

# A Primer on Inverse Procedural Modeling

CS434

Daniel G. Aliaga Department of Computer Science Purdue University



# **Recall: Procedural Modeling**

- Apply algorithms for producing objects and scenes
- The rules may either be embedded into the algorithm, configurable by parameters, or externally provided



# **Procedural Modeling**

- Fractals
- Terrains
- Image-synthesis
  - Perlin Noise
  - Clouds
- Plants
- Cities
- And procedures in general...

#### L-system



- Variables: a
- Constants: +, (rotations of + or 90 degrees)
- Initial string (axiom): s=a
- Rules:  $a \rightarrow a+a-a-a+a$





#### (Context-Free) L-system for Plants



Figure 1.24: Examples of plant-like structures generated by bracketed OLsystems. L-systems (a), (b) and (c) are edge-rewriting, while (d), (e) and (f) are node-rewriting.



#### L-system for Plants (stochastic)



Figure 1.27: Stochastic branching structures



# L-system for Plants (3D)





 $\begin{array}{lll} \omega &: & \operatorname{plant} \\ p_1 : & \operatorname{plant} \to \operatorname{internode} + [\operatorname{plant} + \operatorname{flower}] - - // \\ & \left[ - - \operatorname{leaf} \right] \operatorname{internode} [+ + \operatorname{leaf}] - \\ & \left[ \operatorname{plant} \operatorname{flower} \right] + + \operatorname{plant} \operatorname{flower} \\ p_2 : & \operatorname{internode} \to \operatorname{Fseg} [// \& \& \operatorname{leaf}] [// \land \land \operatorname{leaf}] \operatorname{Fseg} \\ p_3 : & \operatorname{seg} \to \operatorname{seg} \operatorname{Fseg} \\ p_4 : & \operatorname{leaf} \to [' \{ + \operatorname{f-ff} - \operatorname{f+} \mid + \operatorname{f-ff} - \operatorname{f} \} ] \\ p_5 : & \operatorname{flower} \to [\& \& \& \operatorname{pedicel} ` / \operatorname{wedge} / / / / \operatorname{wedge} / / / \\ & \operatorname{wedge} / / / \operatorname{wedge} ] \\ p_6 : & \operatorname{pedicel} \to \operatorname{FF} \\ p_7 : & \operatorname{wedge} \to [` \land \operatorname{F} ] [ \{ \& \& \& \& -\operatorname{f+f} \mid -\operatorname{f+f} \} ] \end{array}$ 

Figure 1.28: Flower field

Figure 1.26: A plant generated by an L-system



# Inverse Procedural Modeling (by Automatic Generation of L-systems)

O. Šťava, B. Beneš, R. Měch\*, D. Aliaga, P. Krištof Purdue University, \*Adobe Inc





# Introduction

- Procedural Modeling
  - Rules  $\rightarrow$  Scene
  - Extensively studied
  - The most important: L-systems
  - Applied to plants, buildings, rivers, etc.

#### Inverse Procedural Modeling

- Scene  $\rightarrow$  Rules
- Open problem

#### Motivation



• What is the L-system for these?





# Motivation



- Writing procedural models, be it L-systems or others is hard
- Setting parameters is not intuitive
- Difficult for a non-expert to create a model for a desired shape, especially when recursive branching



- Input: 2D vector image
- Output: L-system

- Inspired by symmetry detection
  - Mitra et al.,

"Partial and approximate symmetry detection for 3D geometry"

- Pauly et al.,

"Discovering structural regularity in 3D geometry"









L-system 1  $P1(m): m>0 \rightarrow [A] T_1 P1(m-1)$   $m=0 \rightarrow [A]$   $P2(m): m>0 \rightarrow [B] T_2 P2(m-1)$   $m=0 \rightarrow [B]$   $P3(m) \rightarrow [P1(3)] T_3 [P2(3)]$  $S \rightarrow T_s [P3]$ 



• Different rules can generate the same result



L-system 2  $P1(m) \rightarrow [A] T_1[B]$   $P2(m) : m > 0 \rightarrow [P1] T_2 P2(m-1)$   $m=0 \rightarrow [P1]$  $S \rightarrow T_s[P2(3)]$ 

#### Inverse Instancing

Terminal symbols

- Similar vector elements





 $m=0 \rightarrow [P1]$ 

 $S \rightarrow T_s[P2(3)]$ 



#### **Inverse Instancing**



- Compute similarity between all input elements
- Similar elements are represented by a terminal



L-system 2  

$$P1(m)$$
 [A]  $T$  [B]  
 $P2(m) : m>0 \rightarrow [P1] T_2 P2(m-1)$   
 $m=0 \rightarrow [P1]$   
 $S \rightarrow T_s [P2(3)]$ 



- Procedural rule
  - Transformation between two symbols



Transformation between two coordinate systems



- Many possible transformations
  - Use *significant* transformations for rules





- Detect significant transformations
  - Put all transformations into Transformation space
     Transformation = 4D Vector (2D transl., rotation, scale)





• Clustering in the transformation space

Large clusters ~ significant transformations





• One rule might not represent one cluster





 One transformation space for each pair of terminal symbols
 4x 4D Transformation Spaces







• Cluster = Transformations between the same symbols





- One cluster  $\rightarrow$  One rule
  - Each rule is unique







• Rules are generated from clusters sequentially

- Order of clusters is important 4x 4D Transformation Spaces





• • •

- Compute importance of each cluster
  - Weighted cluster importance function

 $w = w_n n + w_h h + w_\phi \phi + w_l$ 

- n: number of points in the cluster
- h: proximity of two elements
- $-\Phi$ : similarity between terminals
- I: average length of the sequences in a cluster
- Sort clusters according to their importance



- Weighted cluster importance function
  - Weights determine the final rules

Prefer sequences Prefer proximity





• New rule = new non-terminal symbol



# L-system Generation Constraints of the system Generation of the system o

- Clusters no longer valid
  - Update them using the new non-terminal symbol
  - Compute importance of updated clusters





- Generate new rules until there are no clusters
  - Axiom  $\rightarrow$  Last non-terminal





• Final L-system



L-system  $C(m) \rightarrow [A] T_{1}[B]$   $D(m) : m > 0 \rightarrow [C] T_{2} D(m-1)$   $m=0 \rightarrow [C]$   $S \rightarrow T_{s}[D(3)]$ 

#### Summary





#### Results





# Results





# Conclusion



- Important step towards the solution of the problem of inverse procedural modeling
- Key concepts
  - Multiple transformation spaces
  - Cluster analysis

#### Future Work



- General rules
  - More complex expression in the L-system rules
    - Polynomials
  - Context sensitivity
- 3D structures