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Figure 1: Four inter-reflecting teapots, with 12 second 
order reflections. 720x512 pixels (all images), 40 fps. 

Figure 2:  Reflection attenuation with distance and 
Fresnel effects, 66 fps. 

  

Figure 3: Intersecting diffuse and reflective bunnies; reflection rendered with depth map impostor, 16 fps. 
 

Abstract 

We present a technique for rendering reflections on complex reflectors at interactive rates based on approximating the 
geometry of the reflected scene with impostors. The reflections correctly convey the distance to the reflector surface and 
provide motion parallax. Two types of impostors are adapted to the reflections framework: billboards and depth maps. 
Billboards remove most of the problems of environment mapped reflections at only a small additional cost. Second order 
reflections are supported by introducing reflective billboards. Higher quality reflections that provide motion parallax within 
a reflected object are obtained by approximating the reflective geometry with depth maps. The computation of the 
intersection between a reflected ray and a depth map is accelerated by leveraging epipolar constraints. Like environment 
mapping, our technique does not pose any restriction on the geometry of the reflector, supports dynamic scenes, and runs at 
interactive rates with the help of graphics hardware. 

Categories and Subject Descriptors (ACM CCS): I.3.3. [Computer Graphics]—Three-Dimensional Graphics and Realism. 
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1. Introduction 

Reflections are an important effect in computer graphics 
not only because of their intrinsic esthetic value, but also 
because of tangible contributions such as revealing surface 
properties and conveying the relative position of objects. 
The problem of rendering reflections at interactive rates has 
been approached from many directions, but no complete 
solution exists. Rendering reflections implies solving the 
following problems at each pixel:  

1. Computing the intersection between the pixel ray 
and the reflector.  

2. Computing the reflected rays according to reflector 
surface properties.  

3. Tracing each reflected ray into the scene, and 
proceeding recursively if a reflector is hit again.  

4. Antialiasing to account for the non-zero pixel size. 

The method of choice for rendering reflections in 
interactive graphics applications is environment mapping, 
which is simple, versatile, and produces quality reflections 
when the reflected objects are far away from the reflector 
[BN76, GRE86, HS93, VF94]. The success of environment 
mapping can be attributed to employing good approximate 
solutions to problems 1, 2, and 4 enumerated above.  

Problem 1 is solved using the feed-forward graphics 
pipeline: the triangle mesh modeling the reflector surface is 
rasterized, which provides the intersection point at each 
pixel efficiently. Problem 2 is solved by approximating the 
bidirectional reflectance distribution function (BRDF) at 
the intersection point with a single normal. The normal is 
computed by interpolation of vertex normals, or by looking 
it up in a map. The single normal generates a single 
reflected ray. Problem 4 is handled by reducing it from a 
general antialiasing problem of geometry to the tractable 
problem of finding the appropriate level of detail in a 
texture, solved by mip-mapping. 

When the reflected objects are close to the reflector, the 
reflection fails to convey the proximity to the reflector 
surface. When an object is touching the reflector, its 
reflection remains trapped deep inside the reflector. The 
artifact is disturbing, comparable to a shadow disconnected 
from a character that does touch the ground. Moreover, 
environment mapping does not provide motion parallax, 
and does not support higher order reflections. These 
problems are due to the drastic approximation employed to 
solve problem 3: the intersection between a reflected ray 
and the scene is looked up in a cube map using only its 
direction. The reflected scene is assumed to be infinitely far 
away, which allows replacing it with an image. 

We describe a method that alleviates most of the 
disadvantages of environment mapped reflections, but 
maintains its advantages of efficiency and applicability to a 
wide range of reflectors. Our method is based on improving 
the approximation of the reflected scene. A successful such 
approximation has to satisfy two conditions. First, one has 

to be able to compute the approximation quickly in order to 
support dynamic scenes. Second, one has to be able to 
intersect the approximate geometry with an individual ray 
efficiently. This is needed since the coherence of the 
desired view rays is perturbed by complex reflectors. The 
lack of reflected ray coherence prevents one from 
amortizing the cost of the intersection over a neighborhood 
of similar rays, and each ray has to be treated individually. 

We approximate the reflected scene with impostors, term 
coined by Maciel [MS96], and now broadly used to 
designate image-based rendering (IBR) geometry 
approximations for rendering acceleration. We adapt two 
types of impostors to the reflection rendering framework: 
billboards and depth maps. Both types of impostor can be 
constructed efficiently by rendering the geometry they 
replace with the help of graphics hardware. While the 
intersection between a ray and a billboard is inexpensive, 
intersecting a depth map with a ray is more challenging.  

We have devised an algorithm that takes advantage of the 
fact that the depth map was acquired with a planar pinhole 
camera to greatly simplify the general problem of ray 
tracing a triangle mesh. We search for the intersection in 
1D, along the projection of the ray onto the image plane of 
the depth map. We further accelerate the intersection 
computation by pre-simplifying several rotated depth maps. 
This way the projection of the reflected ray always aligns 
with a row in a rotated map, and the number of samples 
considered along a row is bounded. This allows 
implementing the intersection on the GPU with a pixel 
program. For a 256x256 depth map the total construction 
time of the simplified rotated depth map is ~200ms, and 
their aggregate memory cost is ~1MB. 

Our method produces realistic specular reflections at 
interactive rates: the reflections convey proximity to the 
reflector and exhibit motion parallax. We support complex 
reflectors, second order reflections, dynamic scenes, and 
complex reflective surface properties (see Figures 1-3 and 
accompanying video). The current implementation does not 
support self-reflections. Our technique can be readily used 
in most interactive computer graphics applications. 

The remainder of the paper is organized as follows. The 
next section reviews prior work. Sections 3 and 4 describe 
approximating reflected objects with billboards and depth 
maps, respectively. Results and conclusions are given in 
sections 5 and 6. 

2. Prior work 

Image-based rendering 
The IBR approach is to pre-acquire reference reflections 

with a camera or by ray tracing, and then to use them in 
novel views. Light fields [LH96, GGS*96] naturally 
support reflections at no extra cost. Surface light fields 
[Mil98, WAA*00] reduce the size of the ray database using 
the geometry of the reflective surfaces. View dependent 
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texture mapping [DYB98] samples surfaces of limited 
reflectivity from a few viewpoints. Heidrich [Hei99] and 
Cabral [CON99] describe systems that decouple reflector 
properties from illumination. This is achieved with a light 
field that maps incident to reflected rays, and a set of 
radiance environment maps, respectively. Yu describes a 
method for replacing the environment map with a light 
field [YM04c]; the reflected ray is looked up using not only 
its direction but also its origin, for more accurate results. 
Hakura [HAK01] proposes using several reference 
reflection images, each parameterized to best match in 
least-mean-squares sense the true reflection when used as 
an environment map. The method provides good reflections 
nearby the reference viewpoints, but quality degrades for 
large viewpoint translations. A disadvantage common to all 
these techniques is the lack of support for dynamic scenes: 
if the reflecting or reflected objects move, or if the lighting 
conditions change, the reference rays become obsolete. A 
second disadvantage is limited support for highly reflective, 
mirror-like surfaces, which require a high sampling rate 
and generate impractically large ray databases. 

Projection methods 
An elegant approach to rendering reflections is to solve 

the problem of projecting reflected points. Computing the 
image plane projection of a reflected vertex enables 
rendering reflections with the hardware feed-forward 
graphics pipeline. The approach works well for planar 
reflectors, since the projection is trivial [Die96, MB97, 
Bas99]. For curved reflectors there is no closed form 
solution to reflected vertex projection. Hanrahan and 
Mitchell [HM92] describe a search procedure applicable to 
reflective surfaces given by an implicit equation. Ofek and 
Rappoport [OR98] handle triangle mesh reflectors using a 
reflection subdivision accelerated by an explosion map. 
The major disadvantage is inefficiency. The explosion map 
depends on the desired view and thus has to be computed 
for every frame. Complex reflectors generate highly 
complex and expensive explosion maps. 

Ray tracing 
Ray tracing [Whi80, Gla89] is a general technique which 

produces stunning images with complex reflections. The 
challenge is to avoid considering ray-primitive pairs that do 
not yield an intersection. A wide range of acceleration 
schemes have been proposed, and ray tracing has been 
shown to run at interactive rates on shared memory parallel 
computers [Par99], on special hardware [Hal01], on a 
single CPU [Wal01, WSB01, RSH05], and on GPUs 
[PBM*02, CHH02, WSE04]. We compare our method to 
GPU ray tracers in Section 6. In spite of these efforts the 
efficiency advantage of the feed-forward pipeline persists. 

Reflected-scene approximation methods 
The idea of simplifying the reflected scene in order to 

facilitate the intersection with the reflected rays is not new. 
As stated earlier, environment mapping does just that, 
except that the approximation employed is too drastic. 

Lischinski [LR98] proposes a scene representation based 
on layered depth images (LDIs) [SGH98]. Mirror-like 
reflections are supported by ray-tracing the LDIs, but this 
impacts performance considerably. 

The first steps in the direction of our solution are taken 
by Bjorke [Bjo04], who describes rendering reflections in a 
room like environment by replacing the reflected scene 
with a sphere of size comparable to that of the room. A 
pixel shader intersects the reflected ray with the sphere, and 
the intersection point is used as the tip of the direction 
vector used in the environment map lookup. This improves 
the reflection accuracy since the environment is placed at 
an approximately correct distance from the reflector. Few 
environments are spherical, so a box-like proxy should be 
preferred, even at the cost of a slightly less compact 
intersection code. Bjorke’s method is a special case of 
reflected billboard impostors, which offer greater modeling 
flexibility and support second order reflections. 

 An improved reflected scene approximation is achieved 
by using distance impostors [SALP05], which are cube 
maps enhanced with per-texel depth. Reflected or refracted 
rays emanating from the eye or from a point light source 
are intersected with the distance impostor to compute 
localized reflections, refractions, or caustics. The technique 
is efficient and implemented in hardware. The major 
drawback of the technique is the approximate nature of the 
intersection algorithm. An initial guess is constructed and 
then refined iteratively by making severely simplifying 
assumptions. As the authors note, the algorithm converges 
only for scenes that consist of large planar surfaces. For 
such scenes, ray tracing each of the few planar surfaces 
should be preferred not only for improved quality and 
reliability, but also for efficiency. The use of a depth map is 
not warranted when most texels correspond to coplanar 
points. Compared to the distance impostors, our technique 
works with complex depth maps (Figure 3), and our 
algorithm robustly finds a quality approximation for the 
intersection between the reflected ray and the depth map. 

3. Reflected billboards 

The simplest type of impostor is the billboard, a texture 
mapped quad, tailored to the contour of the foreground 
object using the alpha channel. Since Maciel’s 1995 paper, 
researchers have described extensions that include using 
billboards in novel graphics architectures [TK96], caching 
and improving visibility computation for billboards 
[Sch97], transitioning from geometry to impostors [AL98], 
and placing impostors [AL99, DDSD03]. Billboards are 
particularly well suited for rendering reflections. First, the 
alternative of ray tracing the original geometry is very 
costly. This is not the case for impostors that replace 
directly seen geometry, which compete against the ever- 
increasing power of the fixed graphics pipeline. Second, the 
“cardboard cutout” artifact is less noticeable in the case of 
reflected billboards. Although the billboard is close to the 



V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates 

 

©The Eurographics Association and Blackwell Publishing 2006 

 

 

 
Figure 4: Two inter-reflecting teapots and a statue 
placed on a table. The reflection is rendered using 4 
billboards (statue and table for each teapot), 2 
reflective billboards (teapots), and an environment 
map of the room. 33 fps 

 

 
Figure 5: Scene with 9 reflectors that generate 72 
second order reflections. The spheres are modeled with 
triangle meshes. 11 and 6 fps, respectively. 

reflector, it is not necessarily close to the eye. Moreover, 
the distortion produced by the curved reflector hides the 
approximation from the user who has little intuition for the 
exact shape of such reflections. 

When the billboard tightly approximates the geometry it 
replaces (e.g. flat floor, table top, walls, ceiling), the 
placement of the billboard is dictated by the original 

geometry. In this case the same billboard can be used with 
all reflectors in the scene, and it does not need to be re-
rendered when the reflectors or the replaced object move. 
When the billboard replaces an object with non-negligible 
volume, we place the billboard plane through the centroid B 
of the object, and perpendicularly to the line connecting B 
to the centroid of the reflector. The billboard is constructed 
using a camera with a narrow field of view (10o) to avoid 
perspective effects. A different billboard is used for each 
reflector. View changes alone do not require re-rendering 
the billboards, since the billboard is independent of the 
view. A billboard is re-rendered when the object or the 
reflector move or deform, or when the lighting changes. 
This avoids the large memory consumption, the 
preprocessing cost, and the transition problems of pre-
computing a range of billboards in each dimension in 
which the scene changes. 

We support higher order reflections using reflective 
billboards, which are billboards enhanced with per-texel 
normals. The normal at a texel is stored in texture memory. 
When a reflected ray intersects a reflective billboard, a 
tertiary ray is computed using the normal at the intersection 
point, which generates second order reflections (Figure 4). 
Although it is possible to continue the reflection process 
recursively, we find that reflections of order 3 and higher 
are not sufficiently useful to warrant the additional cost. A 
second order reflection is the reflection of an object that 
happens to be a reflector, and is therefore important for 
conveying the relative position of two close-by reflectors, 
the same way first order reflections are important in the 
case of a reflector and a diffuse object. Third and higher 
order reflections are too rare and too complex for users of 
3D graphics applications to derive information from them. 
In real life, the only circumstance when we recall 
encountering such high order reflections is that of parallel 
planar mirrors, which could be supported as a special case. 

3.1.  Rendering algorithm 

Given a scene with D diffuse billboards, R reflective 
billboards, and an environment map EM, the pixel shader 
implements a straight algorithm: 

1. Compute reflected ray r at current pixel. 
2. Intersect r with all other (D+R-1) billboards. 
3. If no intersection return EM(r). 
4. If closest intersection is with diffuse billboard, 

return intersection texel. 
5. If closest intersection is with reflective billboard 

a. Compute tertiary ray rr. 
b. Intersect rr with the D diffuse billboards. 
c. If no intersection return EM(rr) 
d. Else return intersection texel.  

The billboards’ geometry is passed in as a uniform 
parameter. The environment map is looked up whenever a 
ray does not intersect any billboard. The billboard 
intersection takes into account the alpha channel. The cost 
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Figure 6: Reflection discontinuity from floor billboard 
to environment mapping. Red highlight shows 
environment mapping in right image. 

 
Figure 7: The morph corrects the problem. Right 
image shows transition area in green. 

of the algorithm is D+R-1+D=2D+R-1 intersections. For 
Figure 4, Figure 1, and Figure 5 the costs are 2*2+2-1=5, 
1*2+4-1=5 and 1*2+9-1=10 intersections. The number of 
reflections is O(R2), but shader complexity is linear. 

3.2.  Billboard to environment mapping morphing 

So far we have discussed the case of an object that is not 
connected to the environment, such as the table top in 
Figure 4. When a billboard is connected to the distant scene 
rendered by environment mapping, maintaining continuity 
is important. In Figure 6 the floor appears twice, once 
correctly as the reflection of its billboard and once 
incorrectly in the environment map. One solution is to 
employ as many billboards as needed to cover all geometry 
connected to billboards. We prefer the better solution of 
morphing between a billboard and the surrounding 
environment map for a smooth transition (Figure 7).  

In Figure 8, reflector R generates reflected rays r0, r1, and 
re. The center of the environment map is at E. The ground 
is modeled with billboard q0q1. Ray r0 hits the billboard 
quad and it is set to the billboard texel color as before. Ray 
re clears the transition walls of height H and is set by 
environment mapping. Ray r1 hits the transition wall at 
point a and it is replaced with rm, a linear blend between 
rays r1

d and ra. Ray r1
d originates at E and has the direction 

of r1. Ray ra also originates at E but points at intersection 
point a. When the height h of a is 0, the ray is set 
exclusively from the billboard, which ensures continuity. 

When h equals H, the color is computed by environment 
mapping only. Objects A and B are sufficiently far away to 
be environment mapped. In Figure 9 a small ground  

 
Figure 8: Billboard to environment mapping 
morphing. 

Figure 9: Illustration of morphing from billboard to 
environment mapping. The quad used for the ground is 
highlighted with blue. The statues are not modeled with 
billboards and are reflected by environment mapping.  

billboard provides the correct reflection close to the teapot, 
and the morph produces a continuous reflection.  

Whenever possible, the color texture of the billboard is 
stored in the environment map. In Figure 9 the ground does 
not occlude any part of the environment and can be stored 
in the environment map. Referring to Figure 8 again, the 
color of ray r0 is fetched from the environment map along 
the ray from E to the tip of r0. The billboard and the 
transition walls form a box, which is intersected with a ray 
more efficiently than 5 individual quads; the aggregate cost 
is comparable to that of 3 individual quads. 

4. Reflected depth maps 

Billboards provide great reflections in many situations. 
There are however circumstances when higher modeling 
power is needed. One example is when it is important for 
the reflection to show the exact floor or ground footprint of 
the reflected object, which billboards cannot provide. 
Another example is the case of a complex reflected object 
that gets close to the reflector surface in several points (see 
Figure 3): this case over constrains the billboard placement 
problem. A third example is the case of a diffuse object 
intersecting a reflector: the oversimplified intersection 
curve would reveal the flatness of the billboard, and a depth 
map is needed (see right side of Figure 3). 

Modeling and rendering from depth maps [MB95] has 
the advantages of motion parallax within the depth map and 
invariance under rigid body transformation. The first step 
of using depth maps in the context of reflections is trivial: 
depth map impostors are constructed the same way and at 
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the same cost as billboards, the only difference is that the 
texture is extended with a z channel. Reflecting the depth 
map impostor into a complex reflector is more challenging. 
Extending the 3D warping operation to handle reflected 
depth samples cannot be easily done. This would be 
equivalent to the complex problem of projecting reflected 
vertices, problem pursued by the projection reflection 
methods discussed earlier. Instead we have devised a fast 
algorithm for intersecting a depth map with a ray. An 
acceleration data structure is constructed first and is then 
used to find the intersection between a reflected ray and the 
depth map efficiently. 

4.1.  Simplified rotated depth maps 

 
Figure 10: Intersection computed with a 1D search in 
the depth map. The depth stores normalized 1/z. 

Given a reflected ray r and a depth map DM, the goal is 
to find whether and where r intersects DM. In Figure 10 
DM was acquired with a planar pinhole camera pphc, using 
hither and yon planes that encompass the bounding box of 
the original geometry. The image plane was chosen to 
coincide with the yon plane for clarity. The intersection of r 
with DM, if any, has to project on rp, which is the pphc 
projection of r. This constraint is similar to classic epipolar 
geometry constraints from multi-camera systems. The 
reflector and its rays can be seen as a complex camera 
whose rays are projected onto the image plane of pphc. 

One approach for finding the intersection is to walk along 
rp until an intersection is found. In Figure 10, right, the first 
intersection point c is found at cp. This approach is similar 
to inverse warping, a technique for rendering from depth 
images by searching for the color of a desired image pixel 
along an epipolar segment in the reference image 
[McM97]. Although it is just a 1D search, the approach is 
inefficient. For the 256x256 depth map used for the images 
in Figure 3, the average length of rp is 91 texels, and 63 
texels have to be examined on average before an 
intersection is found. 

It is our goal to reduce and bound the number of steps 
along rp. One obvious approach is to simplify the depth 
map. However, it is difficult to bound the number of 
triangles that any rp segment crosses. Moreover, 
intersecting with irregular triangles along rp is expensive. 
Instead, we simplify the depth map on individual rows in 
several rotated domains. A simplified rotated depth map 
(SRDM) is produced for each rotated domain. The angles  

rp rp
j

O O

p

θi  
Figure 11: The ray projection rp is contained in row j 
in the rotated domain θi. 

that define the rotated domains evenly and densely span the 
1D space of slopes in 2D. This way for any rp there is an 
SRDM where rp is almost horizontal (Figure 11). For a 
given ray r, the search is limited to the SRDM i and to its 
row j that contains the projection rp. Given a depth map 
DM of resolution w x w, the desired number n of SRDMs, 
and the maximum number m of depth samples on each 
simplified row, the SRDMs are generated with the 
following algorithm: 

For i = 0 to n-1 
      θi = πi/n 
      For j = 1 to w 
            SRDMij = SimplifyRow(j, DM, θi, m) 

Each row of each SRDM is obtained by simplifying the 
corresponding rotated depth map segment. No rotated depth 
maps are actually computed.  

4.2.  Row simplification algorithm 

 
Figure 12: Row simplification. This row has two scene 
spans. The initial approximation is given by points with 
u coordinates ai. The final approximation is a poly-line 
with 7 points. The initial error at depth sample p is ε. 

 Row j of rotated domain θi is simplified to m points 
using the depth map DM as follows: 

1. Set the depth values of row j from DM. 
2. Compute an initial poly-line approximation of the row 

by approximating each non-background scene span with 
two points (Figure 12). 

3. Refine the poly-line in greedy fashion by splitting the 
worst segment in two, until the number of points reaches m. 

The worst segment is the segment with the largest error. 
The error of a segment is the maximum error over the depth 
samples it covers. The refinement is implemented 
efficiently using a priority queue that stores each segment  
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Figure 13: Diffuse bunny reflections rendered with a 
single depth map impostor. The dynamic intersection 
line (top, 16fps) and motion parallax between (bottom, 
20fps) are handled correctly (also see video). 

together with the row coordinate u where the error is 
largest. The queue is sorted in decreasing segment error 
order. The worst segment is available in constant time and 
it is split at the largest error point. The two new segments 
are inserted into the queue in logarithmic time. The SRDMs 
are constructed on the CPU and are stored on the GPU in 
texture memory as an array of n*w*m 2D points. A point is 
defined by a pair of floats (u, zgl).  

4.3.  Intersection algorithm 

The role of the SRDMs is to provide a pre-simplified 
version of any depth map segment ever needed. Given a 
depth map acquired by pphc and simplified to an array 
SRDMi, the reflection color is computed by a pixel program 
with the following steps: 

1. Compute the reflected ray r at the current pixel. 
2. Clip r with the 6 planes of pphc’s frustum, and if the 

entire ray is discarded go to 7. 
3. Compute rp by projecting the clipped ray onto 

pphc’s image plane. 
4. Find SRDMi where rp is closest to being horizontal, 

and let j be the row that contains rp. 
5. Iterate over the m-1 segments of the poly-line at row 

SRDMij to find the intersection between r and DM. 
6. If an intersection is found, lookup the impostor 

texture at the intersection point. 
7. Else environment map using the direction of r. 

Most of the work is performed by step 5, which requires 
reading 2m floats from texture memory and performs m-1 

2D segment intersections. The SRDMs truthfully 
approximate the depth map even for small m values (8-16), 
so the algorithm produces a quality intersection 
approximation efficiently Figure 13). The SRDMs do not 
need to be recomputed when the reflecting or reflected 
objects move. The DM camera is simply transformed to 
reflect the current position and orientation. Of course, more 
than one DM is needed to capture a reflected object. For the 
scene in Figure 13 a DM of the front of the bunny is needed 
when the two bunnies swap places. 

5. Results 

We have tested our approach on several scenes. The 
scene in Figure 1 uses the Uffizi Gallery environment map 
[Debwww], in which we replaced the original ground 
texels with a black and white checker board to better 
illustrate the quality of the rendered reflections. The ground 
is rendered with a billboard continuous with the 
environment, as described in Section 3.2. Most geometric 
models are courtesy of the Stanford 3D Scanning 
Repository [SSR06]. Our method uses several 
approximations which make it efficient without 
compromising the quality of the reflections. 

5.1.  Performance 

Performance was measured on a 3GB 3.4GHz Pentium 4 
Xeon PC with a Quadro FX 3400 Nvidia graphics card. 

Reflected billboards 

The reflected billboard pixel program can handle up to 17 
intersections in one pass, so D+(R!=0)*(D+R-1) < 18. We 
measured the frame rate dependence on the number of 
reflectors using the scene and view shown in Figure 5, top. 
The ground is modeled with a diffuse billboard connected 
to the environment, and each reflector is modeled with a 
reflective billboard which produces second order 
reflections. Enabling the 9 reflectors one by one produces 
the following frame rates [fps]. 

1 2 3 4 5 6 7 8 9 
166 125 77 66 46 37 25 17 11 

Six inter-reflecting teapots are handled comfortably. The 
limited pixel program length does not become a factor 
since the frame rate decreases before the maximum number 
of instructions is reached. The performance dependence on 
the number of pixels covered by the reflectors was 
measured by varying the resolution of the output image. 
For 4 reflectors (Figure 1), frame rates [fps] are as follows. 

640x480 800x600 960x720 1120x840 1280x960
46 36 31 25 11 

The frame rate for 4 reflectors in the second table is 
lower because the reflectors cover a larger screen area in 
Figure 1 than in  Figure 5, top. The shader is complex so it  
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Figure 14: Study of edge quality as a function of the 
angular increment. From left to right: 20o, 10o, 3o, and 2o.

would pay off to shade only visible reflector fragments. 
This could be done by producing a reflected ray map in a 
first pass, and then shading it in a second pass. 

Reflected depth maps 

For the 256x256 bunny depth map used in Figure 3 and 
Figure 13 we construct n=60 SRDMs (angular increment 
180o/60=3o). The total construction times [ms] for various 
numbers of poly-line vertices m is given below. 

m 8 16 32 64 
c.time 210 300 480 980 

Even if 25% of the original depth samples are kept, the 
pre-processing takes less than a second. In practice we use 
m values between 8 and 16. The 210-300ms construction 
times open the door to building the SRDMs on the fly. This 
is particularly important for applications where several 
viewpoints are needed simultaneously, as for example in 
stereo. The aggregate memory footprint of the SRDMs is 
960KB (60SRDMs x 256rows x 8vertices x 2floats x 
4bytes), about four times the 256KB needed for the color or 
for the depth. The run time performance is also controlled 
by parameter m, which gives the number of iterations in the 
intersection search loop. The pixel program length limit is 
reached for m=16, which is more than enough for our test 
scenes. The SRDMs are stored as textures with 4 float 
channels, which allows fetching two poly-line vertices at a 
time. The frame rate [fps] dependence on m measured for 
the bottom image of Figure 13 is given below. 

m 6 8 12 16 
frame rate 25 20 17 16 

5.2.  Quality 

Quality reflections are obtained with both types of 
impostors. Like environment mapping, our method is 
independent of reflector complexity (Figure 17). 

For depth map impostors, quality is controlled by 
parameters n and m. A finer angular increment reduces the 
approximation error when mapping a ray projection to an 
SRDM row. Good results are obtained for n=60 (3o in 
Figure 14). Parameter n does not affect the run time 
performance, but an n value of 18 (i.e. 10o) would reduce 
the SRDMs construction time to 70ms. We will investigate 
alleviating the edge artifacts for such large angular 

increments. One option is to lookup the two best rows and 
interpolate. A smaller price could be paid for the second 
row if the rows  store additional information to correlate a 
row with its immediate neighbors.  Parameter m controls 
the quality of the depth map approximation. Small m values 
(e.g. 8) produce remarkably good results. This is because 
the simplification occurs along each reflected ray, because 
the simplified depth map is not used for shading, and last 
but not least because the simplification error is small. The 
average relative z error [%] is given below for several m 
values and the same bunny depth map. The average is 
computed over all depth map texels and all SRDMs. 

m 8 10 12 14 16 
relative z error 1.43 0.9 0.7 0.5 0.4 

Our method does not require reflected ray coherence and 
works equally well if the reflected rays are generated by 
vertex normal interpolation, bump mapping, or normal 
mapping. Therefore our method readily supports any 
material developed for environment mapped reflections. 
Moreover, the intersection code can easily provide the 
distance to the impostor, needed to simulate advanced 
effects inaccessible to environment mapping (Figure 15). 

Figure 15: Attenuation with distance (left) and Fresnel 
effects (right) used together in Figure 2. 

Curved reflectors complicate antialising since their 
convex and concave reflective surfaces introduce 
significant local perturbations of the spatial sampling rate. 
Sophisticated ray tracers handle the problem accurately, but 
at great expense. Both types of impostors used by our 
method are texture mapped, which enables antialiasing by 
mip-mapping. As in environment mapping, this 
approximate solution is effective and efficient (Figure 16). 

6. Conclusions and future work 

Rendering reflections by approximating the reflected scene 
works well. We have adapted depth maps, a powerful 
modeling primitive, to the context of reflections. Reflection 
rendering methods can be classified on a continuum based 
on the complexity of the geometry used to approximate the 
reflected scene. Environment mapping is at one extreme, 
with no geometry, reflected billboards are next, with a few 
quads, followed by reflected depth maps. Ray tracing is at 
the other extreme, since the reflected scene is used at its 
full complexity. We will continue to explore this 
continuum, to improve the reflected scene approximation 
while maintaining versatility and efficiency. 



V. Popescu, C. Mei, J. Dauble and E. Sacks/ Reflected-Scene Impostors for Realistic Reflections at Interactive Rates 

 

©The Eurographics Association and Blackwell Publishing 2006. 
 

 

Our method for rendering reflected depth map impostors 
can be described as a GPU ray tracing method that 
combines specialized space partitioning—depth map 
projection of reflected ray—with specialized 
simplification—poly-line approximation along ray-aligned 
depth map rows. An accurate performance comparison with 
prior GPU ray tracing techniques is difficult. We are 
rendering the left image in Figure 3 at 16Hz. Since the 
reflective bunny covers a screen region of about 
250x350pixels, we process approximately 1.4 million 
reflected rays per second. This figure includes the time 
needed to generate the reflected rays and to render the 
diffuse bunny. The ray-triangle intersection rate reported 
for the ray engine is 100Mtris/s [CCH02]. If the ray engine 
does not do anything else except for computing ray-triangle 
intersections, it achieves the same performance if 
100/1.4=71 triangles are intersected for each reflected ray. 
Factoring in the time needed to identify which triangles to 
intersect, to render the diffuse part of the scene, and to 
compute the reflected rays reduces this figure even more. 
The ray engine computes intersections accurately, whereas 
our method requires lighter pre-processing. 

Reflected depth map impostors reduce the problem of 
rendering reflections to the lesser problem of modeling and 
rendering with depth maps. Inevitably the problems of IBR 
by 3D warping are inherited. One such problem are 
disocclusion errors. Even if 6 depth maps could be 
processed efficiently, disocclusion errors would currently 
prevent us from using a depth cube map. The bunny would 
either be connected by unsightly rubber bands to the 
background, or would leave a background-colored shadow 
behind it when the view translates. LDIs are unappealing in 
our context since they lose the regularity of single layer 
depth images and the connectivity information, which 
makes the intersection expensive. Occlusion camera 
reference images [PA06] are a promising new solution 
which we will adapt to the context of reflections. The major 
hurdle seems to be the curved reflected ray projections, 
which complicate the creation and use of SRDMs. 

We will work towards supporting self-reflections. 
Billboards do not support self-reflections since a reflected 
ray does not hit the billboard plane again. However, there is 
no fundamental obstacle preventing our depth map 
impostors to support self-reflections. Self-reflections can be 
produced by intersecting the reflected ray with a depth map 
of the reflector. The challenge is to provide an appropriate 
depth map for each point on the surface of the reflector. 
Clearly, more than a single depth map is needed. For 
example for the ears of the bunny to correctly reflect each 
other, at least two depth maps are needed. We will 
investigate optimizing the placement of reflector depth 
maps to minimize their number. 

We will extend our method to handle view dependent 
lighting and shading. A specular highlight for example does 
not occur at the same locations on a surface and its 
reflection. We will explore using the true eye vector given  

 

 
Figure 16: Cases of extreme magnification and 
minification, handled well by reflected billboard (top) 
and depth map impostors (bottom). 

by the reflected ray at each pixel. It is also our goal to 
improve the implementation. The reflected ray is a 
geometric primitive currently projected, clipped and 
rasterized in a pixel program. A more efficient approach is 
to handle the ray like all other primitives, with a vertex 
program followed by a pixel program. A difficulty we 
foresee is assembling the output image, which requires 
extensions for writing into texture memory within a pixel 
program. Finally, we will investigate constructing the 
SRDMs on the GPU, achieving full hardware support. 
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