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Recall: Lighting and Shading 

• Light sources 
– Point light 

• Models an omnidirectional light source (e.g., a bulb) 

– Directional light 

• Models an omnidirectional light source at infinity 

– Spot light 

• Models a point light with direction 

 

• Light model 
– Ambient light 

– Diffuse reflection  

– Specular reflection 

 



Recall: Lighting and Shading 

• Diffuse reflection 

– Lambertian model 



Recall: Lighting and Shading 

• Specular reflection 

– Phong model 



Recall: Lighting and Shading 

• Well….there is much more 



For example… 

• Reflection -> Bidirectional Reflectance Distribution 
Functions (BRDF) 

• Diffuse, Specular -> Diffuse Interreflection, Specular 
Interreflection 

• Color bleeding 

• Transparency, Refraction 

• Scattering 

– Subsurface scattering 

– Through participating media 

• And more! 

 



Illumination Models 

• So far, you considered mostly local (direct) 
illumination 

– Light directly from light sources to surface 

– No shadows (actually is a global effect) 

• Global (indirect) illumination: multiple 
bounces of light 

– Hard and soft shadows 

– Reflections/refractions (you kinda saw already) 

– Diffuse and specular interreflections 



Welcome to Global Illumination 

• Direct illumination + indirect illumination; e.g. 

– Direct = reflections, refractions, shadows, … 

– Indirect = diffuse and specular inter-reflection, … 

 

 

direct illumination 

with global illumination 

only diffuse inter-reflection 



Global Illumination 

• Direct illumination + indirect illumination; e.g. 

– Direct = reflections, refractions, shadows, … 

– Indirect = diffuse and specular inter-reflection, … 

 

 



Reflectance Equation 
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Reflected Light 

(Output Image) 

Emission Incident  

Light (from 

light source) 

BRDF Cosine of  

Incident angle 

[Slides with help from Pat Hanrahan and Henrik Jensen] 



Reflectance Equation 

i r

x
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Reflected Light 

(Output Image) 

Emission Incident  

Light (from 

light source) 

BRDF Cosine of  

Incident angle 

Sum over all light sources 



Reflectance Equation 

i r
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Reflected Light 

(Output Image) 

Emission Incident  

Light (from 

light source) 

BRDF Cosine of  

Incident angle 

Replace sum with integral 

id



Reflectance Equation 

i r

x

( , ) ( , ) ( , ) ( , , ) cosr r e r i i i r iiL x L x L x df x     


  

id



The Challenge 

 

• Computing reflectance equation requires 
knowing the incoming radiance from surfaces 

 

• …But determining incoming radiance requires 
knowing the reflected radiance from surfaces 

( , ) ( , ) ( , ) ( , , ) cosr r e r i i i r iiL x L x L x f x d      

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Global Illumination 

i r
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Reflected Light 

(Output Image) 

Emission Reflected 
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Incident angle 

id

Surfaces (interreflection) 
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Rendering Equation 
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Rendering Equation (Kajiya 1986) 



Rendering Equation as Integral Equation 

Reflected Light 

(Output Image) 

Emission Reflected 

Light 

BRDF Cosine of  

Incident angle 

UNKNOWN UNKNOWN KNOWN KNOWN KNOWN 
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Is a Fredholm Integral Equation of second kind  

[extensively studied numerically] with canonical form 
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Kernel of equation 



Linear Operator Theory 101 

Linear operators act on functions like matrices 
act on vectors or discrete representations  

 

 

Basic linearity relations hold 

 

 

 

(e.g., integration and differentiation) 

 ( ) ( )h u M f u M is a linear operator. 
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Linear Operator Equation 

( ) ( )( ) ( , )l u e u K u dvl v v  
Kernel of equation 

L E KL 
which is effectively a simple matrix equation (or system of 

simultaneous linear equations) where 

 

 L, E are vectors,  

 K is the light transport matrix  (more on this later!) 



Solving the Rendering Equation 
(=how to compute L?) 

• In general, too hard for analytic solution 

• But there are approximations and some nice 
observations… 

 

 



Solving the Rendering Equation 
(=how to compute L?) 

L E KL 

IL K EL 
( )I K EL 

1( )I KL E 
(using Binomial Theorem) 

2 3( ...)I KL K K E    
2 3 ...E KE K E K EL     

where term n corresponds to n-th bounces of light 



Ray Tracing 

2 3 ...E KE K E K EL     

Emission directly 

From light sources 

Direct Illumination 

on surfaces 

Global Illumination 

(One bounce indirect) 

[Mirrors, Refraction] 

(Two bounce indirect)  

[Caustics, etc…] 



Ray Tracing 

2 3 ...K EE K K EEL   

Emission directly 

From light sources 

Direct Illumination 

on surfaces 

Global Illumination 

(One bounce indirect) 

[Mirrors, Refraction] 

(Two bounce indirect)  

[Caustics, etc…] 

OpenGL 

Shading 



 



Radiosity 

• Radiosity, inspired by ideas from heat transfer, 
is an application of a finite element method to 
solving the rendering equation for scenes with 
purely diffuse surfaces 

(rendering equation) 

[Radiosity slides heavily based on Dr. 
Mario Costa Sousa, Dept. of of 
CS,  U. Of Calgary] 



Radiosity 

• Calculating the overall light propagation 
within a scene, for short global illumination is 
a very difficult problem.  

 

• With a standard ray tracing algorithm, this is a 
very time consuming task, since a huge 
number of rays have to be shot.  

 



Radiosity 

• For this reason, the radiosity method was 
invented.  

 

• The main idea of the method is  
 
to store illumination values on the surfaces of 
the objects, as the light is propagated starting 
at the light sources.  



Radiosity 

• Equation: 

 

(more details on the board…) 



Ray Tracing 



Radiosity 



Diffuse Interreflection 

(radiosity method) 



Diffuse Interreflection  

• Surface = "diffuse reflector" 
of light energy, 

 

• means: any light energy 
which strikes the surface 

will be reflected in all 
directions,  

 

• dependent only on the 
angle between the 

surface's normal and the 
incoming light vector 

(Lambert's law).  

 



Diffuse Interreflection  

• The reflected light energy 
often is colored, to some 

small extent, by the color of 
the surface from which it 

was reflected. 

 

• This reflection of light 
energy in an environment 
produces a phenomenon 

known as "color bleeding," 
where a brightly colored 

surface's color will "bleed" 
onto adjacent surfaces.  



Diffuse Interreflection  

• The reflected light energy 
often is colored, to some 

small extent, by the color of 
the surface from which it 

was reflected. 

 

 
“Color bleeding”, as both 

the red and blue walls 
"bleed" their color onto 
the white walls, ceiling 

and floor. 



Radiosity (Thermal Heat Transfer) 

• The "radiosity" method has its basis in the field of 
thermal heat transfer.  

 

• Heat transfer theory describes radiation as the 
transfer of energy from a surface when that surface 
has been thermally excited.  

 

 

 



• This encompasses both surfaces which are basic 
emitters of energy, as with light sources, and surfaces 
which receive energy from other surfaces and thus 
have energy to transfer.  

 

• This "thermal radiation" theory can be used to 
describe the transfer of many kinds of energy 
between surfaces, including light energy. 

 

 

 



Radiosity (Computer Graphics) 

• Assumption #1: surfaces are diffuse emitters and reflectors of 
energy, emitting and reflecting energy uniformly over their 
entire area.  

 

• Assumption #2: an equilibrium solution can be reached; that 
all of the energy in an environment is accounted for, through 
absorption and reflection. 

 

• Also viewpoint independent: the solution will be the same 
regardless of the viewpoint of the image.  

 

 

 



The Radiosity Equation 

• The "radiosity equation" describes the amount of energy 
which can be emitted from a surface, as the sum of the 
energy inherent in the surface (a light source, for example) 
and the energy which strikes the surface, being emitted from 
some other surface.  
 

• The energy which leaves a surface (surface "j") and strikes 
another surface (surface "i") is attenuated by two factors:  
– the "form factor" between surfaces "i" and "j", which accounts for the 

physical relationship between the two surfaces  
 

– the reflectivity of surface "i“, which will absorb a certain percentage 
of light energy which strikes the surface.  

 



The Radiosity Equation 

 ijjiii FBEB 

Surface i 

Surface j 

Radiosity of surface i 

Emissivity of surface i 

Reflectivity of surface i 

Radiosity of surface j 

Form Factor of 

surface j relative to 

surface i 

accounts for the 

physical 

relationship 

between the two 

surfaces 
will absorb a certain 

percentage of light 

energy which strikes 

the surface 



The Radiosity Equation 

 ijjiii FBEB 

Surface i 

Surface j 

Energy emitted by surface i 



The Radiosity Equation 

 ijjiii FBEB 

Surface i 

Surface j 

Energy reaching surface i from other surfaces 



The Radiosity Equation 

 ijjiii FBEB 

Surface i 

Surface j 

Energy reflected by surface i 



Radiosity 

• Classic radiosity = finite element method 

 

• Assumptions 
– Diffuse reflectance 

– Usually polygonal surfaces 

 

• Advantages 
– Soft shadows and indirect lighting 

– View independent solution 

– Precompute for a set of light sources 

– Useful for walkthroughs 



Classic Radiosity Algorithm 

Mesh Surfaces into Elements 

Compute Form Factors 

Between Elements 

Solve Linear System 

for Radiosities 

Reconstruct and 

Display Solution 



Classic Radiosity Algorithm 

Mesh Surfaces into Elements 

Compute Form Factors 

Between Elements 

Solve Linear System 

for Radiosities 

Reconstruct and 

Display Solution 



Surface i 

Surface j 

It is a purely geometric relationship,  

independent of viewpoint or surface attributes 

The Form Factor:  
 

The fraction of energy leaving one surface 

that reaches another surface 



Surface i 

Surface j 

jdA

idA
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i r

2
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r
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
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differential area of 

surface i, j 

vector from dAi to dAj 

angle between 

Normali and r 

angle between 

Normalj and r 

Between differential areas, the form factor 

equals: 
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Between differential areas, the form factor equals: 

The overall form factor between 

i and j is found by integrating 
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ji

i
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F
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2
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
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Next Step:  
Learn ways of computing form factors 

• Recall the Radiosity Equation: 

 

 

 

 

• The Fij are the form factors 

 

• Form factors independent of radiosities 
(depend only on scene geometry) 

 ijjiii FBEB 



Form Factors in (More) Detail 

ji

A A

ij

ji

i

ij dAdAV
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F
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where Vij is the visibility (0 or 1) 
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We have two integrals to compute: 

Area integral 

over surface i 

 

ijij

ji

AAi

ij dAdAV
rA

F

ji

2

coscos1






Area integral 

over surface j 

 

Surface i 

Surface j 

jdA

idA

j

i r



The Nusselt Analog  

• Differentiation of the basic form factor equation is 
difficult even for simple surfaces!  
 

• Nusselt developed a geometric analog which allows 
the simple and accurate calculation of the form 
factor between a surface and a point on a second 
surface. 

 



The Nusselt Analog  

• The "Nusselt analog" involves placing a 
hemispherical projection body, with unit radius, at a 
point on a surface. 
 

• The second surface is spherically projected onto the 
projection body, then cylindrically projected onto the 
base of the hemisphere. 
 

• The form factor is, then, the area projected on the 
base of the hemisphere divided by the area of the 
base of the hemisphere.  



Numerical Integration: 
The Nusselt Analog 

This gives the form factor FdAiAj 

 

dAi 

Aj 



The Nusselt Analog 

r qj 

area Aj 

sphere projection Aj cos qj/r
2
 

qi 

second projection Aj cos qj cos qi /r
2 

unit circle area p  

1. Project Aj along its normal: 

Aj cos qj  

2. Project result on sphere: 

Aj cos qj / r
2 

3. Project result on unit circle: 

Aj cos qj cos qi /r
2 

4. Divide by unit circle area: 

Aj cos qj cos qi / pr2 

5. Integrate for all points on Aj: 

jij

ji

A

AdA dAV
r

F

j

ji 2

coscos








Method 1: Hemicube 

• Approximation of Nusselt’s analog between a 
point dAi  and a polygon Aj 

Infinitesimal 

Area (dAi) 

Polygonal 

Area (Aj) 



Hemicube 

• For convenience, a cube 1 unit high with a top 
face 2 x 2 is used. Side faces are 2 wide by 1 
high. 

 

• Decide on a resolution for the cube.  
Say 512 by 512 for the top.  



The Hemicube In Action  



The Hemicube In Action  



The Hemicube In Action  

• This illustration 
demonstrates the 
calculation of form 
factors between a 
particular surface on 
the wall of a room and 
several surfaces of 
objects in the room.  



Compute the form factors from a point on a 
surface to all other surfaces by: 

• Projecting all other surfaces 
onto the hemicube 

 

• Storing, at each discrete 
area, the identifying index 
of the surface that is closest 
to the point.  



Discrete areas with the 

indices of the surfaces 

which are ultimately visible 

to the point. 

From there the form factors 

between the point and the 

surfaces are calculated. 

For greater accuracy, a large 
surface would typically be 
broken into a set of small 
surfaces before any form 
factor calculation is 
performed.  



Hemicube Method 

1. Scan convert all scene objects 
onto hemicube’s 5 faces 

2. Use Z buffer to determine 
visibility term 

3. Sum up the delta form factors 
of the hemicube cells covered 
by scanned objects 

4. Gives form factors from 
hemicube’s base to all 
elements,  
i.e. FdAiAj for given i and all j  



Hemicube Algorithms 

Advantages 
+ First practical method 
+ Use existing rendering systems; Hardware 
+ Computes row of form factors in O(n) 
 
Disadvantages 
- Computes differential-finite form factor 
- Aliasing errors due to sampling 
 Randomly rotate/shear hemicube 

- Proximity errors 
- Visibility errors 
- Expensive to compute a single form factor 

 



Method 2: Area Sampling 

Aj 

dAi 

dAj 

Subdivide Aj into small pieces dAj 

For all dAj 

 cast ray dAj-dAj to determine Vij 

 if visible 

      compute FdAidAj 

 

 

 

                       sum up 

                FdAiAj += FdAidAj 

 

We have now FdAiAj 

ray 

jij

ji

dAdA dAV
r

F
ji 2

coscos








Summary 

• Several ways to find form factors 

 

• Hemicube was original method 

+ Hardware acceleration 

+ Gives FdAiAj  for all j in one pass  

- Aliasing 

 

• Area sampling methods now preferred 
  Slower than hemicube 
  As accurate as desired since adaptive 



Next 

• We have the form factors 

• How do we find the radiosity solution 
for the scene? 

– The "Full Matrix" Radiosity Algorithm  

– Gathering & Shooting 

– Progressive Radiosity 

• Meshing 



Radiosity Matrix 
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Radiosity Matrix 

• The "full matrix" radiosity solution calculates the form 
factors between each pair of surfaces in the environment, 
then forms a series of simultaneous linear equations.  

 

 

 

 

 

 

• This matrix equation is solved for the "B" values, which can 
be used as the final intensity (or color) value of each surface.  
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Radiosity Matrix 

• This method produces a complete solution, at the substantial 
cost of  
– first calculating form factors between each pair of surfaces  
– and then the solution of the matrix equation.  

 
• This leads to substantial costs not only in computation time 

but in storage.  



Next 

• We have the form factors 

• How do we find the radiosity solution 
for the scene? 

– The "Full Matrix" Radiosity Algorithm  

– Gathering & Shooting 

– Progressive Radiosity 

• Meshing 



Solve [F][B] = [E] 

• Direct methods: O(n3) 
 
– Gaussian elimination 

• Goral, Torrance, Greenberg, Battaile, 1984 
 

• Iterative methods: O(n2) 
 

Energy conservation 
¨diagonally dominant ¨  iteration converges 
 

– Gauss-Seidel, Jacobi: Gathering 
• Nishita, Nakamae, 1985 
• Cohen, Greenberg, 1985 

 

– Southwell: Shooting 
• Cohen, Chen, Wallace, Greenberg, 1988 

 



Gathering 

• In a sense, the light 
leaving patch i is 
determined by 
gathering in the light 
from the rest of the 
environment 
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Gathering 

• Gathering light through a 
hemi-cube allows one 
patch radiosity to be 
updated. 

 

 

 
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Gathering 



Successive Approximation 



Shooting 

• Shooting light through a 
single hemi-cube allows 
the whole environment's 
radiosity values to be 
updated simultaneously. 

 

 
 jijijj EBBB 

j

iij

ji
A

AF
F 

For all j 

where 



Shooting 



Progressive Radiosity 



Next 

• We have the form factors 

• How do we find the radiosity solution 
for the scene? 

– The "Full Matrix" Radiosity Algorithm  

– Gathering & Shooting 

– Progressive Radiosity 

• Meshing 



Accuracy 



Artifacts 



Increasing Resolution 



Adaptive Meshing 



Some Radiosity Results 



The Cornell Box 

• This is the original Cornell box, as 
simulated by Cindy M. Goral, 
Kenneth E. Torrance, and Donald 
P. Greenberg for the 1984 paper 
Modeling the interaction of Light 
Between Diffuse Surfaces, 
Computer Graphics (SIGGRAPH 
'84 Proceedings), Vol. 18, No. 3, 
July 1984, pp. 213-222. 
 

• Because form factors were 
computed analytically, no 
occluding objects were included 
inside the box.  



The Cornell Box 

• This simulation of the Cornell box 
was done by Michael F. Cohen 
and Donald P. Greenberg for the 
1985 paper The Hemi-Cube, A 
Radiosity Solution for Complex 
Environments, Vol. 19, No. 3, July 
1985, pp. 31-40.  
 

• The hemi-cube allowed form 
factors to be calculated using 
scan conversion algorithms 
(which were available in 
hardware), and made it possible 
to calculate shadows from 
occluding objects.  











Discontinuity Meshing  

• Dani Lischinski, Filippo Tampieri 
and Donald P. Greenberg created 
this image for the 1992 paper 
Discontinuity Meshing for 
Accurate Radiosity.  
 

• It depicts a scene that represents 
a pathological case for traditional 
radiosity images, many small 
shadow casting details.  
 

• Notice, in particular, the shadows 
cast by the windows, and the 
slats in the chair.  





Opera Lighting  

• This scene from La Boheme 
demonstrates the use of focused 
lighting and angular projection of 
predistorted images for the 
background.  

 

• It was rendered by Julie O'B. 
Dorsey, Francois X. Sillion, and 
Donald P. Greenberg for the 1991 
paper Design and Simulation of 
Opera Lighting and Projection 
Effects.  





Radiosity Factory  

• These two images were rendered by 
Michael F. Cohen, Shenchang Eric 
Chen, John R. Wallace and Donald P. 
Greenberg for the 1988 paper A 
Progressive Refinement Approach to 
Fast Radiosity Image Generation.  
 

• The factory model contains 30,000 
patches, and was the most complex 
radiosity solution computed at that 
time. 
 

• The radiosity solution took 
approximately 5 hours for 2,000 
shots, and the image generation 
required 190 hours; each on a 
VAX8700.  





Museum  

• Most of the illumination that comes into 
this simulated museum arrives via the 
baffles on the ceiling.  
 

• As the progressive radiosity solution 
executed, users could witness each of the 
baffles being illuminated from above, and 
then reflecting some of this light to the 
bottom of an adjacent baffle.  
 

• A portion of this reflected light was 
eventually bounced down into the room.  
 

• The image appeared on the proceedings 
cover of SIGGRAPH 1988.  
 
















