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Fig. 1. Conventional visualization of terrain dataset (top) and multiperspective visualization constructed with our framework (bottom). The 

viewpoint was modified for two regions individually to disocclude a lake (left) and a valley (right). 

 
Abstract—A conventional image can only visualize the parts of a dataset to which there is direct line of sight from the image 

viewpoint. In complex datasets, occlusions abound, which limits visualization bandwidth. Multiperspective visualization promises to 

remove this single viewpoint limitation by integrating samples captured from multiple viewpoints into a continuous image. We 

present a framework for designing multiperspective visualizations with great flexibility by manipulating the underlying camera 

model. We construct multiperspective visualizations in one of three ways: in target tracking construction, one or several data 

subsets of interest (i.e. targets) are visualized where they would be seen in the absence of occluders, as the user navigates or the 

targets move; in top-down construction, the viewpoint is altered for individual image regions to avoid occlusions; in bottom-up 

construction, input conventional images are connected into a multiperspective image. The multiperspective images are rendered at 

interactive rates, with the help of the GPU, leveraging a fast projection operation provided by the underlying camera model. 

Index Terms—Occlusion management, camera models, multiperspective visualization,  interactive visualization 

 

1 INTRODUCTION  

Most images used in computer graphics and visualization are 

computed with the conventional planar pinhole camera model, which 

approximates the human eye. Whereas this is essential in 

applications such as virtual reality where the goal is to make users 

believe that they are immersed in the scene rendered, researchers in 

visualization have recognized that the limitations of conventional 

images are not always warranted. One such limitation is a reduced 

field view, which has been addressed with panoramic camera models 

such as fisheyes. A second limitation is that conventional images 

sample the dataset uniformly, oblivious to importance variations 

within the dataset. The focus plus context research direction 

addresses this limitation by devising mechanisms for allocating more 

image pixels to data subsets of higher importance.  
A third limitation is that a conventional image samples a dataset 

from a single viewpoint and occlusions limit the visualization 
capability of the image. One approach for overcoming occlusions is 

to rely on the user to navigate the viewpoint in order to circumvent 
occluders and to establish a direct line of sight to each data subset of 
potential interest. One disadvantage of such a sequential exploration 
is inefficiency: data subsets are explored one at a time, and the 
navigation path has to be retraced to achieve a systematic exploration 
of the entire dataset. A second disadvantage is that the user never 
sees more than a single data subset at a time and connections 
between subsets that are far apart in the visualization sequence can 
be missed. The problem is exacerbated in the case of time varying 
datasets, where the eloquence of a connection between distant data 
subsets could be transient. The problem can be alleviated by 
visualizing the dataset in parallel with multiple conventional images. 
The user sees several data subsets simultaneously, but the 
visualization is discontinuous at the borders of the individual images 
and the user has to examine one image at the time which reduces the 
benefits of the parallel visualization. 

Another approach for overcoming occlusions is multiperspective 
visualization, which integrates dataset samples captured from  
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multiple viewpoints into a single, continuous “multiperspective” 
image.  The multiperspective image enables parallel visualization 
without the high cognitive load of the multitude of disparate contexts 
presented by individual conventional images. Multiperspective 
visualization can be seen as a generalization of focus plus context 
visualization. Multiple focus regions are visualized simultaneously 
connected by continuous context, but without the restriction that all 
focus regions be visualized from the same viewpoint. The challenge 
is to construct a multiperspective visualization that provides good 
control over the multiple viewpoints from where the dataset is 
sampled, while maintaining image continuity, as needed for 
visualization efficacy, and while maintaining rendering efficiency, as 
needed to support interactive visualization and time-varying datasets. 

In this paper we present a flexible framework for interactive 
multiperspective visualization. We also refer the reader to the 
accompanying video. The multiperspective visualization is 
constructed in one of three ways.  

In top-down construction, the multiperspective visualization is 
obtained by altering the viewpoint for individual regions of an input 
conventional image (Fig. 1). Consider a scenario where the user 
visualizes a dataset with a high-resolution, large field of view 
conventional image. The user can select image regions of interest 
and modify the viewpoint for each individual region interactively to 
zoom in and to alleviate occlusions.  

In bottom-up construction, the multiperspective visualization is 
obtained by seamlessly integrating two input conventional images. 
Consider a scenario where a user explores a dataset through 
conventional interactive visualization; the view parameters of images 
of interest are saved as they are encountered; the system allows 
constructing automatically a multiperspective visualization that 
combines any two of the saved conventional images (Fig. 2). The 

input images appear undistorted as subregions of the 
multiperspective image. 

In target tracking, the visualization is constructed to avoid 
occlusions to one or several data subsets of interest, i.e. targets. As 
the targets move, the visualization adapts automatically to keep the 
targets visible (Fig. 3). The targets are shown where they would be 
visible in the conventional image in the absence of occluders, which 
conveys to the user the correct direction to the target. When the 
targets move to locations where they are visible, the multiperspective 
visualization reverts automatically to a conventional visualization, as 
no disocclusion is needed anymore. 

The multiperspective image is constructed by rendering the 
dataset with a camera with piecewise linear rays. Some of the rays 
are designed to circumvent occluders and to reach the data subsets of 
interest, while the remaining rays are designed to connect the data 
subsets of interest with continuous context. The camera is assembled 
from a small number of camera segments, i.e. simple cameras with 
linear rays, which enables fast construction and fast updates of the 
camera model. Moreover, the segments provide fast projection which 
allows rendering the multiperspective image efficiently, on the GPU, 
by projection followed by rasterization. 

2 PRIOR WORK 

The more 3D datasets grow in complexity, the more occlusions 

stemming from the single viewpoint restriction of conventional 

images become a limiting factor in visualization. Occlusions are an 

open research problem that has been approached from many 

directions [7]. We group prior work occlusion management 

techniques based on the approach taken and we review in greater 

detail prior multiperspective visualization approaches. 

 

  
Fig. 2. Conventional images with different viewpoints (left) integrated into a multiperspective visualization (right) of a terrain dataset. 

  
Fig. 3. Multiperspective visualization (left) of an urban dataset showing two targets (red and yellow dots) that are occluded in a conventional 

visualization (right). The targets are shown where they would be visible in the conventional visualization in the absence of occluders.  
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2.1 Transparency, Cutaway, & Explosion Techniques 

A straightforward approach for alleviating occlusions is to render 

occluders transparently (e.g. [9]). The advantage is that the dataset is 

visualized without distortions. However, transparency techniques are 

limited to one or two occluding layers after which the blended 

transparent layers are difficult to discern. For example, visualizing a 

target occluded by several buildings in an urban dataset by making 

the occluding buildings partially transparent fails to convey the 

identity and order of the occluding buildings, as well as the position 

of the target relative to the occluding buildings. Compared to 

transparency techniques, our approach displaces occluders, which 

introduces distortions, but which brings the advantages of 

visualization clarity and scalability with occlusion complexity. 
Another approach is to remove all but the peripheral region of 

occluders, revealing the data subset of interest that would otherwise 
be occluded (e.g. [4]). The advantage of such cutaway techniques is 
a clear view of the subset of interest, but that comes at the cost of an 
incomplete visualization of the occluding layers. The visualization 
shows a truncated dataset. In the urban dataset visualization example, 
removing the occluding buildings reveals the target but it also 
removes the context needed to locate the target. Our approach 
“moves” but does not remove occluders, which preserves context. 

Explosion techniques subdivide occluders interactively [3] or 
algorithmically [10], and then move the parts centrifugally away 
from a data subset of interest to remove occlusions. The process can 
be repeated two or three times recursively, revealing for example 
subsystems, assemblies, and parts of a complex mechanical system. 
The occluders are part of the visualization, but the visualization 
contributes little more than a sorted inventory of the occluders, as the 
topology of the dataset is perturbed by the “explosion”. Our 
approach moves occluders without changing the topology of the 
dataset. 

Transparency, cutaway, and explosion techniques have the 
advantage that they do not require access to the occluded data subset 
of interest, as they create their own path from the viewpoint to the 
subset. Therefore they can disocclude subsets that are completely 
enclosed, such as an internal component of an engine. Deformation 
and multiperspective techniques, which we discuss next, can only 
disocclude if there is an access path to the occluded subset of 
interest, with the benefit of a less intrusive, topology preserving 
modification of the dataset. 

2.2 Deformation and Multiperspective Techniques 

Gaining an unobstructed line of sight to a data subset of interest can 

also be done by deforming the dataset. The idea was first used in the 

context of 2D data visualization, e.g. in the context of graph 

visualization [17], and it was subsequently extended to 3D datasets, 

e.g. in the context of short route [6] or car navigation [15] 

visualization. The goal is to achieve the desired disocclusion by 

deforming the dataset as little as possible. The deformation approach 

is the dual of the multiperspective approach. Visualizing a distorted 

dataset with a conventional camera can be seen as visualizing the 

original dataset with a multiperspective camera. For example, the 

multiperspective image in Fig. 3 could be obtained by distorting the 

urban dataset and then visualizing it with a conventional camera. The 

difference is that multiperspective visualizations are constructed by 

modifying the underlying camera model. The disocclusion effect is 

designed with greater control directly in the image domain, as 

opposed to indirectly in the 3D dataset. 
Multiperspective visualization originates in art, where the single 

viewpoint constraint is occasionally abandoned in the interest of 
artistic expression, effects that were replicated by computer graphics 
systems [2]. Multiperspective images have also been used to 
integrate photographs taken from different viewpoints (e.g. street 
panoramas [1, 14]). In 2D animation, a single multiperspective 
panorama provides an animation sequence by sliding the frame 

rectangle over the panorama on a predefined path [18]. Both street 
and 2D animation panoramas are limited to special scenes. 

The generality and flexibility of multiperspective visualization 
increased through innovations at camera model level. Multiple center 
of projection images [13] are obtained by rendering a 3D dataset 
with a one-column camera that slides along a path (i.e. a push-broom 
camera). Samples from thousands of viewpoints are integrated into a 
continuous image. The user has good control over viewpoint 
selection by designing the acquisition path. However, rendering the 
image is too expensive for interactive visualization or time-varying 
datasets, as it involves one rendering pass for each image column. 
Our multiperspective rendering framework relies on a more efficient 
parameterization of the ray space based on a few (i.e. 10-20) camera 
segments, which provides the needed disocclusion flexibility without 
sacrificing rendering performance. 

The general linear camera (GLC) [19] is at the other end of the 
multiperspective camera complexity spectrum by possibly being the 
simplest non-pinhole camera. The rays of the GLC are obtained by 
interpolating three input non-concurrent rays. The GLC provides fast 
projection, which ensures rendering efficiency. Given a 3D point 
inside the GLC frustum, one can compute the barycentric 
coordinates of the point’s projection on the triangular GLC image by 
solving linear equations. However, the original parameterization of 
rays does not provide continuity between adjacent GLC’s that share 
two construction rays. A continuous GLC parameterization has been 
subsequently proposed [11], which comes at the cost of cubic 
projection equations. A single GLC doesn’t have the disocclusion 
capability needed in multiperspective visualization, but we use 
continuous GLC’s in our framework to model camera segments, as 
described in Section 3. 

Occlusion cameras are a family of non-pinhole cameras designed 
to extend the viewpoint of conventional cameras to a view region 
[20]. The camera rays are bent at occluder silhouettes to capture 
“barely hidden” samples, which are samples that become visible for 
small viewpoint translations. The resulting image is a high-quality 
aggressive solution to the from-region visibility problem. Occlusion 
cameras generalize the viewpoint to a continuum of nearby 
viewpoints, whereas what is needed for multiperspective 
visualization is a generalization of the viewpoint to a small set of 
distant viewpoints. 

The needed viewpoint generalization is provided by the graph 
camera [12]. Starting from a conventional planar pinhole camera, the 
graph camera is constructed through a series of frustum bending, 
splitting, and merging operations applied recursively. The resulting 
camera is a graph of planar pinhole camera segments. The piecewise 
linear rays are designed to circumvent occluders and to reach far into 
the dataset. Compared to the graph camera, the camera employed in 
our multiperspective framework is built from a mix of planar pinhole 
camera and continuous general linear camera (CGLC) segments. The 
CGLC segments enable frustum splitting while maintaining image 
continuity, thereby overcoming a major shortcoming of the graph 
camera (see Section 4.1). Graph cameras can only be constructed 
automatically using a 2D maze with right angle intersections as 
scaffold, whereas in our framework the multiperspective camera is 
built automatically, in 3D,  to track targets or to integrate two input 
conventional images. Finally, the graph camera does not allow 
controlling where a data subset of interest is imaged, whereas our 
framework allows imaging a subset where it would be imaged in a 
conventional visualization. This enables the user not only to examine 
but also to locate the subset of interest. 

Inspired by the nonlinear trajectory of light in proximity of large 
masses, multiperspective visualizations have been proposed based on 
curved rays [8, 16]. Curved rays have later been used for 
visualization outside of astronomy using ray segments connected 
with Bézier arcs [5]. The advantage of curved rays is that the 
transition from one viewpoint to the next is gradual, which reduces 
the distortion for objects that are imaged from more than one 
viewpoint. The cost is a lower rendering performance due to the 
higher camera complexity. We use piecewise linear rays, with C0 
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continuity, but the C1 continuous rays of the curved ray camera [5] 
could be integrated into our framework for applications where the 
additional cost is warranted . 

3 MULTIPERSPECTIVE CAMERA 

Our visualization framework is based on a flexible multiperspective 

camera. In this section, we first describe the multiperspective camera 

model, we then describe how 3D datasets are rendered with the 

camera to obtain multiperspective images, and finally we describe 

how the camera is constructed in one of three ways to support 

interactive multiperspective visualization. 

3.1 Camera Model 

A camera model is a function that assigns a ray to each image plane 

sampling location. We have designed a multiperspective camera 

model based on the following considerations. 
Flexibility; the camera should be able to integrate conventional 

planar pinhole camera frusta in order to generate a multiperspective 
image that shows subsets of interest undistorted, each from its own 
viewpoint. 

Continuity; the camera rays should sample the entire space 
subtended by the regions of interest, without gaps, in order to 
connect the images of the regions of interest with continuous context. 

Projection efficiency; given a 3D point inside its frustum, the 
camera model should provide a fast method for computing the image 
plane projection of the point in order to support efficient rendering 
on the GPU by projection followed by rasterization. 

Fig. 4 gives a 2D illustration of our multiperspective camera 
model. A root planar pinhole camera segment a with viewpoint V0 is 
used to integrate two leaf planar pinhole camera segments b and c 
with viewpoints V1 and V2. Segments b and c sample the data subsets 
of interest. Segments b and c are connected to a with camera 
segments e and f, each implemented with two continuous general 
linear camera (CGLC) frusta. Fig. 5 illustrates the two CGLC frusta 
of d. The rays of CGLC frustum A1B1C1A2B2C2 are defined by 
linearly interpolating the construction rays A1A2, B1B2, and C1C2. 

Using Fig. 4 again, camera segments f and g sample the dataset in 
between the subsets of interest to connect the two images with 
continuous context. Each of them is implemented with two CGLCs. 
The camera has piecewise linear rays. Ray L0L1L2L3 has three 
segments, one for each of the camera segments it traverses. Line L2L3 
passes through V1 and line L0L1 passes through V0. The far planes 
F0F1, F1F2, and F2F3 define the far boundary of the camera (here 
shown closer for illustration compactness). 

The camera model allows tuning the percentage of the 
multiperspective image pixels allotted to each subset of interest (b 

and c) and to the context (g) by changing how many of the rays of a 
are routed to each of the connecting camera segments d, f, and e. Fig. 
4 shows a typical case where the context g is sampled at low 
resolution in favour of the subsets of interest b and c. 

The multiperspective camera can morph to a conventional planar 
pinhole camera by straightening its piecewise linear rays to become 
single line segments. This is achieved by gradually translating V1 and 
V2 to V0 and by aligning the connecting camera segments d, f, and e 
with rays from V0, as shown in Fig. 6. 

 

3.2 Rendering 

A 3D dataset modeled with triangles is rendered on the GPU by 

projection followed by rasterization.  
Projection 
Given a 3D point P, the point is projected with each camera 

segment until a valid projection is found. Planar pinhole camera 
segments use the conventional projection. Fig. 5 illustrates CGLC 
projection. First we find a plane through P that splits the CGLC 
construction ray segments A1A2, B1B2, and C1C2 in the same ratio t: 

 

  
   

    
 

   

    
 

   

    
 Eq. 1 

 

 
Fig. 4. Camera model that integrates two conventional images 

with viewpoints V1 and V2 into a multiperspective image. The 

green camera segments are implemented with conventional 

planar pinhole cameras. The orange camera segments are 

implemented with continuous general linear cameras. The rays 

are piecewise linear, e.g. L0L1L2L3 and R0R1R2R3. 

 
Fig. 5. Pair of adjacent continuous general linear camera frusta 

A1B1C1A2B2C2 and A1C1D1A2C2D2 like the ones used to model 

each of the camera segments e, d, f, and g in Fig. 4. The 

endpoints L1 and L2 of ray L1L2 have the same barycentric 

coordinates in triangles A1B1C1 and A2B2C2. 3D point P projects at 

L1. A, B, and C split segments A1A2, B1B2, and C1C2 in the same 

ratio, and P has the same barycentric coordinates in ABC as L1 

has in A1B1C1. 

 
Fig. 6. Multiperspective camera model from Fig. 4 morphed to a 

conventional planar pinhole camera. 
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Parameter t is computed by solving a cubic equation. Once t is 
known, points A, B, and C are known, and one can compute the 
barycentric coordinates (α, β, γ) of P in triangle ABC. (α, β, γ) are 
found by inverse barycentric interpolation, which implies solving a 
quadratic. Once (α, β, γ) are known, the projection L1 of P onto 
A1B1C1 can be computed as: 

 

                   Eq. 2 

 
However, one does not need to project a point P with each 

camera segment upstream of the segment that contains it. Instead, we 
map the vertices of the near face of each segment to the output 
multiperspective image during camera construction (and for each 
camera update). Using Fig. 5 again, let (uA, vA), (uB, vB), and (uC, vC) 
be the output image coordinates of A1, B1, and C1. Then the output 
image projection (u, v) of P is computed as: 

 

                                        Eq. 3 

 
Rasterization 
The projection of a triangle contained by a CGLC segment has 

curved edges. We approximate CGLC rasterization with 
conventional rasterization and we control the approximation error by 
subdividing any large triangle offline. Visibility is computed as usual 
through z-buffering. The z value used is the fractional parameter t 
that locates the 3D point within its camera segment, plus the camera 
segment index i. Camera segments are depth indexed from the root 
to the leaf segments. In Fig. 4, a has depth index 0, d, f, and e have 
depth index 1, and b, g, and c have depth index 2. 

3.3 Camera Construction 

Bottom-up 
In bottom-up construction, the two planar pinhole camera 

segments b and c are given (Fig. 4), and the system constructs the 
remaining segments automatically. A precondition for the bottom-up 
construction algorithm is that the input segments b and c do not 
intersect. Intersecting segments lead to a redundant multiperspective 
image with the data subset inside the intersection being imaged 
multiple times. V0 is positioned first in front of the near faces of b 

and c. The field of view of a is chosen to encompass the near faces 
of b and c, and to capture additional foreground and background 
according to user specified parameters. Finally, segments f and g are 
constructed to bridge the gap between (d, b) and (e, c). Fig. 7 
illustrates the multiperspective camera model from Fig. 4 specialized 
for the scenario shown in Fig. 2. Only the central row of rays is 
shown. 

Top-down 
In top-down construction, the user starts with a planar pinhole 

camera and the multiperspective camera is built interactively. First, 
the user defines regions of interest that creates the partition shown in 
Fig. 6. Then the user modifies the viewpoints for each individual 
region. V1 and V2 translate away from V0, and the initial planar 
pinhole camera morphs into the desired multiperspective camera. 
The camera model used to render the multiperspective image shown 
in Fig. 1 is similar to the camera model shown in Fig. 7. 

Target Tracking 
The construction of the multiperspective camera for tracking a 

single target is illustrated in Fig. 8. The target T is occluded from V0. 
In the absence of the occluder, T would be visible at P. The 
construction algorithm reroutes the rays of the pixels around P to 

 
Fig. 7. Multiperspective camera model with the structure shown in Fig. 4 constructed in bottom-up fashion for the scenario shown in Fig. 2. 

The green, blue, and red frusta correspond to camera segments a, b, and c in Fig. 4. 

 
Fig. 8. Multiperspective camera disoccluding target T. Only the 

part of the camera affected by T is shown for conciseness. T is 

imaged where it would be seen in a conventional visualization in 

the absence of the occluder. 
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circumvent the occluder. This way the target is visible in the 
multiperspective image at P, and the occluder is “pushed aside” (i.e. 
to the left). The rays are rerouted using four camera segments a, b, c, 
and d. The neighboring camera segments (grey) transition back to the 
planar pinhole camera, encapsulating the perturbation needed for 
target tracking. All camera segments have parallel near and far base 
planes, and plane ABC (Fig. 5) is simply constructed parallel to the 
base planes, which saves having to solve the cubic equation to find 
parameter t (see the Projection subsection of Section 3.2). 

Multiple targets can be tracked at once, and the targets can 
converge and then diverge again (see video). We do not construct 
one complex multiperspective camera that disoccludes all targets. 
Rather we construct one multiperspective camera for each target 
independently, and compute the final projection of a vertex by 
projecting the vertex with each camera and by computing a weighted 
average of the preliminary projections. The weight of a preliminary 
projection is based on how much the projection is shifted from where 
the vertex would project with a conventional planar pinhole camera. 
Larger shifts correspond to larger weights. When targets do not 
overlap in the image plane, the projection of a vertex is affected by at 
most one target, and the vertex is projected as in the case of a single 
target. When two targets overlap, the preliminary and final 
projections of a vertex at the region of overlap are the same. 

The camera models for each of the two targets tracked in Fig. 3 
are constructed according to Fig. 8 except that the rays are bent in 

the vertical plane (and not in the horizontal plane), in order to 
circumvent the buildings occluding the target. The rays are bent 
enough to clear the tallest occluder along the line of sight to the 
target. The tallest occluder is found by projecting and tracing the 
segment connecting the root eye to the target center onto a height 
map of the city that is computed as a preprocess. 

4 RESULTS AND D ISCUSSION  

We partition the presentation and discussion of our results in three 

subsections: quality, performance, and limitations. 

4.1 Quality 

The major design concerns for our multiperspective visualization 

framework are visualization construction flexibility and image 

continuity. As shown in the images in this paper and in the 

accompanying video, flexibility has been achieved through a camera 

model that allows modifying the viewpoint for individual regions of 

a given image, connecting two conventional images with continuous 

context, and tracking one or more targets while avoiding occlusions. 
Fig. 9 shows that our framework can connect two conventional 

images with opposite views into a continuous image, whereas a 
similar image rendered with the prior work graph camera framework 
[12] suffers from discontinuities which cannot always be hidden 
behind geometry. Fig. 10 shows that our framework can reveal a 
target hidden in a heavily occluded dataset with only minimal image 
distortions. The framework supports multiple moving targets, which 
can converge to the same image region, and then diverge again. 

 

 

 
Fig. 9. Multiperspective image rendered with our framework (top) 

that integrates two opposite views (middle), and image rendered 

with the prior art graph camera framework for comparison 

(bottom). Our image is continuous, whereas the graph camera 

image has two vertical discontinuities over the sky (black lines). 

 

 
Fig. 10. Multiperspective image rendered with our framework that 

tracks a target in a heavily occluded dataset (top); conventional 

image with hidden target, for comparison (bottom). 
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4.2 Performance 

The timing information reported in this paper was collected on an 

Intel Xeon E5-1660 3.3GHz workstation with 16GB of memory, and 

with an NVIDIA Quadro K5000 4GB graphics card. The 

implementation uses OpenGL and Cg GPU shaders. The 

multiperspective rendering is implemented with a vertex shader that 

implements the multiperspective projection. The vertex is projected 

with each camera segment until a valid projection is found. Vertices 

outside the 3D axis aligned bounding box of the camera segment are 

trivially rejected. We start with the leaf segments (i.e. b, c, and g in 

Figs. 4 and 6), which are the largest and are therefore most likely to 

contain the vertex. The multiperspective rendering performance of 

our framework is given in Table 1. 
 

Table 1. Multiperspective rendering performance 

Dataset Tris. x1,000 View Frame rate [fps] 

Terrain 2,120 
Fig. 1 28 

Fig. 2 24 

Manhattan 3,692 
Fig. 3 19 

Fig. 10 39 

Eurotown 3,752 Fig. 9 13 

 
The target-tracking multiperspective cameras used on the 

Manhattan dataset are the fastest because the near and far planes of 
the camera segments are parallel which simplifies projection (see 
Sections 3.2 and 3.3). When the cubic projection equation has to be 
solved (i.e. for the top-down and bottom-up constructions), we have 
found that solving the equation numerically is faster than evaluating 
the closed-form solution expression.  

 The nonlinear projection of the multiperspective camera implies 
that rasterization is not linear as well. In other words, the nonlinear 
projection applies not only to the vertices of a triangle, but also to its 
interior. There are two major approaches to nonlinear rasterization, 
and we have experimented with both of them. One approach is to 
actually perform nonlinear rasterization in the fragment shader. First 
one has to derive a method for approximating the image plane axis 
aligned bounding box of the projection of the triangle. Since the 
projected triangle now has curved edges, the approximation has to 
consider more than the vertices of the projected triangles. Then 
nonlinear rasterization can be performed in 3D, by intersecting the 
dataset triangle with the ray of each pixel of the axis aligned 
bounding box and interpolating rasterization parameters using the 
barycentric coordinates of the intersection point. A second approach 
is to approximate nonlinear rasterization with conventional 
rasterization but making sure the projected triangles are small 
enough. Online subdivision requires a geometry shader that issues a 
varying and potentially large number of primitives, which is a severe 
performance bottleneck. Offline subdivision has to be done in view 
independent way which can result in subdivisions that are either too 
coarse or to detailed for a particular viewpoint. 

We have chosen the approach of offline subdivision. The cost of 
true nonlinear rasterization is unwarranted for the following three 
reasons. First, today’s complex datasets are modeled with small 
triangles who can be rasterized conventionally with good results, 
without subdivision. Second, the focus regions are imaged with 
planar pinhole camera segments where conventional rasterization is 
accurate, and nonlinear rasterization is only used for regions whose 
role is limited to providing context. Third, using conventional 
rasterization implies that there are no changes at the fragment shader, 
which makes our framework portable to any already implemented 
visualization effect. 

4.3 Limitations 

In all the examples shown in the paper and in the video, the payload 

of the multiperspective visualizations is limited to two regions of 

interest: the user changes the viewpoint for two regions of an input 

conventional image in top-down construction, two conventional 

images are connected with continuous context in bottom-up 

construction, and two targets are disoccluded in target tracking 

construction. The framework is general and it allows extending the 

payload of the multiperspective visualization by constructing a 

multiperspective camera from any number of camera segments. The 

CGLC camera segments are powerful building blocks that can be 

assembled as needed by the application and the dataset, with perfect 

continuity across shared faces. For example, starting with a 

cubemap, camera segments could tile the entire space to obtain a 

complete 360o multiperspective panorama. 
Whereas for our examples good performance was obtained by 

projecting every vertex with every camera segment, scalability with 
the number of camera segments requires a faster method for 
determining the camera segment that contains a vertex. The frusta of 
CGLC segments do not have planar side faces therefore a scheme 
that subdivides space hierarchically using planes (e.g. a binary space 
partitioning tree, or a kd-tree) will not separate two adjacent camera 
segments cleanly. Instead, one should use bounding volume 
hierarchies like the ones developed for ray tracing acceleration. The 
goal is to achieve an O(log s) projection time, where s is the number 
of camera segments. 

Our multiperspective visualizations transition abruptly from one 
viewpoint to the next, as our camera model employs piecewise linear 
rays, with C0 and not C1 continuity. Objects that are imaged with two 
viewpoints appear distorted (Fig. 11, video). The graph camera 
framework uses curved rays modeled with Bézier arcs to transition 

  

  

 
Fig. 11. Fragments of the multiperspective visualization from Fig. 

9 showing an airplane flying overt the buildings. The airplane 

appears distorted as it crosses from one camera segment to the 

next (images with red border) and it is not distorted while 

completely contained by one segment (images with black border). 
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from one viewpoint to the next, solution that can be adapted to our 
framework. Another solution is to subdivide longitudinally the 
connective camera segments (i.e. d, e, f, and g in Fig. 4), in order to 
achieve a gradual viewpoint change. The rays remain piecewise 
linear, but the ray segments are shorter which reduces the change in 
direction from one segment to the next. 

5 CONCLUSIONS AND FUTURE WORK  

We have presented a framework that advances the state of the art in 

multiperspective visualization. The framework allows constructing 

continuous multiperspective visualizations by changing the 

viewpoint for individual regions of an image, by integrating input 

images, and by disoccluding moving targets without distorting or 

displacing the target subimages, all of which are beyond the 

capabilities of prior art. 

The framework relies on a flexible yet fast multiperspective 
camera. Whereas a conventional camera has a few parameters with 
which the application can interact directly (e.g. three rotations, three 
translations, focal length), our multiperspective camera comprises 
10-20 camera segments which amounts to hundreds of parameters. 
The power of our framework comes from the three constructors that 
set all these parameters automatically to construct the desired 
multiperspective visualization. The constructors relieve the 
application from tedious low-level specification of the camera 
model, in favor of formulating high-level constraints that are 
satisfied automatically. 

We have demonstrated our multiperspective visualization 
framework in the context of datasets modeled with triangles. The 
framework can be extended to support other geometric primitives, 
such as spherical particles, through tessellation. Opacity data can be 
integrated by the rays of our camera to achieve multiperspective 
volume rendering.  

Another direction of future work is the extension to 
multiperspective visualization of real-world real-time datasets. 
Consider an urban scene captured with video cameras mounted at 
intersections, on cars, and on aircraft. The building geometry is 
known, for example from off-line LIDAR acquisition and 
conventional CAD modeling, like is the case for our Terrain and 
Manhattan datasets. The goal is to integrate the real-time video feeds 
into a multiperspective visualization that avoids occlusions for one or 
more regions of interest. 

Our work advocates abandoning the traditional rigidity of the 
images used in visualization in favor of flexible images that are 
optimized for each viewpoint, dataset, and application. 
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