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Abstract — We present a pinhole camera model that allows modulating the sampling rate over the field of view with great flexibility. 

This flexible pinhole camera or FPC is defined by a viewpoint (i.e. eye) and by a sampling map that specifies the sampling locations 

on the image plane. The sampling map is constructed from known regions of interest with interactive and automatic approaches. 

The FPC provides an inexpensive 3-D projection operation which allows rendering complex datasets quickly, in feed-forward 

fashion, by projection followed by rasterization. The FPC supports many types of data, including image, height field, geometry, and 

volume data. The resulting image is a coherent non-uniform sampling (CoNUS) of the dataset that matches the local variation of the 

importance of the dataset. We demonstrate the advantages of CoNUS images in the contexts of remote visualization, of focus-plus-

context, and of acceleration of expensive rendering effects such as rendering of surface geometric detail and of specular 

reflections. 

Index Terms — camera models, non-uniform sampling, interactive rendering, remote visualization, specular reflection rendering, 

surface geometric detail rendering, volume rendering, focus-plus-context visualization. 

 

1 INTRODUCTION 

Most computer graphics and visualization applications employ 
images computed using the planar pinhole camera (PPC) model. The 
PPC is a good approximation of the human eye which makes it 
uniquely well suited for applications where the goal is to show users 
what they would see during an actual exploration of the scene. 
However, there are applications where the reduced field of view, the 
single viewpoint, and the uniform sampling rate limitations of the 
PPC model are a severe disadvantage.  

In this paper we address the uniform sampling rate limitation of 
the PPC model. We introduce the flexible pinhole camera or FPC 
which allows for adjustments of the sampling rate according to the 
local importance or complexity of the data imaged. Like the PPC, the 
FPC is defined by a viewpoint (i.e. center of projection or eye) and 
an image plane. However, the sampling locations are not defined by 
a uniform grid but rather by a sampling map that allows shifting 
sampling locations from one region of the image plane to another. 
The FPC image provides a coherent non-uniform sampling (CoNUS) 
of the dataset. The CoNUS image in Figure 1, left, samples the five 
faces at a higher rate. The underlying sampling map is shown in 
Figure 4. The sampling map has the topology of a 32×32 regular 
rectangular mesh but it is distorted to implement the sampling rate 
modulation. 

FPC CoNUS images preserve the advantages of conventional 
images. A CoNUS image can be computed quickly with the help of 
GPUs. Data access remains constant time, with the small additional 
cost of the sampling map indirection. A CoNUS image has good 
pixel to pixel coherence and conventional image compression 
algorithms apply. Finally, a CoNUS image remains a single-layer 2-
D array of samples which defines connectivity implicitly. 

The sampling map underlying the FPC can be constructed from 
known regions of interest in a variety of ways. We build sampling 
maps in one of three ways: (1) interactively, using a physics-based 
mass-spring system, (2) by composing multiple sampling maps 

together, or (3) analytically. The FPC provides fast 3-D projection 
which allows rendering CoNUS images quickly, in feed-forward 
fashion, by projection followed by rasterization, from many types of 
data. We demonstrate FPC rendering of CoNUS images from image, 
height field, geometry (i.e. 3-D triangle meshes), and volume data. 
We explore the use of CoNUS images in the contexts of remote 
visualization, of focus-plus-context visualization, and of acceleration 
of expensive effects such as surface geometric detail and specular 
reflection rendering. We also refer the reader to the accompanying 
video. 

Consider the example of a high resolution portrait photograph 
that has to be downsampled to be sent over the internet (Figure 1). 
The recipient is likely to want greater detail on the faces, which, of 
course, cannot be provided by zooming into the conventional 
downsampled image. If instead the server sends a CoNUS image of 
same size but with a higher sampling rate at the known regions of 
interest, the user can zoom in with better results. Consider a second 
example where a height field is visualized remotely. The server 
sends periodically height field sections corresponding to the current 
user location. If instead the server sends CoNUS height fields, the 
fidelity of the output frame increases considerably (Figure 5). Like 
any height field, the CoNUS height field samples the ground plane 
orthogonally, avoiding occlusions. However, the sampling pattern is 
defined analytically to match the sampling rate requested by the 
output frames. 

Many techniques employ depth images in order to accelerate 
expensive rendering effects. In relief texture mapping a depth image 
is used to enhance a surface with geometric detail. In specular 
reflection rendering the environment mapping approximation errors 
are avoided by modeling objects close to reflectors with depth 
images. The main reason depth images accelerate these effects is that 
one can compute the intersection between a ray and a depth image 
faster than one can compute the intersection between a ray and the 
original geometry. A CoNUS depth image brings sampling 
flexibility (Figures 2 and 6), without increasing the cost of the 
intersection operation. 

Whereas in the examples presented so far the need for non-
uniform sampling is to improve an auxiliary data representation from 
which conventional output images are computed, in the case of 
focus-plus-context visualization the CoNUS image is shown directly 
to the user. The FPC approach enables a versatile focus-plus-context 
visualization technique (Figures 3 and 7) that can handle any type of 
data and that provides good control over the focus regions. The 
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CoNUS images are rendered directly from the dataset (e.g. volume 
data, geometry) using the FPC, and they are not obtained by first 
rendering and then downsampling a high resolution conventional 
image.  

2 PRIOR WORK 

We first review prior efforts aimed at removing the uniform 
sampling rate constraint of conventional images, and then review 
prior work in the application contexts where our paper examines the 
benefits of FPC rendered CoNUS images. 
 

Non-uniform sampling rate. Hierarchical spatial partitioning 
schemes such as kd-trees do improve representation efficiency by 
stopping subdivision in regions where data is sampled accurately. 
One could define the FPC sampling map with such a partitioning 
scheme. Compared to  our distorted grid approach (Figure 4),  the 
hierarchical approach has the advantage of supporting a wider range 
of sampling rates, but it has the important disadvantages of sampling 
rate discontinuity, of lack of contiguity, and of greater construction 
(i.e. rendering) and usage (i.e. lookup) complexity. 

Images with a non-uniform sampling rate were first obtained as a 
side effect of techniques for removing the field of view limitation of 
conventional images. For spherical panoramas the sampling rate 
variation was an unwanted side effect and they were replaced by 

cube maps with a more uniform sampling rate. Recently, single 
image panoramas have received renewed attention, as the 
programmability of graphics hardware enables sampling patterns that 
avoid the earlier undersampling problems [1]. Researchers have also 
been addressing the single viewpoint limitation of conventional 
images with innovations at the camera model level such as the 
general linear camera [2] and the occlusion camera [3]. The FPC 
CoNUS is complementary to these approaches, providing sampling 
rate flexibility to panoramic and non-pinhole cameras. 

Irregular sampling patterns have also occurred in the contexts of 
image-based rendering by 3-D warping [4] and of shadow 
antialiasing [5]. In both cases depth images are re-projected to novel 
views where the forward mapped samples are irregular. The 
granularity with which sampling is controlled in the FPC CoNUS 
approach is insufficient to sample the shadow map precisely at the 
locations where the output image does, as needed to completely 
eliminate shadow aliasing. However, shadow aliasing could be 
reduced by using a CoNUS shadow map with a higher sampling rate 
in regions that are magnified in the output image. 

The most general pinhole camera defines each ray independently 
with its own image plane point [6]. Such a camera model has the 
theoretical importance of maximum generality, allowing for any 
sampling pattern given n rays, but it has no practical use. First, the 
rays are not organized in a 2-D array and therefore the resulting 

 

Fig. 1. Coherent non-uniform sampling (CoNUS) image that allocates more samples to the face regions (left), output frame reconstructed 
from CoNUS image (middle), and output frame reconstructed from a conventional image of same size (right), for comparison. 

 
Fig. 2. CoNUS relief texture that allocates more samples to a tablet of interest (left), relief texture mapping (middle), and comparison 
between frames that zoom in on tablet of interest and are rendered with CoNUS and with conventional relief textures of same size (right). 

 
Fig. 3. CoNUS focus-plus-context volume rendering visualization emphasizing the left (1-3) and then the right (4-5) cylinder housings. 
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image is an unsorted list of color samples which cannot be easily 
displayed. Second, rendering such an image is expensive as it would 
require tracing each ray independently. The practical implementation 
of the general pinhole camera that the researchers use [6] restricts the 
sampling rate variation to a rectangular region R of the image plane. 
A smaller rectangle r, concentric with R, provides a higher resolution 
sampling of the scene at that region of the image. The higher 
resolution region r is sampled with a planar pinhole camera and 
hence it is distortion free (i.e. 3-D scene lines map to 2-D image 
lines). The region R-r is used to transition from the low sampling rate 
outside R to the high sampling rate inside r. The sampling locations 
in R-r are chosen with a quadratic or cubic function to achieve C0 or 
C1 continuity. Several regions of higher resolution are supported as 
long as they are disjoint. 

The FPC amounts to a different specialization of the abstract 
general pinhole camera model. The FPC CoNUS approach has two 
fundamental advantages over the previous specialization. First, the 
FPC provides far greater flexibility in defining the sampling 
locations. Second, as explained in the next sections, the FPC 
sampling map provides fine grain control of the sampling rate while 
keeping the amortized cost of the fundamental image point distortion 
and undistortion operations constant. In contrast, a general planar 
pinhole camera with multiple rectangular regions of high resolution 
requires checking each of the regions for the distortion / undistortion 
of a point, which does not scale with the number of regions. 

In texture mapping non-uniform sampling has been pursued 
through compression, atlasing, enhancement with explicitly modeled 
high frequency features (e.g. edges), and distortion. We only discuss 
the last two approaches as they are closest to our work. Textures 
enhanced with edges modeling shadow silhouettes [7] or abrupt 
changes in color [8] are more robust to magnification. The approach 
is compatible with CoNUS textures. When edges are derived from 
vector graphics primitives the edges have to undergo the sampling 
map distortion (Figure 4), and long edges have to be split. For edges 
derived from the texture, the CoNUS texture can be used directly. 
Space-optimized textures [9] distort textures with a similar 
mechanism to our sampling map. Our FPC work extends nonuniform 
sampling to more types of data and applications. 

Remote visualization. As the size of acquired and computed 
datasets continues to increase, so will the importance of remote 
visualization which is called upon to provide access to remote 
datasets for clients with no high-end storage or visualization 
capabilities. One approach is to reduce the dataset on the server to a 
size that can be transmitted to and visualized by the client. Many 
techniques can be used to reduce the dataset size on the server, 
including data compression (e.g. [10]), feature extraction (e.g. [11]), 
and level of detail (e.g. [12]). A second approach is to compute the 
visualization at the server and send images to the client (e.g. [13]). 
The client only needs a simple terminal that can display images, but 
network bandwidth limits visualization resolution and frame rate. 

A hybrid approach is to transfer from the server to the client 
images that have more data than what is needed for the client's 
current frame. Such an enhanced image should be sufficient for a 
quality reconstruction of a sequence of frames at the client, without 
any additional data from the server. Images enhanced with per pixel 
depth [14] and with additional samples at the center [6] have been 
used to allow translating and zooming in at the client. Remote 
visualization based on transferring CoNUS images falls in this third, 
hybrid category. A CoNUS image that samples known regions of 
interest in greater detail anticipates the user’s intention to zoom in on 
those regions. A CoNUS height field that samples the ground plane 
orthogonally yet at a higher rate close to the user supports six 
degrees of freedom navigation at the client in the neighborhood of 
the current view.  

Rendering acceleration using depth images. Depth images are 
powerful geometry approximations used for acceleration in many 
contexts including rendering of complex geometric surface detail, of 
specular reflections, of refractions, and of ambient occlusion. We 
limit the discussion of prior work to the first two contexts which are 
used in this paper to illustrate the benefits of our method. 

Relief texture mapping is a technique for adding geometric detail 
to surfaces. The technique produces correct silhouettes and correct 
interactions between relief and other relief and non-relief geometry 
(e.g. intersections, casting and receiving shadows) [15]. The relief 
texture is a depth image attached to a base box. Rendering the box 
triggers intersecting the eye ray with the depth image at every pixel. 
The intersection computation is performed by projecting the ray onto 
the depth image and following the ray projection until the first 
intersection is found. 

Specular reflections are challenging for the feed-forward 3-D 
graphics pipeline because one cannot easily compute the image plane 
projection of reflected vertices. We group specular reflection 
rendering techniques into four categories: ray tracing [16], 
approximations of the projection of reflected vertices (e.g. [17]), 

 
Fig. 5. CoNUS height field and its sampling pattern (top), output 
frame rendered from CoNUS (center), and from conventional height 
field (bottom). 

 
Fig. 4. Visualization of sampling map for Figure 1 



 

4 

 

image-based rendering (e.g. [18]), and approximations of the 
reflected scene. We only discuss the fourth category since it is the 
category where the CoNUS specular reflection rendering method 
falls. The most drastic approximation is undertaken by environment 
mapping [19], where the reflected scene is assumed to be infinitely 
far away from the reflector. Environment mapped reflections are 
incorrect for objects close to the reflector. Approximating these 
objects with billboards or depth images [18] improves reflection 
accuracy. Using CoNUS depth images as relief textures or to 
approximate reflected objects brings sampling flexibility without a 
considerable increase of the cost of ray / depth image intersection. 

Focus-plus-context visualization. The visualization of complex 
scenes can benefit from highlighting the scene region that is more 
important in the context of the application. The pipeline of such 
focus-plus-context visualization has multiple stages, including 
finding the regions of interest, finding the best view for a region of 
interest, and highlighting the region of interest by assigning it a 

salient color, by assigning it more pixels, and by managing 
occlusions through cutaway, transparency, or non-pinhole camera 
techniques. For example, finding the best viewpoint for a region of 
interest can be done automatically by analyzing the region feature 
distribution in an information-theoretic framework [20]. We refer the 
reader to an excellent survey [21] of the state-of-the-art methods for 
the various stages of the focus-plus-context pipeline, and we limit the 
discussion to the problem of highlighting the region of interest by 
allocating more pixels to the region of interest, which is where the 
FPC makes it contribution to focus-plus-context visualization. 

An important challenge stems from the fact that displays have a 
uniform pixel resolution (with the exception of special focus-plus-
context screens [22]). Consequently, the focus-plus-context image 
cannot be displayed directly and it has to be mapped to displays with 
uniform resolution by introducing distortions between the focus and 
context regions. Focus-plus-context visualization is typically applied 
to 2-D data (e.g. to hierarchies [23], graphs [24], and maps [25]). 
Applying the technique to 3-D data can be done either by distorting 
the dataset and then visualizing it with a conventional camera [26], 
or by distorting the camera model [6], [27]. FPC focus-plus-context 
visualization falls in the second category. Like the general pinhole 
camera, the volume lens [27] defines one or a few regions of interest 
with higher resolution. The ray perturbation employed does not 
provide closed form projection and the method is restricted to 
volume rendering and ray tracing. 

3 THE FLEXIBLE P INHOLE CAMERA 

3.1 Camera Model 

The goal is to define a camera whose rays pass through a point 
and that renders an image with a variable sampling rate, i.e. a 
CoNUS image. The camera has to be flexible, to allow defining the 
desired sampling rate for sub-regions of the CoNUS image, and it 
has to be fast, in order to render the CoNUS image quickly from a 
variety of types of input data. We implement the sampling rate 
variation with a sampling map that defines a distortion of a regular 2-
D mesh. The distorted mesh has the same topology as a regular 2-D 
mesh, but with quadrilateral cells that are larger where a higher 
sampling rate is desired (Figure 4). The sampling map is encoded as 
a 2-D array of 2-D points. Each point defines a node of the distorted 
mesh. 

Given an (undistorted) image point (u, v), the corresponding 
(distorted) CoNUS image point (ud, vd) is found by looking up the 
sampling map using bilinear interpolation as shown in Algorithm 1 
and Figure 8. The input point is first converted to sampling map 
coordinates (u', v') (line 1). Then the distorted point is computed by 
bilinear interpolation of the  four distorted mesh points stored in the 
sampling map at the 2 × 2 neighborhood containing (u', v') (line 2). 

Camera model definition. We define the flexible pinhole camera 
model FPC with a conventional planar pinhole camera PPC and a 
sampling map SM that distorts the PPC image as described in 
Algorithm 1.  

Projection. A flexible pinhole camera FPC(PPC, SM) projects a 
3-D point P to its CoNUS image plane by first projecting P with 
PPC to obtain the undistorted coordinates (u, v) and then by 
distorting (u, v) to (ud, vd) (Algorithm 1).  

Camera rays. The FPC(PPC, SM) ray through (ud, vd) is the PPC 
ray through (u, v). Consequently, in order to compute the camera ray, 
one needs to invert the distortion, which poses two challenges. First, 
one has to find the quadrilateral cell of the distorted mesh that 

 
Fig. 6. CoNUS depth image emphasizing all 4 engraved tablets (top 
left), scene setup (top right), and reflection details rendered with 
CoNUS (bottom left) and conv. (bottom right) depth image. 

 
Fig. 7. CoNUS focus-plus-context visualization emphasizing the 
yellow and white cars (top), and conventional image (bottom). 

Algorithm 1: FPC::Distort(u, v) // FPC distortion 

input: undistorted image resolution (w, h), undistorted              

location (u, v), and sampling map SM of resolution (w0, h0) 

output: distorted location (ud, vd) 

1: (u', v') = (uw0/w, vh0/h) 

2: (ud, vd) = SM.BilinearLookup( u', v') 
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contains (ud, vd). A naive approach would examine all quads. A 
better approach would use a hierarchical subdivision of the CoNUS 
image (e.g. using a kd-tree or a BSP-tree) to quickly find the quad 
that contains (ud, vd), but constructing the subdivision remains 
laborious. Second one needs to solve the quadratic equations of the 
inverse bilinear interpolation that computes x and y from (ud, vd), 
SMi,j, SMi+1,j, SMi,j+1, and SMi+1,j+1. 

We bypass these challenges by leveraging two observations. 
First, CoNUS applications do not need to compute an individual ray 
of the FPC, but rather all rays iteratively. Second, bilinear 
interpolation inversion can be avoided by splitting the distorted mesh 
quads into two triangles and by replacing the quad bilinear 
interpolation with two triangle barycentric interpolations. This 
modification does not reduce the sampling rate flexibility of the FPC. 
We find all rays of the modified FPC efficiently as shown in 
Algorithm 2. 

The rays of the FPC are found by rasterizing the distorted mesh 
QM defined by the sampling map (line 3). QM has the topology of a 
2-D regular mesh, but its vertices are displaced according to the 
desired sampling rate variation (see Figure 4). Each distorted mesh 
vertex carries its undistorted coordinates as texture coordinates (line 
4). The ray at the current pixel p is found by first finding the 
undistorted coordinates (u, v) of p from its texture coordinates (sp, tp) 
(line 8), and then by computing the regular planar pinhole camera 
ray at the undistorted coordinates (line 9). The rays are found at the 
cost of rasterizing the 2×w0×h0 triangles of the distorted mesh, 
which is small since the resolution of the sampling map is much 
smaller than the resolution of the CoNUS image. We compute the 
rays on the GPU with a trivial fragment shader that executes lines 8 
and 9. Algorithm 2 provides the rays of the FPC camera, one at a 
time, at a small amortized cost. The algorithm is not used as is, but it 
is rather specialized as needed to render a CoNUS image from a 
regular image or from volume data, as described below. 

3.2 Rendering CoNUS images with the FPC 

The FPC allows rendering CoNUS images efficiently from a variety 
of types of input data. 

Geometry data. A CoNUS image is rendered from a 3-D triangle 
mesh with the steps shown in Algorithm 3. The 3-D triangle mesh T 
is projected by projecting its vertices with FPC (i.e. PPC projection 
followed by distortion with Algorithm 1, Section 3.1). Then the 
projected triangles are rasterized conventionally. The projected 
triangles have to be small enough such that conventional 
rasterization provides a good approximation of the nonlinear 
projection induced by the sampling map. Most datasets have small 
triangles and conventional rasterization is acceptable without further 
subdivision. When subdivision is needed, an offline approach is 
preferred in order to avoid the performance bottleneck of issuing a 
large number of primitives in the geometry shader. 

Image and height field data. A CoNUS image is rendered from a 
conventional input image by modifying line 9 of Algorithm 2 as 
shown in Algorithm 4. Once the undistorted location (u, v) is known, 
the input image is looked up to set the current CoNUS image pixel 
(ud, vd). A CoNUS image has fewer pixels than the original image. 
The original image provides the maximum resolution over the entire 
field of view, which is preserved in some regions of the CoNUS 
image, whereas the other regions of the CoNUS image are at lower 
resolution. A CoNUS height field sampled orthogonally to the base 
plane is constructed similarly with the exception that the pixel is 
setup by looking up the depth in the original height field instead of 
(or in addition to) looking up the color. 

Volume data. A CoNUS image is rendered from volume data by 
tracing the FPC rays through the volume. The rays are determined 
with Algorithm 2. 

 

3.3 Resampling of regular image from CoNUS image 

We have described rendering a CoNUS image from a regular image. 
However, some applications, such as remote visualization, use the 
CoNUS image as an intermediate representation from which they 
have to resample a conventional image to be presented to the user. A 
regular image I1 is resampled from a CoNUS image I0 with the steps 
shown in Algorithm 5. The rays that sample I1 are defined by a 
planar pinhole camera PPC1. Given an I1 pixel (u1, v1), the 
corresponding CoNUS image pixel (ud, vd) is computed in two steps. 
First, one computes the corresponding point (u0, v0) on the image 
plane of PPC0, as shown by lines 2 and 3. This correspondence is 
computed by generating the 3-D point P corresponding to (u1, v1) by 
unprojection with PPC1 and then by projecting P with PPC0. The 
unprojection followed by projection can be combined into a single 
matrix multiplication followed by perspective divides. Second, the 
corresponding (ud, vd) is computed by distortion leveraging 
Algorithm 1. 

3.4 Sampling map construction 

We construct sampling maps in one of three ways. One way is 
through the use of an interactive physics-based 2-D mass-spring 
system. The image is covered with regularly distributed particles 
connected with springs to form a quadrilateral mesh. All particles 
have the same mass and all springs have the same resting length (set 
to 10% of the initial particle distance in our implementation). The 
user perturbs the system interactively by adding repulsive forces 
between particles with a circular brush (Figure 9). The force 
magnitude decreases from the center towards the periphery of the 
brush exponentially. The equilibrium state is computed by tracking 
the position of each particle over time until all particle velocity 
vectors have negligible magnitude. For each time step, the forces 
acting on each particle are computed first using Hooke's equation for  

Algorithm 2: FPC::Rays() // Computation of FPC rays 

input:  FPC of resolution w × h, defined by PPC and by SM of 

resolution w0 × h0 

output:  FPC rays 

1: Initialize 2-D mesh QM of resolution  w0 × h0 

2: for all (i, j) where 0 ≤ i < w0, 0 ≤  j < h0 do 

3:       Vertex coordinates QM.vi,j = SMi,j ; 

4:       Texture coordinates QM.(s, t)i,j = (i/w0, j/h0); 

5: end for 

6: for all triangles q in QM do 

7:       for all pixels p covered by q do 

8:             (u, v) = (wsp, htp) 

9:              rayp = PPC.GetRay(u, v) 

10:      end for 

11: end for 

  

Algorithm 3: FPC::Render(T) // render from geometry 

input:  FPC FPC and triangle mesh T 

output:  CoNUS image I 

1: for all vertices v of T do 

2:       v' = FPC.Project(v) 

3: end for 

4: for all projected triangles t' of T do 

5:       Rasterize t' 
6: end for 

 

Algorithm 4: FPC::Render(I) // render from image 

input:  FPC FPC and image I 
output:  CoNUS image I' 

// identical to Algorithm 2 except for line 9 

… 

9: I'(ud, vd) = I(u, v) // difference with Algorithm 2 

… 
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harmonic oscillators Fi = -kxi, where Fi is the force applied to the 
particle by spring i connected to it, k is the spring constant, and xi is 
the particle displacement along the spring direction. Then the particle 
velocity v and displacement x are updated with equations v = v + ∆t 
F/m and x = x + ∆tv, where F is the resultant force acting on the 
particle. A mesh of 256×256 particles is updated at 30 fps and a 
stable state is reached in less than 2s. The sampling map is defined 
by the final position of the particles, and it can have a lower 
resolution than the particle mesh.  

Sampling maps can also be generated through a linear 
combination of the distortion vectors of existing sampling maps, as 
shown in the equation below. SMi,j, SMi,j

0, and SMi,j
k  are elements (i, 

j) of the new sampling map, of the undistorted sampling map, and of 
the input sampling map k. sk and tk are the scale factor and the 
translation vector of map k. 

SMi,j = SMi,j
0 + Σk (sk (SMi,j

k-SMi,j
0) + tk) 

A third approach is to do away with the discrete representation and 
define the distortion analytically as shown in Figure 5, top right, and 
as described in Section 4. 

4 REMOTE V ISUALIZATION 

The resolution of digital cameras continues to increase faster than 
network bandwidth. It is also the case that workstation displays now 
have a lower resolution than the simplest digital cameras attached to 
cellular phones (e.g. Apple's 4MP 30'' LCD and 8MP iPhone 5S 
camera). Consequently, even if the image is transferred at full 
resolution, it is most likely going to be downsized for viewing. Often 
not all pixels in a digital image have the same relevance for the 
application. For example faces in a portrait photograph are more 
important than the furnishings in the room. Moreover faces are found 
automatically by digital cameras for focusing purposes. In the 
context of an online geographic atlas, pixels sampling famous 
locations or locations marked by other users as interesting have 
higher relevance. In the context of remote scientific visualization, 
some image regions might be known to be of higher interest to 
scientists, such as regions showing receptors targeted in drug 
molecule design. 

In such contexts, the CoNUS capability of the FPC could help 
reduce bandwidth requirements and improve interactivity as follows. 
The server FPC renders a CoNUS image that samples the regions of 
interest at a higher rate. Then the CoNUS image is transferred to the 
client, where it is resampled to a conventional image (Algorithm 5). 
The application tours the CoNUS image, showing the regions of 
interest in detail. 

We have also investigated the use of the FPC CoNUS approach 
in the context of remote terrain visualization. Given a height field H 
at the server and a current view PPC at the client, the goal is to 
resample H to a CoNUS height field that has all and only the samples 
needed to provide a quality visualization of the height field from 

views in the neighbourhood of PPC. First, a reference view PPC0 is 
constructed by enlarging the field of view of PPC, to support view 
rotations, and by increasing the resolution, to support zooming in and 
forward translation. Then a CoNUS height field is constructed with a 
sampling rate that matches the requirements of PPC0. CH should 
have more samples close to the viewpoint and fewer at a distance, as 
illustrated in Figure 5, top right. We construct the CoNUS height 
field CH with an analytical distortion function as described in 
Algorithm 6. 

The CoNUS height field sample (ud, vd) is looked up in the 
original (undistorted) height field H at location (u, v) which is 

computed by intersecting the ray at pixel (ud, vd) in the client view 
PPC0 with the ground plane H.g of H. This construction applies the 
perspective foreshortening of PPC0 while maintaining the orthogonal 
sampling of H, which avoids disocclusion error problems that would 
occur if one actually rendered the geometry of H from PPC0. CH is 
sent to the client where it is transformed in a 3-D triangle mesh that 
is rendered for each frame. A CH sample is converted to a 3-D 
triangle mesh vertex by computing the ground plane point P 
corresponding to (ud, vd) (line 2 in Algorithm 6) and by offseting P 
by CH(ud, vd) above the ground plane. 

Quality. The CoNUS image shown in Figure 1 allows rendering 
all five faces in great detail. The CoNUS height field produces 
frames that are comparable to frames rendered from the original 
high-resolution height field (Figure 5).  

Performance. For Figure 1, once the FPC model is known, 
rendering the CoNUS image takes negligible time; the FPC sampling 
map was designed interactively using the spring-mass system. For 
the example in Figure 5, we use a CoNUS height field of 1,024 
×1,024 resolution, which is rendered and used at over 400 and 100 
frames per second, respectively.  

Limitations. The FPC CoNUS approach increases the sampling 
rate of the regions of interest at the expense of the rest of the image. 
When high frequencies are present outside the regions of interest, the 
undersampling can become noticeable (Figure 10). The approach 
does not address occlusions. Whereas occlusions do not occur for 
images or orthogonally sampled height fields, the FPC CoNUS 
approach will have to be integrated with an occlusion alleviation 
scheme such as a non-pinhole camera to support six degrees of 
freedom remote visualization of general 3-D data. 

5 DEPTH IMAGE RENDERING ACCELERATION 

A depth image is a powerful method for approximating geometry: 
the depth image is computed quickly with the help of graphics 
hardware, and a depth image can be quickly intersected with a ray. 
Because of these important advantages depth images have been used 
to accelerate the rendering of complex effects such as specular 
reflections, refractions, ambient occlusion, and relief texture 
mapping. Eliminating the uniform sampling rate constraint of 
conventional depth images using the FPC CoNUS approach could 
benefit all these techniques provided that the efficiency of depth 
image construction and of ray intersection is preserved. CoNUS 
depth images can be rendered efficiently from height field or 
geometry data using the FPC as discussed in Section 3.  

Algorithm 5: FPC::CoNUS2Regular(I0) // Resampling 

input:  CoNUS image I0, FPC(PPC0, SM), PPC1 

output:  Conventional image I1 for PPC1 

1: for all pixels (u1, v1) in I1 do 

2:       P = PPC1.Unproject(u1, v1) 

3:       (u0, v0) = PPC0.Project(P) 

4:       (ud, vd) = FPC.Distort(u0, v0) // see Algorithm 1 

5:       I1(u1, v1) = I0(ud, vd) 

6: end for 

 

Algorithm 6: HeightFieldCoNUS(H, PPC0) 

input:  Height field H, client reference view PPC0 

output:  CoNUS height field CH 

1: for all samples (ud, vd) in CH do 

2:       (u, v) = PPC0.Ray(ud, vd) ∩ H.g 

3:       CH(ud, vd) = H(u, v) 

4: end for 

 
Fig. 8. Piecewise bilinear image distortion using a sampling map. 
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A conventional depth image DI is intersected with a ray by 
projecting the ray to the image plane of DI and by tracing the 
projection with one pixel steps until an intersection is found [15]. In 
the case of a CoNUS depth image, the projection of the ray is no 
longer a line segment, but rather a curve segment. The ray cannot 
longer be projected solely by projecting its endpoints. Instead, the 
ray has to be subdivided into segments, each projected with the FPC 
as described in Section 3. The fundamental advantage of depth 
images of 1-D intersection with a ray is preserved, at the cost of a 
slightly more complicated projection of the ray. We integrated 
CoNUS depth images into relief texture mapping and into specular 
reflection rendering, where the CoNUS depth image is intersected 
with eye rays and with reflected rays, respectively. 

Quality. The sampling flexibility afforded by CoNUS depth 
images allowed improving the clarity of the engraved tablets (Figure 
2) and of their reflection (Figure 6). 

Performance. For both conventional and CoNUS depth images, 
the performance bottleneck for relief texture mapping and specular 
reflection rendering is the depth image / ray intersection 
computation. Intersecting a ray with a CoNUS depth image brings 
the additional cost of distorting a 2-D point at every step along the 
ray. However, CoNUS distortion is fast, and we measured an average 
frame rate penalty of only 5%. For applications where the CoNUS 
depth image is intersected with a large number of rays, it might be 
advantageous to undistort the CoNUS depth image at the client to a 
higher resolution conventional depth image using Algorithm 5, 
which results in straight ray projections and avoids the cost of per 
step distortion. 

Limitations. CoNUS depth images inherit the occlusion 
limitations of conventional depth images. The sampling tradeoff can 
lead to visual artifacts outside regions of interest.  

6 FOCUS-PLUS-CONTEXT V ISUALIZATION 

The FPC CoNUS approach is well suited for focus-plus-context  
visualization because it offers good control over the sampling rate, 
which allows precisely designing one or multiple focus regions, and 
because CoNUS images can be rendered quickly, which supports 
dynamic scenes and the interactive change of focus region 
parameters. The CoNUS image is shown directly to the user thus no 
decoding is needed. The CoNUS image can be rendered efficiently 
from a variety of data as described in Section 3. The only remaining 
challenge is sampling map construction. 

Unlike for the previous applications of CoNUS images, in focus 
plus-context-visualization the sampling map has to be constructed 
online, once for every output frame, which precludes the use of the 
mass-spring approach. We construct sampling maps by composing 
canonical circular sampling maps, one for every focus region. We 
demonstrate the approach in the context of volume rendering (Figure 
3), where the user manipulates focus region and view parameters 
interactively to examine a volume dataset, and in the context of a city 
scene modelled with triangle meshes (Figure 7), where focus regions 

track moving cars. The focus region location is computed by 
projecting the center of the tracked car in the output view.  

Quality. The CoNUS approach enables high quality focus-plus-
context visualization for a variety of data types. The focus regions 
have strong magnification and low distortion. Focus region 
parameters can change and focus regions can merge and then 
separate again without abrupt changes in the output visualization. 
Focus plus context visualization is particularly robust to 
undersampling outside the focus region--users are likely to focus on 
the region that they themselves selected as important, and focus 
regions can be shifted interactively to visualize any region in more 
detail.  

Performance. In our experiments FPC volume rendering was on 
average 7% slower than conventional volume rendering. The cost of 
volume rendering by ray casting is dominated by the traversal of the 
volume, thus computing the perturbed rays for the CoNUS approach 
has no impact on performance. We attribute the slight performance 
decrease to a larger output image footprint for the distorted volume, 
and to more rays being focused on the center of the dataset where 
volume traversal distances are longer. The vertex distortion 
performed when rendering CoNUS images from triangle meshes had 
no measurable performance impact.  

Limitations. Since the CoNUS approach does not alleviate 
occlusions, tracked objects of interest can become hidden and the 
user has to change the view to reveal the object. As future work we 
will examine changing the view automatically to keep the tracked 
object visible. 

7 CONCLUSIONS AND FUTURE WORK 

We have presented a general method for removing the uniform 
sampling rate constraint of conventional images. CoNUS images can 
be rendered efficiently from image, height field, geometric, and 
volume data. Like a conventional image, a CoNUS image has a 
single layer and good pixel to pixel coherence, thus conventional 
image compression algorithms can be readily applied. The 
underlying sampling map can be constructed from known regions of 
interest in a variety of ways including using a mass spring system, by 
composing multiple input sampling maps, and analytically. 

The sampling map is a powerful tool for assigning more pixels to 
some regions of the image plane. For example, for the image in 
Figure 1, the maximum sampling rate increase is 8.13×, respectively, 
which was measured by finding the largest quadrilateral cell of the 
sampling mesh, and by dividing its area to the area of an undistorted 
cell. The sampling map does not create new pixels--the sampling rate 
is increased by decreasing the sampling rate in other regions deemed 
of lesser importance.  

For a sampling map of resolution w0 × h0, for regions of interest 
occupying k cells, and for a minimum sampling rate of the context 
regions of c×, the upper bound for the sampling rate increase is z = 
w0h0(1-c)/k + c. For example, if w0×h0 = 1,024, k = 64 and c = 1/2, 
then z = 8.5×. If the application tolerates downsampling the context 
to 1/8, z increases to 14.125×. If there is a single region of interest 
that fits in one cell, i.e. k = 1, then, even for a negligible 
downsampling of the context regions by c = 0.95×, the sampling rate 

 
Fig. 9. Mass-spring system used to define sampling maps 
interactively. The user defines regions of higher resolution using a 
circular brush (yellow). 

 
Fig. 10. Sampling artifact outside the regions of interest in a frame 
reconstructed from the CoNUS image in Figure 1 (left), and 
undersampling of distant mountain by CoNUS height field (right, 
top) compared to original height field (right, bottom). 
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of the region of interest can reach z = 52.15×. 
Possible directions for future work include exploring other uses 

of CoNUS images (e.g. geometric simplification, acceleration of 
additional rendering effects), investigating the benefit/cost tradeoff 
of higher order interpolation of the sampling map to achieve C1 
sampling rate continuity, and developing automatic sampling map 
constructors. This paper describes how to sample at a non-uniform 
rate. We are particularly interested in tightly coupling the FPC 
CoNUS approach with automatic techniques for determining what to 
sample in more detail, such as automatic geometric complexity 
analysis, object recognition, eye tracking, and saliency maps.  

We foresee that FPC-rendered CoNUS images will have wide 
applicability as they are compatible with virtually all contexts where 
images are used. 
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