
Depth Image Approximation of 
Geometry & Applications 

Voicu Popescu 

1 



Geometry approximation 

• Definition 

– Alternative representation of geometry 

– Smaller cost but comparable effect 

– “Impostor”—looks like but is not the “real thing” 

• Motivation 

– Acceleration of expensive rendering effects 

– Replace geometry with approximation for faster 
frame rates and same / similar quality 

2 



Example: specular reflections 

• Projection followed by 
rasterization cannot 
render reflected triangles 

– No closed form projection 

– Non-linear rasterization 

• Per-pixel reflected ray is 
easy to compute 

– Conventional rasterization 
of reflector triangle 

– Normal interpolation 

3 



Example: specular reflections 

• Projection followed by 
rasterization cannot 
render reflected triangles 

• Per-pixel reflected ray is 
easy to compute 

• Intersecting per-pixel 
reflected ray with scene 
geometry is challenging 

4 



Example: specular reflections 

• Per-pixel reflected ray is 
easy to compute 

• Intersecting per-pixel 
reflected ray with scene 
geometry is challenging 

• Idea: approximate scene 
geometry to simplify 
intersection with 
reflected ray 

5 



Other examples 

• Reducing triangle load in conventional 
rendering 

• Refractions 

• Hard and soft shadows 

• Surface geometric detail 

6 



Geometry approximations 

• Simplified geometry 

• Cube map 

• Billboard 

• Depth image 

 

7 



Geometry simplification 

• Reducing the number of polygons 

• Goals: maximize quality over cost 

– maximize similarity to original geometry (given a 
specific metric) 

– minimize number of polygons 

8 

69,451 tris 30,994 tris 
1% error 

2,502 tris 
5% error 

251 tris 
15% error 

©
 L

u
e

b
ke

 



Geometry simplification 

• Reducing the number of polygons 

• Goals: maximize quality over cost 

• Challenges 

– Difficult to do for large meshes with complex 
topology 

– Difficult to transition smoothly between 
consecutive levels of detail 

9 



Cubemap 

• A panoramic image 

– Other panoramic images are possible (e.g. 
cylindrical, spherical, etc.) 

• Samples in all directions from given point 

• Equivalent to 6 image acquired with 6 cameras 

– Same viewpoint, i.e. center of a cube 

– 90o x 90o field of view 

– Image frames defined by faces of cube 

 
10 



Cubemap examples 

11 
© Debevec 

© Nvidia 



Cubemap 

• Advantages 

– Simple to construct 

• Synthetic scenes: rendering 6 images 

• Real-world scenes: acquisition with multiple cameras, 
or with combination of camera(s) and mirror(s) 

– Simple to use: easy to lookup a ray 

• Find the cubemap face intersected by the ray 

• Find intersection point P 

• Lookup color in cubemap face image (texture) at P 

12 



Cubemap applications 

• Rendering distant geometry 

– Mountains, clouds 

• Specular reflections 

• Refractions 

• Used by most consumer 
interactive graphics 
applications, on most 
platforms 

– Games on PS, Xbox, PCs (GPUs) 

13 

© Nvidia 



Cubemap 

• Disadvantage 

– Drastic approximation of scene geometry 

– Assumes all geometry is infinitely far away 

14 Environment mapping Truth (ray tracing) 



Billboard 

• A texture mapped quad 
– Texture shows the geometry replaced (i.e. 

approximated) by the billboard 

– Texels can be transparent 

• Advantages 
– Easy to render or acquire 

– Easy to intersect with a ray (i.e. ray intersects a 
single quad and not thousands of triangles) 

– Looks convincing when seen head on 

15 



Billboard examples 

• Specular reflections: 73 billboards 

– Each reflected object for each reflector: 8x9 = 72 

– Ground: 1 billboard 

16 



Billboard examples 

• Specular reflections: 73 billboards 

– Each reflected object for each reflector: 8x9 = 72 

– Ground: 1 billboard 

17 



Billboard 

• Advantages 

– Easy to render or acquire 

– Easy to intersect with a ray (i.e. ray intersects a 
single quad and not thousands of triangles) 

– Looks convincing when seen head on 

• Disadvantage 

– Looks bad from tangential view directions 

– A single plane of depth 

18 



Billboard limitations 

19 

Diffuse bunny cannot be approximated with a single billboard 



Depth image 

• Definition 

– A conventional image, plus 

– per pixel depth, plus 

– the camera that rendered the image 

20 



b 

Depth image 

• Geometry approximation 

– Each pixel defines a 3-D point (the closest surface 
point along the ray through the pixel center) 

21 

C 

c a 

P 

Q 

C- eye (capital C) 
c- vector from eye to top left image corner 
a- vector with direction given by pixel row  
and length given by pixel width 
b- vector with direction given by pixel  
column and length given by pixel height 
P- center of pixel (u, v) 
w- “depth” at pixel P, i.e. CQ/CP 
Q- Surface point sampled at P 
 
P = C + au + bv + c 
Q = C + (au + bv + c)w 

u 

v 



Depth image example 

22 

Depth image from reference view (left) and  
from novel viewpoint (right) 



Depth image 

• Implicit connectivity 

– Four neighboring pixels can be connected to form 
two triangles 

– Connectivity information does not need to be 
stored explicitly due to structure regularity 

23 

b 

C 

c a 

P0 P3 

P1 P2 

Q0 
Q3 

Q1 
Q2 

Neighboring pixels P0, P1, P2, and P3 define  
two  triangles in 3-D, Q0Q1Q2 and Q2Q3Q0 



Depth image 

• Advantages 

– Easy to construct for synthetic scenes (just render 
conventionally and keep z-buffer) 

– Geometry level of detail (LoD) easily controlled 
through depth image resolution 

– Fast intersection with ray (more on this later) 

24 



Depth image application 

• Specular reflections 

– Geometry of reflected object approximated with 
depth image rendered from center of reflector 

25 

Reflections rendered with depth image impostor (left) 
and depth image sample visualization (right) 



Depth image application 

26 

Reflections rendered by approximating the diffuse bunny with a depth 
image. The depth image models geometry with far higher fidelity than 
billboards, making the challenging example shown here tractable. 



Ray / depth image intersection 

• Given a depth image DI of res. wxh and a ray r, 
find the closest intersection between r and DI 

• One could intersect the ray with all triangles 
defined by neighboring pixels 

– wxhx2 ray / triangle intersections 

– too expensive, not needed 

• Project ray onto depth image and only consider 
depth image pixels under the ray projection 

– There are at most max(w, h) such pixels 

27 



Ray / depth image intersection 

28 

ppch- camera of depth image, with frustum 
defined by field of view and by near (hither) 
and far (yon) planes 
r- ray intersecting depth image frustum at a&b 
rp- projection of ray onto image (yon) plane 
 

Graph of depth along ray projection ab 
zgl- OpenGL depth 
t- parameter along ab 
curves- surface sampled by depth image 
c- intersection between ray and depth 
image that is closest to the eye 



Intersection implementation 

• Input 

– Ray direction r 

– Depth image DI(ppc, RGB, Z) 

• Output 

– Closest intersection between r and DI 

• Algorithm 
– (a, b) = ppc.Clip(r); 

– a’ = ppc.Project(a); b’ = ppc.Project(b); 

– stepsN = max(ceil(|ua-ub|), ceil(|va-vb|)); 

– s0 = a’; p0 = ppc.Unproject(s0, Z[s0]) 

– for i = 0 to stepsN 

• s1 = a’ + (b’-a’)(i+1)/stepsN; 

• p1 = ppc.Unproject(s1, Z[s1]); 

• if (p = p0p1 ∩ ab) then p’ = ppc.Project(p); return RGB[p’]; 

• s0 = s1; p0 = p1; 

– return noIntersection 

29 

a’(ua, va) 

b'(ub, vb) 

si 

si+1 

p' 



Ray / depth image intersection 

30 

Graph of depth along ray projection ab 
zgl- OpenGL depth 
t- parameter along ab 
curves- surface sampled by depth image 
c- intersection between ray and depth 
image that is closest to the eye 
pi, pi+1- segment defined by the depth 
values at the current and previous steps 

pi 

pi+1 



Implementation optimization 

• Optimized algorithm 
– (a, b) = ppc.Clip(r); 

– a’ = ppc.Project(a); b’ = ppc.Project(b); 

– stepsN = max(ceil(|ua-ub|), ceil(|va-vb|)); 

– s0 = a’; zr0 = a’.z; 

– for i = 0 to stepsN 

• s1 = a’ + (b’-a’)(i+1)/stepsN; 

• zr1 = a’.z + (b’.z-a’.z)(i+1)/stepsN; 

• if (k = [(0, zr0), (1, zr1)] ∩ [(0, Z[s0]), (1, Z[s1])]) 

– return RGB[s0 + (s1-s0)k]; 

• s0 = s1; zr0 = zr1; 

– return noIntersection 

• Faster and simpler to implement 
– Intersection of two 2-D segments 

– No unprojection (to 3-D) and reprojection (to 2-D) 

31 

0 1 

z 

zr0 

zr1 

k 

Z(s0) 

Z(s1) c 

c* 

The depth image approximates the true surface (thick 
line) with segment [(0, Z[s0]), (1, Z[s1])]. 
 
The intersection c* between the ray and the depth 
image is computed by intersecting segments [(0, 
Z[s0]), (1, Z[s1])] and [(0, zr0), (1, zr1)]. 


