3D Shape Reconstruction (from Photos)

CS434

Daniel G. Aliaga
Department of Computer Science
Purdue University

Thanks to S. Narasimhan @ CMU for some of the slides

Problem Statement

- How to create (realistic) 3D models of existing objects and scenes in the world?
- Object vs. scene
- Shape vs. color vs. material properties
- Automatic vs. manual
- And many more factors...

3D Shape Reconstruction from Photos

- http://carlos-hernandez.org/cvpr2010/

Fundamental Approaches

- Manual modeling
- CAD, Sketchup, 3D Studio Max, MS Paint
- Point Clouds
- LIDAR, Laser, Kinect
- Photographs
- "photogrammetry and remote sensing"
- Single Photograph
- Stereo Reconstruction (2 photos)
- Multi-view Reconstruction
- narrow (video?) or wide baseline

Fundamental Approaches

- Manual modeling
- CAD, Sketchup, 3D Studio Max, MS Paint
- Point Clouds
- LIDAR, Laser, Kinect
- Photographs
- "photogrammetry and remote sensing"
- Single Photograph
- Stereo Reconstruction (2 photos)
- Multi-view Reconstruction
- narrow (video?) or wide baseline

Definitions

- Camera geometry (=motion)
- What are the poses of the cameras?
- Correspondence geometry (=correspondence)
- Given a point in one view, what are the constraints of its position in another view?
- Scene geometry (=structure)
- What are the 3D locations of the points?

Camera Geometry

- We need to transform "left frame" to "right frame":

$$
\tilde{x}_{R}=R \widetilde{x}_{L}+t_{L R}
$$

Camera Geometry

In matrix notation, we can write $\tilde{x}_{R}=R \widetilde{x}_{L}+t_{L R}$ as:

$$
\tilde{x}_{L}=\left[\begin{array}{c}
x_{L} \\
y_{L} \\
z_{L}
\end{array}\right] \quad \tilde{x}_{R}=\left[\begin{array}{c}
x_{R} \\
y_{R} \\
z_{R}
\end{array}\right] \quad R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \quad t_{L R}=\left[\begin{array}{c}
r_{14} \\
r_{24} \\
r_{34}
\end{array}\right]
$$

Camera Geometry

In matrix notation, we can write $\tilde{x}_{R}=R \widetilde{x}_{L}+t_{L R}$ as:

$$
\begin{aligned}
& r_{11} x_{L}+r_{12} y_{L}+r_{13} z_{L}+r_{14}=x_{R} \\
& r_{21} x_{L}+r_{22} y_{L}+r_{23} z_{L}+r_{24}=y_{R} \\
& r_{31} x_{L}+r_{32} y_{L}+r_{33} z_{L}+r_{34}=z_{R}
\end{aligned}
$$

Camera Geometry:

Orthonormality Constraints

(a) Rows of R are perpendicular vectors

$$
\begin{aligned}
& r_{11} r_{21}+r_{12} r_{22}+r_{13} r_{23}=0 \\
& r_{21} r_{31}+r_{22} r_{32}+r_{23} r_{33}=0 \\
& r_{11} r_{31}+r_{12} r_{32}+r_{13} r_{33}=0
\end{aligned}
$$

(b) Each row of R is a unit vector

$$
\begin{aligned}
& r_{11}^{2}+r_{12}^{2}+r_{13}^{2}=1 \\
& r_{21}^{2}+r_{22}^{2}+r_{23}^{2}=1 \\
& r_{31}^{2}+r_{32}^{2}+r_{33}^{2}=1
\end{aligned}
$$

NOTE: Constraints are NON-LINEAR!

Camera Geometry: A Problem Definition

scene

Problem:

Given $\tilde{x}_{L} \quad \tilde{x}_{R}$'s

Find $R \quad t_{L R} \Longrightarrow\left(r_{11}, r_{12}, \ldots, r_{34}\right)$ subject to (nonlinear) constraints

An Issue: Scale Ambiguity

Problem: same image coords can be generated by doubling $\tilde{x}_{L} \tilde{x}_{R} \quad \tilde{t}_{L R}$ thus, we can find $\tilde{t}_{L R}$ only up to a scale factor! Solution?

Fix scale by using constraint: $\tilde{L}_{L R} \cdot \tilde{t}_{L R}=1$ (1 additional equation)

Camera Geometry:

 How many scene points are needed?Each scene point gives 3 equations:

$$
\begin{aligned}
& r_{11} x_{L}+r_{12} y_{L}+r_{13} z_{L}+r_{14}=x_{R} \\
& r_{21} x_{L}+r_{22} y_{L}+r_{23} z_{L}+r_{24}=y_{R} \\
& r_{31} x_{L}+r_{32} y_{L}+r_{33} z_{L}+r_{34}=z_{R}
\end{aligned}
$$

and 6+1 additional equations from orthonormality of rotation matrix constraints and from scale constraint.

Thus, for n scene points, how many equations?

$$
=(3 n+6+1)
$$

How many unknowns?

$$
=12
$$

What is the minimum value for n to be able to solve for unknowns?

Camera Geometry: Solving an Over-determined System

At least 2 but in general >>2 to avoid instability

Formulate error for scene point i as:

$$
e_{i}=\left(R \tilde{x}_{L}+t_{L R}\right)-\tilde{x}_{R}
$$

Find $\quad R \& t_{L R}$ that minimize:

$$
E=\sum_{i=1}^{N}\left|e_{i}\right|^{2}+\left[\lambda_{1}\left(R^{T} R-I\right)+\lambda_{2}\left(t_{L R} \cdot t_{L R}-1\right)\right]
$$

Camera Geometry: A Linear Estimation

Assume a near correct rotation is known. Then an orthogonal rotation matrix looks like:

$$
R=\left[\begin{array}{ccc}
1 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 1 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 1
\end{array}\right]
$$

where ω is the 3D rotation axis and its length is the amount by which to rotate

Using this matrix, iteratively and linearly solve for ω 's and $t_{L R}$:

$$
\left(R \tilde{x}_{L}+t_{L R}\right)-\tilde{x}_{R}=0
$$

Limitations:

1. ignores normality/scale (fix by re-scaling each iteration)
2. assumes good initial guess

How many equations/scene-points are needed?
6 unknowns, 3 equations per scene point, so ≥ 2 points

Correspondence Geometry

scene point

Correspondence Geometry

Correspondence Geometry

Welcome to Epipolar Geometry!

Epipolar Constraint: reduces correspondence problem to 1D search along conjugate epipolar lines

Epipolar Geometry

Epipolar Constraint: can be expressed using the fundamental matrix F

Epipolar Geometry

converging cameras

Epipolar Geometry

motion parallel with image plane

Epipolar Geometry

Forward motion

Epipolar Geometry

Correspondence reduced to looking in a small neighborhood of a line...

Fundamental Matrix

How to compute the fundamental matrix?

1. geometric explanation...
2. algebraic explanation...

Fundamental Matrix: Geometric Exp.

Thus, there is a mapping $x \rightarrow l^{\prime}$

Fundamental Matrix: Geometric Exp.

How do you map a point to a line?

Fundamental Matrix: Geometric Exp.

Idea:

- We know $\left(x^{\prime}\right)^{\prime}$ s are in a plane
- Define a line by its "perpendicular", then we can use dot product; e.g., $x^{\prime} \cdot l^{\prime}=0$ or $\left(x^{\prime}-c^{\prime}\right) \cdot l^{\prime}=0$

Fundamental Matrix: Geometric Exp.

What is a definition of l^{\prime} as perpendicular to the pictured epipolar line?

$$
l^{\prime}=\left(e^{\prime}-c^{\prime}\right) \times\left(x^{\prime}-c^{\prime}\right) \longrightarrow l^{\prime}=e^{\prime} \times x^{\prime}
$$

(assume all in canonical frame of the right-side camera)

Fundamental Matrix: Geometric Exp.

$$
l^{\prime}=e^{\prime} \times x^{\prime}
$$

Cross product can be expressed using matrix notation:

$$
\begin{aligned}
& e^{\prime} \times x^{\prime}=\left[\begin{array}{ccc}
0 & -e_{z}^{\prime} & e_{y}^{\prime} \\
e_{z}^{\prime} & 0 & -e_{x}^{\prime} \\
-e_{y}^{\prime} & e_{x}^{\prime} & 0
\end{array}\right]\left[\begin{array}{l}
x_{x}^{\prime} \\
x_{y}^{\prime} \\
x_{z}^{\prime}
\end{array}\right] \\
& e^{\prime} \times x^{\prime}=\left[e^{\prime}\right]_{x} x^{\prime}
\end{aligned}
$$

$$
l^{\prime}=\left[e^{\prime}\right]_{\times} x^{\prime}
$$

Fundamental Matrix: Geometric Exp.

How do you compute x^{\prime} ?
Use a homography (or projective transformation) to $\operatorname{map} x$ to x^{\prime}
(Homography: maps points in a plane to another plane)

$$
x=\left[\begin{array}{c}
x_{x} \\
x_{y} \\
1
\end{array}\right], x^{\prime}=\left[\begin{array}{c}
w^{\prime} x_{x}^{\prime} \\
w^{\prime} x_{y}^{\prime} \\
w^{\prime}
\end{array}\right], H=\left[\begin{array}{lll}
\cdot & \cdot & \cdot \\
\cdot & \cdot & . \\
\cdot & \cdot & .
\end{array}\right]
$$

$$
x^{\prime}=H x
$$

Fundamental Matrix: Geometric Exp.

$$
\left.\begin{array}{c}
l^{\prime}=\left[e^{\prime}\right]_{\times} x^{\prime} \\
x^{\prime}=H x
\end{array}\right] l^{\prime}=\left[e^{\prime}\right]_{\times} H x \Rightarrow F=\left[e^{\prime}\right]_{\times} H \Rightarrow x^{\prime T} F x=0
$$

Fundamental Matrix: Algebraic Exp.

Fundamental Matrix: Algebraic Exp.

$$
x=P X \quad X^{\prime}=?
$$

$X(t)=P^{+} x+t c$ where P^{+}is the pseudoinverse of P
Why pseudoinverse?
Since P not square, pseudoinverse means $P P^{+}=I$ but solved as an optimization

Recall $l^{\prime}=\left[e^{\prime}\right]_{\times} x^{\prime}$
What is x^{\prime} in terms of x ?
(Let's assume $t=0$ which means X in on the image plane)
$x^{\prime}=P^{\prime} P^{+} x \Rightarrow F=\left[e^{\prime}\right]_{x} P^{\prime} P^{+} \Rightarrow x^{\prime T} F x=0$
Epipolar Constraint

Correspondence: Epipolar Geometry

Epipolar constraint reduces correspondence problem to
1D search along conjugate epipolar lines

Correspondence: Epipolar Geometry

Epipolar constraint can be expressed as $x^{\prime T} F x=0$

Fundamental matrix

Correspondence: Epipolar Geometry

Interesting case: what happens if camera motion is pure translation?

$$
\begin{array}{ll}
P=[I \mid 0] & P^{\prime}=[I \mid t] \\
F=\left[e^{\prime}\right]_{\times} & (H=I)
\end{array}
$$

If motion parallel to x-axis...
$e^{\prime}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$
Thus the desire to do image rectification

$$
\Rightarrow
$$

$$
F=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \text { implies horizontal }
$$

Correspondence: Epipolar Geometry

Thus for rectified images, correspondence is reduced to looking in a small neighborhood of a line...

Essential Matrix

- Similar to the fundamental matrix but includes the intrinsic calibration matrix, thus the equation is in terms of the normalized image coordinates, e.g.:

$$
\begin{gathered}
x^{\prime T} E x=0 \quad \text { and } \quad E=K^{\prime T} F K \\
\text { essential matrix }
\end{gathered}
$$

Scene Geometry

scene point?

Camera B

Camera geometry known
Correspondence and epipolar geometry known
What is the location of the scene point (scene geometry)?

Scene Geometry: Linear Formulation

$$
\tilde{x}_{a}=M_{a} \tilde{X} \quad \text { or } \quad \tilde{x}_{b}=M_{b} \tilde{X}
$$

Problem?

Assumes we know $\tilde{x}=\left[\begin{array}{lll}x^{\prime} & y^{\prime} & w^{\prime}\end{array}\right]^{T}$
But what is the value for w^{\prime} ?

Scene Geometry: Linear Formulation

$\tilde{x}=M \tilde{X}$ where $\tilde{x}=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]$
Recall $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x^{\prime} / w^{\prime} \\ y^{\prime} / w^{\prime}\end{array}\right] \quad \begin{gathered}\text { where } x \text { and } y \text { are the } \\ \text { observed projections }\end{gathered}$
Let $\tilde{x}=\left[\begin{array}{c}s x \\ s y \\ s\end{array}\right]=\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ w^{\prime}\end{array}\right]$, thus $s=w^{\prime}$
Hence? $s x=m_{11} X+m_{12} Y+m_{13} Z+m_{14}$

$$
s y=m_{21} X+m_{22} Y+m_{23} Z+m_{24}
$$

Scene Geometry: Linear Formulation

$$
s x=m_{11} X+m_{12} Y+m_{13} Z+m_{14}
$$

Given $s y=m_{21} X+m_{22} Y+m_{23} Z+m_{24}$ and N cameras

$$
s=m_{31} X+m_{32} Y+m_{33} Z+m_{34}
$$

For a scene point, how many unknowns? 3+N
For a scene point, how many camera $3 N \geq 3+N$ views needed?

In general, one scene point observed in at least two views is sufficient...

Scene Geometry: Linear Formulation

$$
[]\left[\begin{array}{l}
X \\
Y \\
Z \\
s_{a} \\
s_{b}
\end{array}\right]=[]
$$

$$
\left.\begin{array}{rl}
s x & =m_{11} X+m_{12} Y+m_{13} Z+m_{14} \\
s y & =m_{21} X+m_{22} Y+m_{23} Z+m_{24} \\
s & =m_{31} X+m_{32} Y+m_{33} Z+m_{34}
\end{array}\right) \times 2
$$

Scene Geometry: Linear Formulation

$\left[\begin{array}{lllll}m_{11} & m_{12} & m_{13} & -x & 0 \\ m_{21} & m_{22} & m_{23} & -y & 0 \\ m_{31} & m_{32} & m_{33} & -1 & 0 \\ m_{11}^{\prime} & m_{12}^{\prime} & m_{13}^{\prime} & 0 & -x^{\prime} \\ m_{21}^{\prime} & m_{22}^{\prime} & m_{23}^{\prime} & 0 & -y^{\prime} \\ m_{31}^{\prime} & m_{32}^{\prime} & m_{33}^{\prime} & 0 & -1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ Z \\ s \\ s^{\prime}\end{array}\right]=\left[\begin{array}{l}-m_{14} \\ -m_{24} \\ -m_{34} \\ -m_{14}^{\prime} \\ -m_{24}^{\prime} \\ -m_{34}^{\prime}\end{array}\right]$

Cameras M and M^{\prime}

$$
\left.\begin{array}{rl}
s x & =m_{11} X+m_{12} Y+m_{13} Z+m_{14} \\
s y & =m_{21} X+m_{22} Y+m_{23} Z+m_{24} \\
s & =m_{31} X+m_{32} Y+m_{33} Z+m_{34}
\end{array}\right) \times 2
$$

Scene Geometry: Nonlinear Form.

- "Bundle Adjustment"
- Given initial guesses, use nonlinear least squares to refine/compute the calibration parameters
- Simple but good convergence depends on accuracy of initial guess

Scene Geometry: Nonlinear Form.

Recall

$$
E=\frac{1}{m n} \sum_{i j}\left[\left(x_{i j}-\frac{m_{i j} \cdot \tilde{X}_{j}}{m_{i 3} \cdot \tilde{X}_{j}}\right)^{2}+\left(y_{i j}-\frac{m_{i 2} \cdot \tilde{X}_{j}}{m_{i 3} \cdot \tilde{X}_{j}}\right)^{2}\right]
$$

Goal is $E \rightarrow 0$

For scene geometry, \tilde{X} are the unknowns...

Example Result

- Using dense feature-based stereo

Examples

- Lots of them!
- One interesting concept: Internet Stereo
- http://www.cse.wustl.edu/~furukawa/papers/cvpr10.pdf

