
Global Illumination and Radiosity

CS434

Daniel G. Aliaga

Department of Computer Science

Purdue University

Recall: Lighting and Shading

• Light sources
– Point light

• Models an omnidirectional light source (e.g., a bulb)

– Directional light

• Models an omnidirectional light source at infinity

– Spot light

• Models a point light with direction

• Light model
– Ambient light

– Diffuse reflection

– Specular reflection

Recall: Lighting and Shading

• Diffuse reflection

– Lambertian model

Recall: Lighting and Shading

• Specular reflection

– Phong model

Recall: Lighting and Shading

• Well….there is much more

For example…

• Reflection -> Bidirectional Reflectance Distribution
Functions (BRDF)

• Diffuse, Specular -> Diffuse Interreflection, Specular
Interreflection

• Color bleeding

• Transparency, Refraction

• Scattering

– Subsurface scattering

– Through participating media

• And more!

Illumination Models

• So far, you considered mostly local (direct)
illumination

– Light directly from light sources to surface

– No shadows (actually is a global effect)

• Global (indirect) illumination: multiple
bounces of light

– Hard and soft shadows

– Reflections/refractions (you kinda saw already)

– Diffuse and specular interreflections

Welcome to Global Illumination

• Direct illumination + indirect illumination; e.g.

– Direct = reflections, refractions, shadows, …

– Indirect = diffuse and specular inter-reflection, …

direct illumination

with global illumination

only diffuse inter-reflection

Global Illumination

• Direct illumination + indirect illumination; e.g.

– Direct = reflections, refractions, shadows, …

– Indirect = diffuse and specular inter-reflection, …

Reflectance Equation

i r

x

(,) (,) (,) (, ,)()r r e r i i i r iL x L x L x f x n      

Reflected Light

(Output Image)

Emission Incident

Light (from

light source)

BRDF Cosine of

Incident angle

[Slides with help from Pat Hanrahan and Henrik Jensen]

Reflectance Equation

i r

x

(,) (,) (,) (, ,)()r r e r i i i r iL x L x L x f x n      
Reflected Light

(Output Image)

Emission Incident

Light (from

light source)

BRDF Cosine of

Incident angle

Sum over all light sources

Reflectance Equation

i r

x

(,) (,) (,) (, ,) cosr r e r i i i r iiL x L x L x df x     


  
Reflected Light

(Output Image)

Emission Incident

Light (from

light source)

BRDF Cosine of

Incident angle

Replace sum with integral

id

Reflectance Equation

i r

x

(,) (,) (,) (, ,) cosr r e r i i i r iiL x L x L x df x     


  

id

The Challenge

• Computing reflectance equation requires
knowing the incoming radiance from surfaces

• …But determining incoming radiance requires
knowing the reflected radiance from surfaces

(,) (,) (,) (, ,) cosr r e r i i i r iiL x L x L x f x d      


  

Global Illumination

i r

x

(,) (,) (, ,) cos(,)r r e r i r ir iiL x dL x L x f x     


   
Reflected Light

(Output Image)

Emission Reflected

Light (from

prev surface)

BRDF Cosine of

Incident angle

id

Surfaces (interreflection)

dA

x

Rendering Equation

i r

x

(,) (, ,) c(,) (,) ose r i rr r i ir iL x L xL x f x d    


   
Reflected Light

(Output Image)

Emission Reflected

Light

BRDF Cosine of

Incident angle

id

Surfaces (interreflection)

dA

x

UNKNOWN UNKNOWN KNOWN KNOWN KNOWN

Rendering Equation (Kajiya 1986)

Rendering Equation as Integral Equation

Reflected Light

(Output Image)

Emission Reflected

Light

BRDF Cosine of

Incident angle

UNKNOWN UNKNOWN KNOWN KNOWN KNOWN

() ()() (,)l u e u K u dvl v v  

Is a Fredholm Integral Equation of second kind

[extensively studied numerically] with canonical form

(,) (, ,) c(,) (,) ose r i rr r i ir iL x L xL x f x d    


   

Kernel of equation

Linear Operator Theory 101

Linear operators act on functions like matrices
act on vectors or discrete representations

Basic linearity relations hold

(e.g., integration and differentiation)

 () ()h u M f u M is a linear operator.

f and h are functions of u

     M af bg a M f b M g   a and b are

scalars

f and g are

functions

 

 

() (,) ()

() ()

K f u k u v f v dv

f
D f u u

u









Linear Operator Equation

() ()() (,)l u e u K u dvl v v  
Kernel of equation

L E KL 
which is effectively a simple matrix equation (or system of

simultaneous linear equations) where

 L, E are vectors,

 K is the light transport matrix (more on this later!)

Solving the Rendering Equation
(=how to compute L?)

• In general, too hard for analytic solution

• But there are approximations and some nice
observations…

Solving the Rendering Equation
(=how to compute L?)

L E KL 

IL K EL 
()I K EL 

1()I KL E 
(using Binomial Theorem)

2 3(...)I KL K K E    
2 3 ...E KE K E K EL     

where term n corresponds to n-th bounces of light

Ray Tracing

2 3 ...E KE K E K EL     

Emission directly

From light sources

Direct Illumination

on surfaces

Global Illumination

(One bounce indirect)

[Mirrors, Refraction]

(Two bounce indirect)

[Caustics, etc…]

Ray Tracing

2 3 ...K EE K K EEL   

Emission directly

From light sources

Direct Illumination

on surfaces

Global Illumination

(One bounce indirect)

[Mirrors, Refraction]

(Two bounce indirect)

[Caustics, etc…]

OpenGL

Shading

Radiosity

• Radiosity, inspired by ideas from heat transfer,
is an application of a finite element method to
solving the rendering equation for scenes with
purely diffuse surfaces

(rendering equation)

[Radiosity slides heavily based on Dr.
Mario Costa Sousa, Dept. of of
CS, U. Of Calgary]

Radiosity

• Calculating the overall light propagation
within a scene, for short global illumination is
a very difficult problem.

• With a standard ray tracing algorithm, this is a
very time consuming task, since a huge
number of rays have to be shot.

Radiosity

• For this reason, the radiosity method was
invented.

• The main idea of the method is

to store illumination values on the surfaces of
the objects, as the light is propagated starting
at the light sources.

Radiosity

• Equation:

(more details on the board…)

Ray Tracing

Radiosity

Diffuse Interreflection

(radiosity method)

Diffuse Interreflection

• Surface = "diffuse reflector"
of light energy,

• means: any light energy
which strikes the surface

will be reflected in all
directions,

• dependent only on the
angle between the

surface's normal and the
incoming light vector

(Lambert's law).

Diffuse Interreflection

• The reflected light energy
often is colored, to some

small extent, by the color of
the surface from which it

was reflected.

• This reflection of light
energy in an environment
produces a phenomenon

known as "color bleeding,"
where a brightly colored

surface's color will "bleed"
onto adjacent surfaces.

Diffuse Interreflection

• The reflected light energy
often is colored, to some

small extent, by the color of
the surface from which it

was reflected.

“Color bleeding”, as both

the red and blue walls
"bleed" their color onto
the white walls, ceiling

and floor.

Radiosity (Thermal Heat Transfer)

• The "radiosity" method has its basis in the field of
thermal heat transfer.

• Heat transfer theory describes radiation as the
transfer of energy from a surface when that surface
has been thermally excited.

• This encompasses both surfaces which are basic
emitters of energy, as with light sources, and surfaces
which receive energy from other surfaces and thus
have energy to transfer.

• This "thermal radiation" theory can be used to
describe the transfer of many kinds of energy
between surfaces, including light energy.

Radiosity (Computer Graphics)

• Assumption #1: surfaces are diffuse emitters and reflectors of
energy, emitting and reflecting energy uniformly over their
entire area.

• Assumption #2: an equilibrium solution can be reached; that
all of the energy in an environment is accounted for, through
absorption and reflection.

• Also viewpoint independent: the solution will be the same
regardless of the viewpoint of the image.

The Radiosity Equation

• The "radiosity equation" describes the amount of energy
which can be emitted from a surface, as the sum of the
energy inherent in the surface (a light source, for example)
and the energy which strikes the surface, being emitted from
some other surface.

• The energy which leaves a surface (surface "j") and strikes
another surface (surface "i") is attenuated by two factors:
– the "form factor" between surfaces "i" and "j", which accounts for the

physical relationship between the two surfaces

– the reflectivity of surface "i“, which will absorb a certain percentage
of light energy which strikes the surface.

The Radiosity Equation

 ijjiii FBEB 

Surface i

Surface j

Radiosity of surface i

Emissivity of surface i

Reflectivity of surface i

Radiosity of surface j

Form Factor of

surface j relative to

surface i

accounts for the

physical

relationship

between the two

surfaces
will absorb a certain

percentage of light

energy which strikes

the surface

The Radiosity Equation

 ijjiii FBEB 

Surface i

Surface j

Energy emitted by surface i

The Radiosity Equation

 ijjiii FBEB 

Surface i

Surface j

Energy reaching surface i from other surfaces

The Radiosity Equation

 ijjiii FBEB 

Surface i

Surface j

Energy reflected by surface i

Radiosity

• Classic radiosity = finite element method

• Assumptions
– Diffuse reflectance

– Usually polygonal surfaces

• Advantages
– Soft shadows and indirect lighting

– View independent solution

– Precompute for a set of light sources

– Useful for walkthroughs

Classic Radiosity Algorithm

Mesh Surfaces into Elements

Compute Form Factors

Between Elements

Solve Linear System

for Radiosities

Reconstruct and

Display Solution

Classic Radiosity Algorithm

Mesh Surfaces into Elements

Compute Form Factors

Between Elements

Solve Linear System

for Radiosities

Reconstruct and

Display Solution

Surface i

Surface j

It is a purely geometric relationship,

independent of viewpoint or surface attributes

The Form Factor:

The fraction of energy leaving one surface

that reaches another surface

Surface i

Surface j

jdA

idA

j

i r

2

coscos

r
dAFdA

ji
ji






differential area of

surface i, j

vector from dAi to dAj

angle between

Normali and r

angle between

Normalj and r

Between differential areas, the form factor

equals:

Surface i

Surface j

jdA

idA

j

i r

2

coscos

r
dAFdA

ji

jj






Between differential areas, the form factor equals:

The overall form factor between

i and j is found by integrating

ji

A A

ji

i

ij dAdA
rA

F

i j

 
2

coscos1





Next Step:
Learn ways of computing form factors

• Recall the Radiosity Equation:

• The Fij are the form factors

• Form factors independent of radiosities
(depend only on scene geometry)

 ijjiii FBEB 

Form Factors in (More) Detail

ji

A A

ij

ji

i

ij dAdAV
rA

F

i j

 
2

coscos1





where Vij is the visibility (0 or 1)

ji

A A

ji

i

ij dAdA
rA

F

i j

 
2

coscos1





We have two integrals to compute:

Area integral

over surface i

ijij

ji

AAi

ij dAdAV
rA

F

ji

2

coscos1






Area integral

over surface j

Surface i

Surface j

jdA

idA

j

i r

The Nusselt Analog

• Differentiation of the basic form factor equation is
difficult even for simple surfaces!

• Nusselt developed a geometric analog which allows
the simple and accurate calculation of the form
factor between a surface and a point on a second
surface.

The Nusselt Analog

• The "Nusselt analog" involves placing a
hemispherical projection body, with unit radius, at a
point on a surface.

• The second surface is spherically projected onto the
projection body, then cylindrically projected onto the
base of the hemisphere.

• The form factor is, then, the area projected on the
base of the hemisphere divided by the area of the
base of the hemisphere.

Numerical Integration:
The Nusselt Analog

This gives the form factor FdAiAj

dAi

Aj

The Nusselt Analog

r qj

area Aj

sphere projection Aj cos qj/r
2

qi

second projection Aj cos qj cos qi /r
2

unit circle area p

1. Project Aj along its normal:

Aj cos qj

2. Project result on sphere:

Aj cos qj / r
2

3. Project result on unit circle:

Aj cos qj cos qi /r
2

4. Divide by unit circle area:

Aj cos qj cos qi / pr2

5. Integrate for all points on Aj:

jij

ji

A

AdA dAV
r

F

j

ji 2

coscos






Method 1: Hemicube

• Approximation of Nusselt’s analog between a
point dAi and a polygon Aj

Infinitesimal

Area (dAi)

Polygonal

Area (Aj)

Hemicube

• For convenience, a cube 1 unit high with a top
face 2 x 2 is used. Side faces are 2 wide by 1
high.

• Decide on a resolution for the cube.
Say 512 by 512 for the top.

The Hemicube In Action

The Hemicube In Action

The Hemicube In Action

• This illustration
demonstrates the
calculation of form
factors between a
particular surface on
the wall of a room and
several surfaces of
objects in the room.

Compute the form factors from a point on a
surface to all other surfaces by:

• Projecting all other surfaces
onto the hemicube

• Storing, at each discrete
area, the identifying index
of the surface that is closest
to the point.

Discrete areas with the

indices of the surfaces

which are ultimately visible

to the point.

From there the form factors

between the point and the

surfaces are calculated.

For greater accuracy, a large
surface would typically be
broken into a set of small
surfaces before any form
factor calculation is
performed.

Hemicube Method

1. Scan convert all scene objects
onto hemicube’s 5 faces

2. Use Z buffer to determine
visibility term

3. Sum up the delta form factors
of the hemicube cells covered
by scanned objects

4. Gives form factors from
hemicube’s base to all
elements,
i.e. FdAiAj for given i and all j

Hemicube Algorithms

Advantages
+ First practical method
+ Use existing rendering systems; Hardware
+ Computes row of form factors in O(n)

Disadvantages
- Computes differential-finite form factor
- Aliasing errors due to sampling
 Randomly rotate/shear hemicube

- Proximity errors
- Visibility errors
- Expensive to compute a single form factor

Method 2: Area Sampling

Aj

dAi

dAj

Subdivide Aj into small pieces dAj

For all dAj

 cast ray dAj-dAj to determine Vij

 if visible

 compute FdAidAj

 sum up

 FdAiAj += FdAidAj

We have now FdAiAj

ray

jij

ji

dAdA dAV
r

F
ji 2

coscos






Summary

• Several ways to find form factors

• Hemicube was original method

+ Hardware acceleration

+ Gives FdAiAj for all j in one pass

- Aliasing

• Area sampling methods now preferred
  Slower than hemicube
  As accurate as desired since adaptive

Next

• We have the form factors

• How do we find the radiosity solution
for the scene?

– The "Full Matrix" Radiosity Algorithm

– Gathering & Shooting

– Progressive Radiosity

• Meshing

Radiosity Matrix





n

j

jijiii BFEB
1

































































nnnnnnnnn

n

n

E

E

E

B

B

B

FFF

FFF

FFF











2

1

2

1

21

22222212

11121111

1

1

1







i

n

j

jijii EBFB  
1



Ei

Bi

Radiosity Matrix

• The "full matrix" radiosity solution calculates the form
factors between each pair of surfaces in the environment,
then forms a series of simultaneous linear equations.

• This matrix equation is solved for the "B" values, which can
be used as the final intensity (or color) value of each surface.































































nnnnnnnnn

n

n

E

E

E

B

B

B

FFF

FFF

FFF











2

1

2

1

21

22222212

11121111

1

1

1







Radiosity Matrix

• This method produces a complete solution, at the substantial
cost of
– first calculating form factors between each pair of surfaces
– and then the solution of the matrix equation.

• This leads to substantial costs not only in computation time

but in storage.

Next

• We have the form factors

• How do we find the radiosity solution
for the scene?

– The "Full Matrix" Radiosity Algorithm

– Gathering & Shooting

– Progressive Radiosity

• Meshing

Solve [F][B] = [E]

• Direct methods: O(n3)

– Gaussian elimination

• Goral, Torrance, Greenberg, Battaile, 1984

• Iterative methods: O(n2)

Energy conservation
¨diagonally dominant ¨  iteration converges

– Gauss-Seidel, Jacobi: Gathering
• Nishita, Nakamae, 1985
• Cohen, Greenberg, 1985

– Southwell: Shooting
• Cohen, Chen, Wallace, Greenberg, 1988

Gathering

• In a sense, the light
leaving patch i is
determined by
gathering in the light
from the rest of the
environment





n

j

ijjiii FBEB
1



ijjiji FBBtodueB 

 



n

j

jijiii BFEB
1



Gathering

• Gathering light through a
hemi-cube allows one
patch radiosity to be
updated.

 



n

j

jijiii BFEB
1



Gathering

Successive Approximation

Shooting

• Shooting light through a
single hemi-cube allows
the whole environment's
radiosity values to be
updated simultaneously.

 jijijj EBBB 

j

iij

ji
A

AF
F 

For all j

where

Shooting

Progressive Radiosity

Next

• We have the form factors

• How do we find the radiosity solution
for the scene?

– The "Full Matrix" Radiosity Algorithm

– Gathering & Shooting

– Progressive Radiosity

• Meshing

Accuracy

Artifacts

Increasing Resolution

Adaptive Meshing

Some Radiosity Results

The Cornell Box

• This is the original Cornell box, as
simulated by Cindy M. Goral,
Kenneth E. Torrance, and Donald
P. Greenberg for the 1984 paper
Modeling the interaction of Light
Between Diffuse Surfaces,
Computer Graphics (SIGGRAPH
'84 Proceedings), Vol. 18, No. 3,
July 1984, pp. 213-222.

• Because form factors were
computed analytically, no
occluding objects were included
inside the box.

The Cornell Box

• This simulation of the Cornell box
was done by Michael F. Cohen
and Donald P. Greenberg for the
1985 paper The Hemi-Cube, A
Radiosity Solution for Complex
Environments, Vol. 19, No. 3, July
1985, pp. 31-40.

• The hemi-cube allowed form
factors to be calculated using
scan conversion algorithms
(which were available in
hardware), and made it possible
to calculate shadows from
occluding objects.

Discontinuity Meshing

• Dani Lischinski, Filippo Tampieri
and Donald P. Greenberg created
this image for the 1992 paper
Discontinuity Meshing for
Accurate Radiosity.

• It depicts a scene that represents
a pathological case for traditional
radiosity images, many small
shadow casting details.

• Notice, in particular, the shadows
cast by the windows, and the
slats in the chair.

Opera Lighting

• This scene from La Boheme
demonstrates the use of focused
lighting and angular projection of
predistorted images for the
background.

• It was rendered by Julie O'B.
Dorsey, Francois X. Sillion, and
Donald P. Greenberg for the 1991
paper Design and Simulation of
Opera Lighting and Projection
Effects.

Radiosity Factory

• These two images were rendered by
Michael F. Cohen, Shenchang Eric
Chen, John R. Wallace and Donald P.
Greenberg for the 1988 paper A
Progressive Refinement Approach to
Fast Radiosity Image Generation.

• The factory model contains 30,000
patches, and was the most complex
radiosity solution computed at that
time.

• The radiosity solution took
approximately 5 hours for 2,000
shots, and the image generation
required 190 hours; each on a
VAX8700.

Museum

• Most of the illumination that comes into
this simulated museum arrives via the
baffles on the ceiling.

• As the progressive radiosity solution
executed, users could witness each of the
baffles being illuminated from above, and
then reflecting some of this light to the
bottom of an adjacent baffle.

• A portion of this reflected light was
eventually bounced down into the room.

• The image appeared on the proceedings
cover of SIGGRAPH 1988.

