algorithm overview given in Section
3, step 1 (rendering the scene preliminarily, without shad-
ows) and step 2 (unprojection to compute pixel samples)
are implemented using the Cg shading language. The 3-D
pixel samples are stored in a floating point texture.

Steps 3, 4, and 5 are implemented in CUDA. Step 3
computes a set of potentially blocking triangles for each
pixel sample according to the algorithm given in Section 4.

Steps A.1 and A.2 are executed simultaneously: camera C
is constructed, the pixel samples stored in the floating point
texture are projected onto the image plane of C, the grid
G is defined to cover the 2-D AABB of the projections,
and pixel samples are assigned to the cells of G where
they project. The resolution of G is an input parameter.
Step A.3 is executed by first computing the grid cells
touched by the projection of the shadow volume of each



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 6

(a) 4x4 (b) 8x8

(c) 16x16 (d) 32x32

Fig. 6: Quality dependence on resolution of visibility
masks.

triangle. The number of grid cells touched by each triangle
is recorded in an array A. For each triangle and for each
cell covered by the triangle, a two-tuple (triID,cellID)
is stored using the prefix sum of array A as offset. The
prefix sum allows storing the mapping from triangles to
cells contiguously. The mapping is inverted by radix sorting
the tuples based on cellIDs. The resulting mapping from
cells to triangles, combined with the mapping from cells
to pixel samples computed at Step A.2, effectively assigns
potentially blocking triangles to pixels. This completes Step
3 of the algorithm (Section 3).

At Step 4, a visibility bit mask is computed for each
pixel sample by rendering the triangles assigned to the pixel
sample with a camera that has the pixel sample as its eye
and the light as its image plane. The fraction of occluded
bits is trivially computed for each bit mask to finalize the
shadow computation at step 5.

If the light is a point light source, the eye of camera
C corresponds to the point light source, the projections of
the shadow volumes of the triangles are triangles (i.e. there
are only 3 extrusion points F at step A.3), and the single
shadow bit is known for each pixel sample after Step 3 (i.e.
Steps 4 and 5 are not necessary).

5.3 Performance
We tested our technique on several scenes: Spider (41K
triangles, Fig. 1, top), BirdNest (165K triangles, Fig. 1,
bottom), Church (74K triangles, Fig. 7a), CowMatrix
(786K triangles, Fig. 7b), Chess (201K triangles, Fig. 7c),
and Dragon (81K triangles, Fig. 8). All performance
measurements reported in this paper were recorded on a
3.4GHz Intel(R) Core(TM) i7-2600 CPU PC with 4 GB
of RAM and an NVIDIA GeForce GTX 580 graphics card.

(a) Church

(b) Cow matrix

(c) Chess

Fig. 7: Additional scenes used to test our method.

Performance variation with algorithm parameters

Table 1 gives the average frame rate for our test scenes
for various output image resolutions. The light visibility
bitmask resolution is 16x16 and the grid resolution is
128x128. Performance is most sensitive with output image
resolution for the BirdNest and the Spider scenes which
have many silhouette edges, and consequently the relative
complexity of the penumbra regions decreases less with
output resolution.

Table 2 gives the average frame rate for our test scenes
for various resolutions of the light visibility bit mask. Out-
put resolution is 512x512, and grid resolution is 128x128.
The bit mask resolution only influences the cost of rasteriz-
ing the potentially blocking triangles for each pixel sample.
The rasterization cost is relatively small, as indicated by the
relatively small performance penalty for an 8x8 increase of
rasterization resolution.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 7

TABLE 1: Frame rate [fps] for various output resolutions.

Output res. 256 512 1024 1280
x256 x512 x1024 x1280

Cow Matrix 33.5 24.0 12.5 6.60
Chess 29.1 19.7 10.3 6.10

Church 32.2 20.1 12.0 6.50
Dragon 51.6 24.3 13.5 7.43

Bird Nest 34.9 15.7 4.6 3.16
Spider 60.8 32.7 14.4 11.0

TABLE 2: Frame rate [fps] for various visibility mask
resolutions.

Bit mask res. 4x4 8x8 16x16 32x32

Cow Matrix 27.6 26.2 24 20.1
Chess 31.1 23.7 19.7 16.2

Church 34.5 26.3 20.1 15.7
Dragon 36.9 32.7 24.3 16.6

Bird Nest 23.4 18.9 15.7 8.9
Spider 45.8 40.3 32.7 18.6

Table 3 gives the average frame rate for our test scenes
for various light source sizes. Visibility bit mask resolution
is 16x16, output resolution is 512x512, and grid resolution
is 128x128. The soft shadows obtained with the various
light diagonals are shown for the Dragon in Fig. 8.

TABLE 3: Frame rate [fps] for various light source sizes.
Light diagonal 1 2 3 4 5

Cow Matrix 27.2 24 21.4 19.1 17.2
Chess 24.3 19.7 15.3 12.4 7.8

Church 31.2 20.1 15.9 10.1 7.6
Dragon 35.7 24.3 18.4 12.8 9.3

Bird Nest 20.1 15.7 9.8 7.5 5.2
Spider 48.7 32.7 24.3 20 16.8

Table 4 gives the average frame rate for our test scenes
for various grid resolutions. The visibility mask resolution
is 16x16 and the output resolution is 512x512. The lower
the grid resolution, the larger the grid cells, the more
variability between the sets of blocking triangles for
the pixel samples within grid cells, and the higher the
penalty of assigning all pixel samples within a cell the
same set of potentially blocking triangles. The higher the
grid resolution, the smaller the grid cell, and the higher
the number of grid cells to which a triangle has to be
assigned, reducing the efficiency of the grid. For our test
scenes best performance was achieved with a 128x128 grid.

TABLE 4: Frame rate [fps] for various grid resolutions.
Grid res. 256x256 128x128 64x64 32x32

Cow Matrix 21.1 24 19.7 12.4
Chess 18.2 19.7 17.2 15.3

Church 18.6 20.1 19.1 15.2
Dragon 21.4 24.3 22.1 17.5

Bird Nest 13.1 15.7 12.2 8.7
Spider 29.6 32.7 28.3 23.8

(a) Diagonal=2 (b) Diagonal=3

(c) Diagonal=4 (d) Diagonal=5

Fig. 8: Soft shadows with various light source sizes.

Grid efficiency

We investigate grid efficiency in terms of load balancing
and in terms of the quality of the approximation of the set
of blocking triangles for pixel samples.

Typical maximum and average number of pixel samples
per grid cell are shown in Table 5. The grid resolution
is 128x128, and output resolution is 512x512. The pixel
sample to grid assignment is visualized in Fig. 9. Since
the maximum number of pixel samples per grid cell is
large both in an absolute and in a relative sense (i.e. it
is 10 to 18 times the average), an approach, like alias-free
shadow maps, that processes a small and fixed number of
pixel samples per cell for each rendering pass is inefficient.
Our method processes all pixel samples in a second pass
in parallel, and is significantly less sensitive to the load
balancing of the grid. Table 5 also reports typical maximum
and average number of triangles per grid cell.

Finally we have measured the performance of the grid
as a tool for assigning blocking triangles to pixel samples.

Fig. 9: Visualization of pixel sample distribution over grid.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 8

TABLE 5: Number of triangles and of pixel samples per
grid cell.

Scene
Triangles Pixel Samples

Max Average Max Average

Cow Matrix 539 70 278 16
Chess 1333 54 103 11

Church 2121 54 146 9
Dragon 2844 60 283 16

Bird Nest 501 25 243 16
Spider 506 9 244 16

Perfect performance would assign a triangle to a pixel
sample only if the triangle blocks at least one light sample
as seen from the pixel sample. Our method is conservative,
in the sense that a pixel sample is assigned all its blocking
triangles, but the set of blocking triangles is overestimated.
Table 6 shows that at least 11% and as many as 27% of
the potentially blocking triangles found using the grid are
actually blocking triangles.

TABLE 6: Triangle to pixel sample assignments [x1,000].
Scene Necessary Total Percentage

Cow Matrix 2,523 22,435 11%
Chess 6,249 44,636 14%

Church 11,554 109,748 11%
Dragon 19,139 91,007 21%

Bird Nest 9,562 35,313 27%
Spider 1,673 9,260 18%

Our method overestimates the set of blocking triangles
for a pixel sample because of three approximations. A
triangle is assigned to a grid cell if the 2-D AABB of the
projection of the triangle’s shadow volume intersects the
grid cell. The first approximation is the use of the AABB
instead of the actual projection. As described in Section 4
(Fig. 5), we expect this approximation to be very good. We
quantify the quality of the approximation by comparing the
number of pixel samples covered by the 2-D AABB to the
number of pixels covered by the 2-D convex hull of the
projection of the shadow volume (see Step A.3 in Section

Fig. 10: Visualizations of actual projections of triangle
shadow volumes onto grid plane. The difference (orange)
between the convex hull (grey) and the AABB are small,
as predicted by Fig. 4.

Fig. 11: Triangle shadow volume approximated conserva-
tively with a frustum (red).

4). We have found that, on average, the 2-D AABB only
covers an additional 1.75%, 1.13%, 1.5%, 0.31%, 2.2%, and
0.96% pixel samples for the Cow Matrix, Chess, Church,
Dragon, Bird Nest, and Spider scenes, respectively. Fig. 10
shows examples of actual projections of shadow volumes
and highlights the small difference between the 2-D AABB
and the 2-D convex hull. We conclude that the convex
hull brings virtually no benefit, which makes the cost of
computing and rasterizing the convex hull unwarranted.

The second approximation is that the triangle to grid
cell assignment is computed in 2-D and not in 3-D. It
can happen that even though the projection of a triangle
shadow volume intersects a grid cell, there are no grid cell
pixel samples that are actually inside the shadow volume.
In order to quantify the impact of this approximation we
have developed a conservative 3-D approximation of the
triangle shadow volume as shown in Fig. 11, which uses
the same notations as Fig. 4.

The shadow volume is inscribed into a frustum with 6
faces. The bottom face Q0Q1Q2Q3 corresponds to the 2-
D AABB of the projection onto the grid. The top face
is a 2-D AABB of the projection of the triangle B0B1B2
onto a plane parallel to the grid and that passes through
the vertex closest to the light, here B2. The edges of the
top and bottom faces are pair-wise parallel so the side
faces of the frustum are planar. The frustum is a convex
polyhedron and it is straight forward to decide whether
a 3-D pixel sample is inside the frustum or not. By not
assigning a triangle to a grid cell if none of the grid
cell pixel samples are inside the frustum approximation of
the shadow volume of the triangle, the percentages in the
last column of Table 6 become 28, 39, 38, 42, 39, and
28%, for each of the six scenes, respectively. Although the
triangle to pixel sample assignment approximation becomes
tighter, the frame rate decreases, which indicates that the
cost of the 3-D approximation of the shadow volume
outweighs its benefit. Therefore, at least in the context of
our implementation, the 3-D approximation of the shadow
volume remains just a tool for investigating grid efficiency.

The third and final reason for unnecessary triangle to



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 9

pixel sample assignments is the fact that all pixel samples of
a grid cell use the same set of potentially blocking triangles.
In other words, the set of potentially blocking triangles
is computed per grid cell and not per pixel sample. Of
course, this approximation can be controlled through the
grid resolution. For example, for the CowMatrix scene the
percentage of necessary assignments increases from 11%
to 22% if the grid resolution increases from 128x128 to
512x512. However, as indicated earlier (Table 4), the best
performance is obtained for a 128x128 grid.

Compared to the brute force approach of rendering
all triangles for each of 512x512 output image pixels,
our method renders 512x512x786K/22,435K=9,184 times
fewer triangles for the CowMatrix example in Table 6.
Compared to the brute force approach of rendering a
shadow map for each of 32x32 light points, our method
renders 32x32x768K/22,435K=35 times fewer triangles at
a much lower resolution (i.e. 32x32 vs. 512x512).

Comparison to ray tracing

We have compared the performance of our algorithm
(GEARS) to that of NVIDIA’s Optix ray tracer; Table 7
shows that frame rates for our algorithm are between 7
and 31 times higher for the same bitmask resolution (i.e.
for same shadow quality). This is for static scenes, when
the ray tracing’s acceleration data structure does not have
to be rebuilt, and is thus not included in the frame rate.
For dynamic scenes, our performance remains the same,
whereas the peformance of ray tracing degrades further.

TABLE 7: Performance comparison between our method
and ray tracing for the same light sampling resolution.

Scene
GEARS RT static

Speedup
RT dyn.

Speedup
[fps] [fps]

(A)/(B)
[fps]

(A)/(C)
(A) (B) (C)

Cow Matrix 24.0 1.70 14 1.29 18
Chess 19.7 1.79 11 1.46 14

Church 20.1 2.10 10 1.75 12
Dragon 24.3 2.56 10 1.90 12

Bird Nest 15.7 0.50 31 0.46 34
Spider 32.7 2.70 12 1.80 18

Whereas Table 8 provides a frame rate comparison
between our method and ray tracing for equal quality,
we have also performed a quality comparison for equal
frame rate. As shown in Table 8, to achieve the same
performance, ray tracing has to reduce the light sampling
resolution considerably. This results in noticeable artifacts
as shown in Fig. 12.

5.4 Limitations
Our approach samples the light densely enough for quality
penumbra approximations, but the blockers have to be large
enough for their projection to be detected in the 16x16
or 32x32 bit masks. This is a fundamental limitation of
all approaches based on light visibility bitmasks. Possible

TABLE 8: Light sampling resolution comparison between
our method and ray tracing for the same frame rate.

Scene
Frame rate GEARS Ray tracing

[fps] Bitmask res. N. of light rays

Cow Matrix 8.3 32x32 = 1,024 48
Chess 10.5 32x32 = 1,024 50

Church 11.0 32x32 = 1,024 90
Dragon 10.0 32x32 = 1,024 72

Bird Nest 15.7 16x16 = 256 12
Spider 32.7 16x16 = 256 18

Fig. 12: Quality comparison between GEARS (left) and ray
tracing (right) for equal performance.

solutions include increasing the resolution of the bit masks
further with the corresponding performance penalty, or
increasing the resolution only for bit masks corresponding
to grid cells where thin features project. Thin features
could be labeled as input or detected automatically in a
conventional z-buffer rendered from the center of the light.

Our approach uses a regular grid, which, compared for
example to a quadtree, has the important advantage of
simple construction from pixel sample and shadow volume
projections. Of course, the potential disadvatage of a regular
grid is an inefficient modeling of non-uniform sampling.
Our method starts out with a grid matching the 2-D
AABB of pixel samples and then discards grid cells where
no pixel sample projects. Consequently the grid adapts
somewhat to a varying density of pixel samples. In our
tests, the additional cost of a quadtree was not warranted.
For extreme cases where grid cells get hot enough to hinder
performance, a possible solution is to have secondary grid
subdivision of the hot grid cells.

Whereas our method computes accurate soft shadows
with excellent temporal stability, edges of blocking ge-
ometry exhibit some degree of temporal aliasing. The
segments in the accompanying video were rendered with



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 10

supersampling only for the perliminary rendering pass with-
out shadows. This antialiases edges of blocking geometry
incorrectly with background pixels whose shading hasn’t
been yet finalized. Of course, a straight forward solution
is to use supersampling over the entire output frame, but
supersampling the soft shadows is expensive and it seems
unnecessary as soft shadows have low frequencies and are
not causing a problem. We will investigate a method for
integrating our soft shadow computation with antialiasing,
which does not incurr the cost of supersampling the soft
shadows by touching up fully lit pixels that neighbor pixels
with a shadow value above a threshold.

6 CONCLUSIONS AND FUTURE WORK
We have presented a general and efficient algorithm for
rendering shadows. The algorithm handles robustly fully
dynamic scenes modeled with a collection triangles and
renders soft shadows accurately. As the light source de-
creases in size, the algorithm converges to rendering pixel-
accurate hard shadows, overcoming the traditional shadow
map resolution challenge.

We have shown that a regular grid with a variable
and unbounded number of pixel samples and blocking
triangles per cell can now be implemented efficiently on
graphics hardware and that, in the case of soft shadows,
the cost of constructing and querying a hierarchical data
structure is not warranted. We have proven that the 2-D
AABB approximation of the shadow volume we employ
is conservative, and we have shown that the approxima-
tion is also tight. We have analyzed the benefit brought
by a convex hull approximation of the projection of the
shadow volume and we have found that such a benefit
is very low, substantially outweighed by the additional
costs of convex hull construction and rasterization. We
have compared our approach to ray tracing and we have
shown that our approach has a substantial performance
advantage. The visibility rays defined by output image pixel
samples and light samples are very coherent, compared to,
for example, the rays resulting from specular reflections
off reflective surfaces in a scene. Consequently, our feed-
forward approach of assigning triangles to pixel samples
by projection followed by rasterization of shadow volumes
and then of rasterizing blocking triangles onto bitmasks is
efficient, and it outperforms the approach of hierarchical
partitioning of scene geometry used in ray tracing.

In addition to the possible extensions discussed in the
Limitations subsection, our method can be readily extended
to support 2-D area light sources with complex shapes
modeled with ”transparent” light image pixels and colored
shadows cast by transparent blockers [27]. Our paper makes
an infrastructure contribution towards solving the general
problem of visibility computation, which could prove useful
in other contexts such as rendering participating media or
occlusion culling for rendering acceleration.

APPENDIX A
Given a rectangular light source L0L1L2L3, a triangle with
vertices B0B1B2, and a camera with eye C and far plane yon

Fig. A1: Illustration of proof that FB belongs to FB0FB1FB3.

also serving as its image plane, let L be a point in L0L1L2L3
and B a point in B0B1B2. Let FB be the intersection of LB
with yon, and let Fi j be the intersection of L jBi with yon
(i from 0 to 2 and j from 0 to 3). Furthermore let FCB be
the intersection of CB with yon, and FCi be the intersection
of CBi with yon (i from 0 to 2).

Then segment FBFCB is contained in the 2-D axis
aligned bounding box AABB of the 15 points Fi j and FCi
(i from 0 to 2 and j from 0 to 3).

Proof

Since AABB is convex, it is sufficient to show that (1)
AABB contains FB and that (2) AABB contains FCB.

(1) Without loss of generality, assume that L is inside
triangle L0L1L3 (Fig. A1). Let FB0, FB1, and FB3 be the
intersection of L0B, L1B, and L3B with yon, respectively.

We first show that FB is inside triangle FB0FB1FB3. L is
inside triangle L0L1L3 so L is on the same side of L0L1 as
L3. Consequently L and L3 are on the same side of plane
L0L1FB0FB1 (orange in Fig. A1). Both lines LFB and L3FB3
intersect plane L0L1FB0FB1 at B, thus FB and FB3 are on the

Fig. A2: Illustration of the proof that FB1 belongs to
F01F11F21.



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, OCTOBER 2012 11

same side of plane L0L1FB0FB1, namely the side opposite to
the side where L and L3 are. Consequently FB and FB3 are
on the same side of FB0FB1 in triangle FB0FB1FB3. Similarly
it can be shown that FB and FB0 are on the same side of
FB1FB and that FB and FB1 are on the same side of FB3FB0.
Consequently FB is inside triangle FB0FB1FB3.

Now we show that triangle FB0FB1FB3 is inside AABB.
Since B is inside triangle B0B1B2, FB1 is inside the pyramid
with apex L1 and base B0B1B2 (Fig. A2). Consequently
FB1 is inside triangle F01F11F21, and thus inside AABB.
Similarly it can be shown that FB0 and FB3 are inside AABB
and consequently triangle FB0FB1FB3 is inside AABB.

(2) Since B is inside triangle B0B1B2, FCB is inside the
triangle FC0FC1FC2, which is the image of triangle B0B1B2
(i.e. the yon plane projection of B0B1B2 from eye C). Since
FC0, FC1, and FC2 are part of AABB, FCB is part of AABB.

This concludes the proof that our approximation of the
shadow volume projection is conservative.

ACKNOWLEDGMENTS
We would like to thank Qijiang Jin for help with the
implementation. This work was supported in part by the
National Natural Science Foundation of China through
Projects 61272349 and 61190121, by the Macao Sci-
ence and Technology Development Fund through Project
043/2009/A2, by the National High Technology Research
and Development Program of China through 863 Program
NO. 2011AA010502, and through Beijing Science Tech-
nology Star Plan No. 2009B09.

REFERENCES
[1] G.S. Johnson, J. Lee, C.A. Burns and W.R. Mark, ”The Irregular Z-

Buffer: Hardware Acceleration for Irregular Data Structures,” ACM
Transactions on Graphics, vol. 24, no. 4, pp. 1462-1482, 2005.

[2] G.S. Johnson, W.R. Mark and C.A. Burns, ”The Irregular Z-Buffer
and its Application to Shadow Mapping,” Technical Report TR-04-09,
Department of Computer Sciences, The University of Texas at Austin,
2004.

[3] W. Zhang, ”Fast Triangle Rasterization Using Irregular Z-Buffer on
CUDA,” Master of Science Thesis in the Programme of Integrated
Electronic System Design, Chalmers University of Technology, 2004.

[4] E. Eisemann, U. Assarsson, M. Schwarz and M. Wimmer, ”Casting
Shadows in Real Time,” SIGGRAPH Asia 2009 course, 2009.

[5] J.M. Hasenfratz, M. Lapierre, N. Holzschuch and F.X. Sillion, ”A
Survey of Real-time Soft Shadows Algorithms,” Computer Graphics
Forum, vol. 22, no. 4, pp. 753-774, 2003.

[6] G. Guennebaud, L. Barthe and M. Paulin, ”Real-time Soft Shadow
Mapping by Backprojection,” In Eurographics Symposium on Ren-
dering, pp. 227-234, 2006.

[7] B.G Yang, Z. Dong, J.Q Feng, H.P Seidel and J. Kautz, ”Variance
Soft Shadow Mapping,” Computer Graphics Forum, vol. 29, no. 7,
pp. 2127-2134, 2010.

[8] L. Shen, G. Guennebaud, B.G. Yang and J.Q Feng, ”Predicted Virtual
Soft Shadow Maps with High Quality Filtering,” Computer Graphics
Forum, vol. 30, no. 2, pp. 493-502, 2011.

[9] T.A. Moller and U. Assarsson, ”Approximate Soft Shadows on Ar-
bitrary Surfaces using Penumbra Wedges,” Eurographics Symposium
on Rendering/Eurographics Workshop on Rendering Techniques, pp.
297-305, Jun. 2002.

[10] G.S. Johnson, W.A. Hunt, A. Hux, W.R. Mark, C.A. Burns and S.
Junkins, ”Soft Irregular Shadow Mapping: Fast, High-Quality, and
Robust Soft Shadows,” ACM Symposium on interactive 3D graphics,
pp. 57-66, 2009.

[11] V. Forest, L. Barthe, G. Guennebaud and M. Paulin, ”Soft Textured
Shadow Volume,” Computer Graphics Forum, vol. 28, no. 4, pp. 1111-
1120, 2009.

[12] S. Brabec and H.P. Seidel, ”Single Sample Soft Shadows Using
Depth Maps,” Graphics Interface, pp. 219-228, May 2002.

[13] J. Arvo, M. Hirvikorpi and J. Tyystjrvi, ”Approximate Soft Shadows
with an Image-Space Flood-Fill Algorithm,” Computer Graphics
Forum, vol. 23, no. 3, pp. 271-280, 2004.

[14] R. Fernando, ”Percentage-closer soft shadows,” ACM SIGGRAPH
2005 Sketches, Jul. 2005.

[15] M. MohammadBagher, J. Kautz, N. Holzschuch and C. Soler,
”Screen-space Percentage-Closer Soft Shadows,” ACM SIGGRAPH
2010 Posters, pp. 2009-2009, 2010.

[16] G. Guennebaud, L. Barthe and M. Paulin, ”High-Quality Adaptive
Soft Shadow Mapping,” Computer Graphics Forum, vol. 26, no. 3,
pp. 525-533, 2007.

[17] M. Schwarz and M. Stamminger, ”Microquad Soft Shadow Mapping
Revisited,” Eurographics 2008 Annex to the Conference Proceedings:
Short Papers, pp. 295-298, 2008.

[18] B.G Yang, J.Q. Feng, G. Guennebaud and X.G Liu, ”Packet-based
Hierarchal Soft Shadow Mapping,” Computer Graphics Forum, vol.
28, no. 4, pp. 1121-1130, 2009.

[19] M. Schwarz and M. Stamminger, ”Bitmask Soft Shadows,” Com-
puter Graphics Forum, vol. 26, no. 3, pp. 515-524, 2007.

[20] T. Whitted, ”An Improved Illumination Model for Shaded Display,”
Communications of The ACM, vol. 23, no. 6, pp. 343-349, 1979.

[21] S. Laine and T. Aila, ”Hierarchical Penumbra Casting,” Computer
Graphics Forum, vol. 24, no. 3, pp. 313-322, 2005.

[22] S. Laine, T. Aila, U. Assarsson, J. Lehtinen and T. Akenine-Moller,
”Soft Shadow Volumes for Ray Tracing,” ACM Transactions on
Graphics, vol. 24, no. 3, pp. 1156-1165, 2005.

[23] V. Forest, L. Barthe and M. Paulin, ”Accurate Shadows by Depth
Complexity Sampling,” Computer Graphics Forum, vol. 27, no. 2, pp.
663-674, 2008.

[24] E. Eisemann and X. Dcoret, ”Visibility Sampling on GPU and
Applications,” Computer Graphics Forum, vol. 26, no. 3, pp. 535-
544, 2007.

[25] C. Benthin and I. Wald, ”Efficient ray traced soft shadows using
multi-frusta tracing,” Advances in Computer Graphics Hardware, pp.
135-144, 2009.

[26] E. Sintorn, E. Eisemann and U. Assarsson, ”Sample-based Visibility
for Soft Shadows Using Alias-free ShadowMaps,” Computer Graphics
Forum, vol. 27, no. 4, pp. 1285-1292, 2008.

[27] M. McGuire and E. Enderton, ”Colored Stochastic Shadow Maps,”
Proceedings of the ACM Symposium on Interactive 3D Graphics and
Games 2011, pp. 89-96, 2011.


