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Geometry approximation 

• Definition 

– Alternative representation of geometry 

– Smaller cost but comparable effect 

– “Impostor”—looks like but is not the “real thing” 

• Motivation 

– Acceleration of expensive rendering effects 

– Replace geometry with approximation for faster 
frame rates and same / similar quality 
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Example: specular reflections 

• Projection followed by 
rasterization cannot 
render reflected triangles 

– No closed form projection 

– Non-linear rasterization 

• Per-pixel reflected ray is 
easy to compute 

– Conventional rasterization 
of reflector triangle 

– Normal interpolation 
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Example: specular reflections 

• Projection followed by 
rasterization cannot 
render reflected triangles 

• Per-pixel reflected ray is 
easy to compute 

• Intersecting per-pixel 
reflected ray with scene 
geometry is challenging 
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Example: specular reflections 

• Per-pixel reflected ray is 
easy to compute 

• Intersecting per-pixel 
reflected ray with scene 
geometry is challenging 

• Idea: approximate scene 
geometry to simplify 
intersection with 
reflected ray 
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Other examples 

• Reducing triangle load in conventional 
rendering 

• Refractions 

• Hard and soft shadows 

• Surface geometric detail 
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Geometry approximations 

• Simplified geometry 

• Cube map 

• Billboard 

• Depth image 
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Geometry simplification 

• Reducing the number of polygons 

• Goals: maximize quality over cost 

– maximize similarity to original geometry (given a 
specific metric) 

– minimize number of polygons 
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Geometry simplification 

• Reducing the number of polygons 

• Goals: maximize quality over cost 

• Challenges 

– Difficult to do for large meshes with complex 
topology 

– Difficult to transition smoothly between 
consecutive levels of detail 
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Cubemap 

• A panoramic image 

– Other panoramic images are possible (e.g. 
cylindrical, spherical, etc.) 

• Samples in all directions from given point 

• Equivalent to 6 image acquired with 6 cameras 

– Same viewpoint, i.e. center of a cube 

– 90o x 90o field of view 

– Image frames defined by faces of cube 
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Cubemap examples 
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Cubemap 

• Advantages 

– Simple to construct 

• Synthetic scenes: rendering 6 images 

• Real-world scenes: acquisition with multiple cameras, 
or with combination of camera(s) and mirror(s) 

– Simple to use: easy to lookup a ray 

• Find the cubemap face intersected by the ray 

• Find intersection point P 

• Lookup color in cubemap face image (texture) at P 
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Cubemap applications 

• Rendering distant geometry 

– Mountains, clouds 

• Specular reflections 

• Refractions 

• Used by most consumer 
interactive graphics 
applications, on most 
platforms 

– Games on PS, Xbox, PCs (GPUs) 
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Cubemap 

• Disadvantage 

– Drastic approximation of scene geometry 

– Assumes all geometry is infinitely far away 

14 Environment mapping Truth (ray tracing) 



Billboard 

• A texture mapped quad 
– Texture shows the geometry replaced (i.e. 

approximated) by the billboard 

– Texels can be transparent 

• Advantages 
– Easy to render or acquire 

– Easy to intersect with a ray (i.e. ray intersects a 
single quad and not thousands of triangles) 

– Looks convincing when seen head on 
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Billboard examples 

• Specular reflections: 73 billboards 

– Each reflected object for each reflector: 8x9 = 72 

– Ground: 1 billboard 
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Billboard examples 

• Specular reflections: 73 billboards 

– Each reflected object for each reflector: 8x9 = 72 

– Ground: 1 billboard 
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Billboard 

• Advantages 

– Easy to render or acquire 

– Easy to intersect with a ray (i.e. ray intersects a 
single quad and not thousands of triangles) 

– Looks convincing when seen head on 

• Disadvantage 

– Looks bad from tangential view directions 

– A single plane of depth 
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Billboard limitations 
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Diffuse bunny cannot be approximated with a single billboard 



Depth image 

• Definition 

– A conventional image, plus 

– per pixel depth, plus 

– the camera that rendered the image 
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Depth image 

• Geometry approximation 

– Each pixel defines a 3-D point (the closest surface 
point along the ray through the pixel center) 
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C- eye (capital C) 
c- vector from eye to top left image corner 
a- vector with direction given by pixel row  
and length given by pixel width 
b- vector with direction given by pixel  
column and length given by pixel height 
P- center of pixel (u, v) 
w- “depth” at pixel P, i.e. CQ/CP 
Q- Surface point sampled at P 
 
P = C + au + bv + c 
Q = C + (au + bv + c)w 

u 
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Depth image example 
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Depth image from reference view (left) and  
from novel viewpoint (right) 



Depth image 

• Implicit connectivity 

– Four neighboring pixels can be connected to form 
two triangles 

– Connectivity information does not need to be 
stored explicitly due to structure regularity 
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Q0 
Q3 

Q1 
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Neighboring pixels P0, P1, P2, and P3 define  
two  triangles in 3-D, Q0Q1Q2 and Q2Q3Q0 



Depth image 

• Advantages 

– Easy to construct for synthetic scenes (just render 
conventionally and keep z-buffer) 

– Geometry level of detail (LoD) easily controlled 
through depth image resolution 

– Fast intersection with ray (more on this later) 
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Depth image application 

• Specular reflections 

– Geometry of reflected object approximated with 
depth image rendered from center of reflector 
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Reflections rendered with depth image impostor (left) 
and depth image sample visualization (right) 



Depth image application 
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Reflections rendered by approximating the diffuse bunny with a depth 
image. The depth image models geometry with far higher fidelity than 
billboards, making the challenging example shown here tractable. 



Ray / depth image intersection 

• Given a depth image DI of res. wxh and a ray r, 
find the closest intersection between r and DI 

• One could intersect the ray with all triangles 
defined by neighboring pixels 

– wxhx2 ray / triangle intersections 

– too expensive, not needed 

• Project ray onto depth image and only consider 
depth image pixels under the ray projection 

– There are at most max(w, h) such pixels 
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Ray / depth image intersection 
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ppch- camera of depth image, with frustum 
defined by field of view and by near (hither) 
and far (yon) planes 
r- ray intersecting depth image frustum at a&b 
rp- projection of ray onto image (yon) plane 
 

Graph of depth along ray projection ab 
zgl- OpenGL depth 
t- parameter along ab 
curves- surface sampled by depth image 
c- intersection between ray and depth 
image that is closest to the eye 



Intersection implementation 

• Input 

– Ray direction r 

– Depth image DI(ppc, RGB, Z) 

• Output 

– Closest intersection between r and DI 

• Algorithm 
– (a, b) = ppc.Clip(r); 

– a’ = ppc.Project(a); b’ = ppc.Project(b); 

– stepsN = max(ceil(|ua-ub|), ceil(|va-vb|)); 

– s0 = a’; p0 = ppc.Unproject(s0, Z[s0]) 

– for i = 0 to stepsN 

• s1 = a’ + (b’-a’)(i+1)/stepsN; 

• p1 = ppc.Unproject(s1, Z[s1]); 

• if (p = p0p1 ∩ ab) then p’ = ppc.Project(p); return RGB[p’]; 

• s0 = s1; p0 = p1; 

– return noIntersection 
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Ray / depth image intersection 
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Graph of depth along ray projection ab 
zgl- OpenGL depth 
t- parameter along ab 
curves- surface sampled by depth image 
c- intersection between ray and depth 
image that is closest to the eye 
pi, pi+1- segment defined by the depth 
values at the current and previous steps 

pi 

pi+1 



Implementation optimization 

• Optimized algorithm 
– (a, b) = ppc.Clip(r); 

– a’ = ppc.Project(a); b’ = ppc.Project(b); 

– stepsN = max(ceil(|ua-ub|), ceil(|va-vb|)); 

– s0 = a’; zr0 = a’.z; 

– for i = 0 to stepsN 

• s1 = a’ + (b’-a’)(i+1)/stepsN; 

• zr1 = a’.z + (b’.z-a’.z)(i+1)/stepsN; 

• if (k = [(0, zr0), (1, zr1)] ∩ [(0, Z[s0]), (1, Z[s1])]) 

– return RGB[s0 + (s1-s0)k]; 

• s0 = s1; zr0 = zr1; 

– return noIntersection 

• Faster and simpler to implement 
– Intersection of two 2-D segments 

– No unprojection (to 3-D) and reprojection (to 2-D) 
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The depth image approximates the true surface (thick 
line) with segment [(0, Z[s0]), (1, Z[s1])]. 
 
The intersection c* between the ray and the depth 
image is computed by intersecting segments [(0, 
Z[s0]), (1, Z[s1])] and [(0, zr0), (1, zr1)]. 


