Cameras

- Capture images
- a measuring device
- Digital cameras
- fill in memory with color-sample information
- CCD (Charge-Coupled Device) instead of film
- film also has finite resolution (graininess)
- depends on speed (ISO 100, 200, ..., 6400, ...)
- size (35mm, IMAX etc)

Importance of camera models

- Understanding cameras allows:
- Using photographs of real world for modeling and rendering
- Rendering 3D scenes, which is equivalent to taking pictures of the virtual world

Planar pinhole camera model

- Pinhole C
- also called center of projection
- point of convergence of all incoming rays

Planar pinhole camera model

- Image plane
- plane where intersecting incoming rays create the color samples (pixels) of the image
- defined by non-parallel vectors a and b

Planar pinhole camera model

- Point C and vectors a, b, c define a general planar pinhole camera

Special pinhole camera model

- OK to assume that
- vectors a and b are perpendicular
- square pixels (a and b same length)
- C projects in the center of the image plane

Constructor

- PHC(float hfov, int w, int h)
- hfov is the horizontal field of view [degrees]
- w is the width of the image [pixels]
$-h$ is the height of the image [pixels]

$$
\begin{aligned}
& \bar{a}=(1,0,0) \\
& \bar{b}=(0,-1,0) \\
& \dot{C}=(0,0,0) \\
& \bar{c}=\left(-\frac{w}{2}, \frac{h}{2},-\frac{w}{2 \tan (h f o v / 2)}\right)
\end{aligned}
$$

Projection of points

$$
\begin{aligned}
& \dot{P}=\dot{C}+(\bar{a} u+\bar{b} v+\bar{c}) w \\
& {\left[\begin{array}{lll}
\bar{a} & \bar{b} & -\bar{c}\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] w=\dot{P}-\dot{C}, ~
\end{array}\right.} \\
& {\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right] w=\left[\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right]^{-1}\left[\begin{array}{l}
P_{x}-C_{x} \\
P_{y}-C_{y} \\
P_{z}-C_{z}
\end{array}\right]} \\
& {\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] w=\left[\begin{array}{l}
q_{0} \\
q_{1} \\
q_{2}
\end{array}\right]} \\
& w=q_{2} \\
& u=\frac{q_{0}}{w} \\
& v=\frac{q_{1}}{w}
\end{aligned}
$$

Pixel coordinates

- Pixel (u, v) has center at (.5f+(float) $u, .5 f+(f l o a t) v)$
- The image stretches from 0.0 f to (float)w, and from 0.0f to (float)h
- A row has w pixels: pixel $0,1, \ldots, w-1$
- A column has h pixels: pixel $0,1, \ldots, h-1$
- An image point $(u f, v f)$ - uf and $v f$ are floats belongs to pixel ((int) uf, (int) vf)

Other camera methods

- Access
- Get view direction \& focal length
- Get ray \& pixel center
- Get horizontal / vertical field of view
- Get principal point (pixel coordinates of COP projection onto image plane)
- Navigation
- Translation left-right, up-down, forward-backward
- Rotation left-right (pan, yaw), up-down (tilt, pitch), sideways (roll)
- Revolve horizontally around point P, theta degrees
- Revolve vertically around point P, theta degrees
- Positioning
- Place camera such that it looks at point P, from distance d, and has up vector up
- Internal parameters change
- Zoom in-out (change of field of view)
- Change of resolution
- Cropping/extensions
- View interpolation
- Give $P_{H C}$ and $P H C_{1}$, create N cameras that smoothly change the view from $P H C_{0}$ to $P H C_{1}$

Access

- Get view direction
- $v d=(a \times b)$.UnitVector()
- Get focal length
- $f=v d^{*} c$
- Get ray for pixel (u, v)-- integers
$-\quad \operatorname{ray}(u, v)=a^{*}(u+0.5 \mathrm{f})+b^{*}(v+0.5 \mathrm{f})+c$
- Get ray for pixel image point $(u f, v f)$-- floats
$-\quad \operatorname{ray}(u f, v f)=a^{*} u f+b^{*} v f+c$
- Get pixel center -- integers
- $P(u, v)=C+\operatorname{ray}(u, v)$
- Get horizontal field of view
- hfov = 2*atan(w/2*a.Length()/f) // assumes C projects at w/2
- Get principal point (image coordinates of C projection)
- $P P_{u}=-c^{*} a$.UnitVector()/a.Length()
- $P P_{v}=-c^{*} b . U n i t V e c t o r() / b . L e n g t h()$

Camera positioning

- Place camera such that it looks at point P from distance d, has view direction $v d$, and $u p$ is a vector in the vertical plane of the camera // assumptions: rectangular pixels, up and vd are normalized
$C^{\prime}=P-v d^{*} \mathrm{~d}$
$a^{\prime}=(v d \times u p)$.UnitVector()*a.Length()
$b^{\prime}=\left(v d \times a^{\prime}\right)$.UnitVector()*b.Length()
$c^{\prime}=-P P_{u}{ }^{*} a^{\prime}-P P_{v}{ }^{*} b^{\prime}+v d^{*} f$

Zooming

- Focal length changes: $f^{\prime}=f^{*}$ zoom
$C^{\prime}=C$
$a^{\prime}=a$
$b^{\prime}=b$
$c^{\prime}=-P P_{u}{ }^{*} a-P P_{v}{ }^{*} b+v d^{*} f^{\prime}$

$$
C_{-} P P=f
$$

$$
C^{\prime} _P P^{\prime}=f^{\prime}
$$

Change of resolution

- More or fewer pixels; $w^{\prime}=$ $w^{*} k, h^{\prime}=h^{*} k$
a, b, and C do not change
$c^{\prime}=c^{*} \mathrm{k}$
- $\quad w$ and h change, buffers

Cropping/extensions

- Set the image to rectangle $\left(\mathrm{u}_{0}, \mathrm{v}_{0}, \mathrm{u}_{1}, \mathrm{v}_{1}\right)$
$C^{\prime}=C$
$a^{\prime}=a$
$b^{\prime}=b$
$c^{\prime}=c+u_{0}{ }^{*} a+v_{0}{ }^{*} b$
$w^{\prime}=u_{1}-u_{0}$
$h^{\prime}=v_{1}-v_{0}$

View interpolation

- Given $P^{\prime} C_{0}$ and $P H C_{1}$ create N intermediate cameras
- Assumption: PHC_{0} and PHC_{1} have the same internal parameters $C_{i}=C_{0}+\left(C_{1}-C_{0}\right) *($ float $) i /(f l o a t)(N-1)$
$v d_{i}=v d_{0}+\left(v d_{1}-v d_{0}\right) *($ float $) i /($ float $)(N-1)$
$a_{i}=a_{0}+\left(a_{1}-a_{0}\right) *($ float $) i /(f l o a t)(N-1)$
... (See camera positioning)

Real world camera models

- Aperture is finite
- depth of field (only objects at a certain distance are in focus)
- Lens distortion
- straight lines are curved in the image
- barrel
- pincushion

Depth of field

- Thin lenses
- rays through lens center
(C) do not change direction
- rays parallel to optical axis go through focal point (F')
- Only objects at certain depth are in focus
image
21

