

Combinations of xforms

and translations

- $R (r_{11}, ..., r_{33})$ is orthographic
 - columns (and lines) are mutually perpendicular unit vectors
- preserves lengths and angles

19

Rotation about an arbitrary axis

- Given
 - axis with origin O_a and direction a
 - point P, angle θ
- Rotate $P \theta$ degrees about the axis (O_a, a)
 - compute P^r which is the rotated point P

Step 1

- Create new coordinate system with origin O_a and *a* as one of its axes
 - using axis x(1, 0, 0) set $b = (x \ge a)$; normalize b
 - -set $c = a \ge b$; normalize c
 - $-(O_{a}, a, b, c)$ is a new coordinate system
 - note: one needs to make sure that the auxiliary axis (in this case x) is not aligned with a; one solution is to consider x and y and pick the one that has the smaller dot product with a (ignoring the sign) since that axis is closer to being perpendicular to a.

26

25

Steps 2-4

- Step 2: Transform *P* to the new coordinate system, P->P'
- Step 3: Rotate about *a* (first axis), P'->P''
- Step 4: Transform back to original coordinate system, P''->P^r

27