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* A technique for estimating the surface
normals of objects by observing that object
under different lighting conditions

— Then, using the surface normals, a plausible
surface geometry can be reconstructed

— Woodham in 1980

* Related: when using a single image, it is called
shape from shading

— B. K. P. Horn in 1989






Photometric Stereo

What are the values for n; ?




Photometric Stereo

Lambertian (single channel) model:

a(n-1)=c

surface
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Photometric Stereo

(known lights)
Lambertian (single channel) model:

a(nd, +nl, +n,l,)=c

How many unknowns per point? 3+1

| How to get more equations? More lights!

surface



surface



Photometric Stereo

a(ngy + nylly +n,h,)=¢
+n,l,,) =C,

a(nl,, + nyl2y

surface



Photometric Stereo

a(nd;, + nylly +n,h;)=¢

surface



Photometric Stereo

a(nd;, + r]ylly +n,h;)=¢




Photometric Stereo

a(nyly, + r]ylly +n,)=¢ C, C, C3
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Photometric Stereo

a(ngy + r]ylly +n,h,)=¢

Whatis Ny, Ny, N, ?
Write as LN = C and solve N = L ¢

Where N = _anx any anZ]T

C=1G C G5 ]T
What is the surface normal at the point? n/||n||

What is & (the albedo at the surface point)? & =+/N-N



Lambertian Photometric Stereo
with Known Lights

Take three pictures of a static Lambertian
object with a static camera

In each picture move the light to a different
but known position

— For distant lights, could know light direction
instead of light position

At pixel i, solve N; = L_lci
Use normals to “integrate” a surface




Normals -> Surface

e How?




Normals -> Surface

Surface (height field) is Z(X, Y)

Surface normal is N(X,Y) = [ZX Z, —1]T

and  Zy=(z(x+1y)-z(X,y))
zy =(2(x,y+1)-2(x,y))

a
As we saw before [nx n, nz]: [ZX Z, —1]
2 2
\/zx +z,”+1
N Z N Z
So X =X gnd L =Y o sz—nxlnZ and Zy=—ﬂy/I’1Z

nz _1 nz _1

Altogether: N, z(X+1,y)—n,z(X,y)=n,
n,z(x,y+1)—n,z(x,y)=n,



Normals -> Surface
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n,z(x+1y)—n,z(x,y)=n,
n,z(x,y+1)—n,z(x,y)=n,

Can setup as a large over-constrained linear system: Az =D

where A has a bunch of normal values
Z are the unknown heights (z-values)
b is a zero vector

and solve Z = A_lb (e.g., use “Isqr’ method)



Normals -> Surface

[Basri et al., [JCV, 2007]



Fundamental Ambiguity

NL=C
NRRIL=C
NAAL =C

(NA(A™L)=C

Rotation matrix

!
A=RG

Generalized Bas Relief (GBR) Ambiguity matrix



Belhumeur et al. 1999
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Fig 2. Three-dimensional data for the human head (top row) was obtained using a laser scan (Cyberware) and rendered as a
Lambertian surface with constant albedo (equal grey values for all surface points). The subsequent three rows show images
of heads whose shapes have been transformed by different generalized bas-relief transformations, but whose albedos have not
been transformed. The profile views of the face in the third column reveal the nature the individual transformations and the
direction of the light source. The top row image 1s the true shape: the second from top 1s a flattened shape (A = 0.5) (as
are classical bas-reliefs); the third is an elongated shape (A = 1.5): and the bottom 1s a flattened shape plus an additive plane
(A =0.7,» =10.5, and & = 0.0). The first column shows frontal views of the faces in the third column. From this view
the true 3-d structure of the objects cannot be determined: in each image the shadowing patterns are identical. and even though
the albedo has not been transformed according to Eq. 3. the shading patterns are so close as to provide few cues as to the true
structure. The second column shows near frontal views of the faces from the same row. after having been separately rotated
to compensate for the degree of the flattening or elongation. The rotation about the vertical axis 1s 7° for the first row of the
second column: 14° for the second row: 4.6° for the third: and 14° for the fourth row. To mask the shearing produced by the
additive plane, the fourth row has also been rotated by 5° about the line of sight.

Belhumeur et al. 1999



GBR Transform

* Consider Z(X,y)=A4z(X,y)+ux+w
— This means “flatten” by 4 and add a plane (¢, V)

e When =v =0 this is classical “bas-relief”

* Else, it is a generalized bas-relief that can be
written as

1 0 O] 1'/1 0 O]
G=|0 1 0 G—lzz 0 A4 O
VR4 /1_ -y -V 1_




Photometric Stereo Ambiguity @

(NA(AL) =C

1 0 0
A=RG=R/0 1 0
uvoA

* Interpretation: given a solution for the normals, we
can transform the normals by A and the lights by A1
and the resulting picture looks the same...




Photometric Stereo with
Unknown Lights

* Question:

— What if both the surface normals and the light
directions are unknown?

— Can we reconstruct the light directions, surface
normals, and thus surface geometry (up to the
aforementioned ambiguity)?

* Answer:
— Yes, and the problem is still linear!



PS with Unknown Lighting

Recall Lh=cC

Think of the normals as located at the origin, then we care about a
linear transformation of the sphere (nT n)1/2 —1

Note n=L"c=Pc
so (Pc)' Pc=c'P"Pc=c'Qc=1

And Q is a 3x3 symmetric positive definite matrix:

equation is

O 1Cy” + UpsCo” + UaaCa” + 2021y + 203 5C1Cq + 20p5C,C —1=0

which only has 6 unknowns

12

| Gi3

Geometrically, this means intensity’s c lie on an ellipsoid whose

O1 Ch2 CI13_




PS with Unknown Lighting

* Given at least six pixels, can solve for (s

* |n general, a large overconstrained linear
solution is used

2 2 2
Cii G C3  2C1Cp  2C1C3  2C5Ci5

2 2 2
Cn1 Cn2 Cn3 2Cnlcnz 2Cnlcn:% 2CnZCnS

d=[%h1 Y22 U3z Gz Gus CI23]T
b=[1 ... 1]
qg=M" or g=(M"M)*M'D
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PS with Unknown Lighting

e Given Q, we can plug back and get the angles
between light directions and their strengths

* Then “lights are known” and solve for normals
as before...

— but need to choose a reasonable R and G



Photogeometric Approach @

 Combine photometric stereo with geometric
stereo
— High resolution of photometric stereo
— Accuracy of geometric method

— Can lead to self-calibration of entire acquisition
process



Photogeometric Upsampling “&

1. Integrate surface normals

photo-surface



Photogeometric Upsampling

2. Compute sparse geometric model

geo-surface

./ .\o/ .\o



Photogeometric Upsampling @

3. Warp photometric surface to geometric surface

geo-surface

/ .\’/ .\.

®
A

photo-surface



Photogeometric Upsampling @

3. Warp photometric surface to geometric surface
photo-geo surface

J\,_/\’ /\’ \/\’

®
A




Photogeometric Upsampling @‘

4. Triangulate and proceed to optimization
photo-geo surface

W

true
surface



Photogeometric Optimization

* Linear system in the unknown 3D points (p,)
* Supports multi-view reconstruction
* Weighted combination of three error terms:

where

e, = error of reprojection
e, = error of perpendicularity of normal-to-tangent

e, = error of relative distance change



Photogeometric Optimization @

* Linear system in the unknown 3D points (p,)
e Supports multi-view reconstruction
 Weighted combination of three error terms:

where



photographs reconstruction




