
Path Tracing: Just a Quick View… 

CS434 
 

Daniel G. Aliaga 
Department of Computer Science 

Purdue University 

 



Henrik Wann Jensen 





Path Tracing 

• Trace light transport paths to determine pixel 
intensities 

• A path of length k is a sequence of vertices, 
<x0,…,xk-1> where every xi and xi+1 is mutually 
visible, and x0 is on a light 

• Many such paths! 

• We are most interested in “important” paths! 

Slides based on those of Yu-Chi Lai, University of Wisconsin 



Important Paths 

• Consider only paths that go from a light 
source to the eye 
– Other useful paths are sub-paths of these 

– Paths that miss the image plane contribute 
nothing, so are not important 

• Paths that carry more energy are more 
important 

• Why is that? 



02/12/03 © 2003 University of Wisconsin 

Sampling Important Paths 

• Importance sampling 

– Sample paths of various lengths 

– Weight their contribution to pixel intensity by 
their importance 

• How are these paths found? 

 



Naïve Path Tracing (version 1) 

• Start at light 

• Build a path by randomly choosing a direction 
at each bounce, and adding point hit by ray in 
that direction 

• Join last point to eye 

• What is the basic problem? What paths does 
it get? 

 



Naïve Path Tracing (version 2) 

• Start at eye 

• Build a path by randomly choosing a direction 
at each bounce, and adding point hit by ray in 
that direction 

• (optional) Join last point to light 

• What is the basic problem? What paths does 
it get? 

 



Pure Bi-Directional: Approach 

• Build a path by working from the eye and the light and join in the 
middle 

• Don’t just look at overall path, also weigh contributions from all sub-
paths: 

Pixel x0 

x1 

x2 

x3 

x4 Light 



Pure Bi-Directional: Analysis 

• Advantages: 

– Each ray cast contributes to many paths 

– Building from both ends can catch difficult cases 
• All specular paths 

• Caustics 

– Extends to participating media (anisotropic, 
heterogeneous) 

• Disadvantages: 

– Still using lots of effort to catch slow varying diffuse 
components 

– May not sample difficult to find paths 



Metropolis Light Transport: 
Approach 

• Other algorithms generate independent samples 

– Easy to control bias 

• Metropolis algorithms generate a sequence of paths 
where each path can depend on the previous one 

• For each sample: 

– Propose a new candidate depending on the previous 
sample 

– Choose to accept or reject according to a computed 
probability (if reject, re-use the old sample) 

• Can prove the estimates for pixel intensities are 
correct 



Metropolis Proposal Strategies 

• Task: Given the previous sample, generate a 
new one 

– Should be very different, but should also be good 

• Methods: 

– Randomly chop out some part of the path and 
replace it with a new piece 

– Randomly perturb a vertex on the path 

– Less randomly change the pixel that is affected 

– Other choices possible 



Light Through Ripples 

http://graphics.stanford.edu/papers/metro/ 



Light Through Ripples (Path tracing) 

http://graphics.stanford.edu/papers/metro/ 



Bidirectional Path Tracing 



Metropolis Light Transport 



Metropolis: Analysis 

• Easy to implement basic algorithm 

– Some of the details for good results are difficult 

– Easy to parallelize 

• Can do difficult scenarios: 

– Light through a crack, almost impossible any other way 

– Caustics from light reflecting off the bottom of a wavy pool 

• But, still computes diffuse illumination on a per point 
basis 


