
Graphs 1

Graphs

ORD

DFW

SFO

LAX

80
2

17
43

1843

1233

337

Graphs 2

Outline and Reading
Graphs (§12.1)

Definition
Applications
Terminology
Properties
ADT

Data structures for graphs (§12.2)
Edge list structure
Adjacency list structure
Adjacency matrix structure

Graphs 3

Graph
A graph is a pair (V, E), where

V is a set of nodes, called vertices
E is a collection of pairs of vertices, called edges
Vertices and edges are positions and store elements

Example:
A vertex represents an airport and stores the three-letter airport code
An edge represents a flight route between two airports and stores the
mileage of the route

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233
337

2555

142

Graphs 4

Edge Types
Directed edge

ordered pair of vertices (u,v)
first vertex u is the origin
second vertex v is the destination
e.g., a flight

Undirected edge
unordered pair of vertices (u,v)
e.g., a flight route

Directed graph
all the edges are directed
e.g., route network

Undirected graph
all the edges are undirected
e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD849
miles

Graphs 5

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications
Electronic circuits

Printed circuit board
Integrated circuit

Transportation networks
Highway network
Flight network

Computer networks
Local area network
Internet
Web

Databases
Entity-relationship diagram

Graphs 6

Terminology
End vertices (or endpoints) of
an edge

U and V are the endpoints of a
Edges incident on a vertex

a, d, and b are incident on V
Adjacent vertices

U and V are adjacent
Degree of a vertex

X has degree 5
Parallel edges

h and i are parallel edges
Self-loop

j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Graphs 7

P1

Terminology (cont.)
Path

sequence of alternating
vertices and edges
begins with a vertex
ends with a vertex
each edge is preceded and
followed by its endpoints

Simple path
path such that all its vertices
and edges are distinct

Examples
P1=(V,b,X,h,Z) is a simple path
P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Graphs 8

Terminology (cont.)
Cycle

circular sequence of alternating
vertices and edges
each edge is preceded and
followed by its endpoints

Simple cycle
cycle such that all its vertices
and edges are distinct

Examples
C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a
simple cycle
C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)
is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

Graphs 9

Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
Σv deg(v) = 2m
Proof: each edge is

counted twice
Property 2

In an undirected graph
with no self-loops and
no multiple edges
m ≤ n (n − 1)/2

Proof: each vertex has
degree at most (n − 1)

What is the bound for a
directed graph?

Example
n = 4
m = 6
deg(v) = 3

Graphs 10

Main Methods of the Graph ADT
Vertices and edges

are positions
store elements

Accessor methods
aVertex()
incidentEdges(v)
endVertices(e)
isDirected(e)
origin(e)
destination(e)
opposite(v, e)
areAdjacent(v, w)

Update methods
insertVertex(o)
insertEdge(v, w, o)
insertDirectedEdge(v, w, o)
removeVertex(v)
removeEdge(e)

Generic methods
numVertices()
numEdges()
vertices()
edges()

Graphs 11

Edge List Structure
Vertex object

element
reference to position in
vertex sequence

Edge object
element
origin vertex object
destination vertex object
reference to position in
edge sequence

Vertex sequence
sequence of vertex
objects

Edge sequence
sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d

Graphs 12

Adjacency List Structure
Edge list structure
Incidence sequence
for each vertex

sequence of
references to edge
objects of incident
edges

Augmented edge
objects

references to
associated
positions in
incidence
sequences of end
vertices

u

v

w
a b

a

u v w

b

Graphs 13

Adjacency Matrix Structure
Edge list structure
Augmented vertex
objects

Integer key (index)
associated with vertex

2D-array adjacency
array

Reference to edge
object for adjacent
vertices
Null for non
nonadjacent vertices

The “old fashioned”
version just has 0 for
no edge and 1 for edge

u

v

w
a b

2

1

0

210

∅∅

∅

∅∅

a

u v w0 1 2

b

Graphs 14

Asymptotic Performance

n2n + mn + mSpace

n2deg(v)mremoveVertex(v)
111insertEdge(v, w, o)
n211insertVertex(o)

111removeEdge(e)

1min(deg(v), deg(w))mareAdjacent (v, w)
ndeg(v)mincidentEdges(v)

Adjacency
Matrix

Adjacency
List

Edge
List

n vertices, m edges
no parallel edges
no self-loops
Bounds are “big-Oh”

Graphs 15

Depth-First Search

DB

A

C

E

Graphs 16

Outline and Reading
Definitions (§12.1)

Subgraph
Connectivity
Spanning trees and forests

Depth-first search (§12.3.1)
Algorithm
Example
Properties
Analysis

Applications of DFS
Path finding
Cycle finding

Graphs 17

Subgraphs
A subgraph S of a graph
G is a graph such that

The vertices of S are a
subset of the vertices of G
The edges of S are a
subset of the edges of G

A spanning subgraph of G
is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

Graphs 18

Connectivity

A graph is
connected if there is
a path between
every pair of
vertices
A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

Graphs 19

Trees and Forests
A (free) tree is an
undirected graph T such
that

T is connected
T has no cycles

This definition of tree is
different from the one of
a rooted tree

A forest is an undirected
graph without cycles
The connected
components of a forest
are trees

Tree

Forest

Graphs 20

Spanning Trees and Forests
A spanning tree of a
connected graph is a
spanning subgraph that is
a tree
A spanning tree is not
unique unless the graph is
a tree
Spanning trees have
applications to the design
of communication
networks
A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

Graphs 21

Depth-First Search
Depth-first search (DFS)
is a general technique
for traversing a graph
A DFS traversal of a
graph G

Visits all the vertices and
edges of G
Determines whether G is
connected
Computes the connected
components of G
Computes a spanning
forest of G

DFS on a graph with n
vertices and m edges
takes O(n + m) time
DFS can be further
extended to solve other
graph problems

Find and report a path
between two given
vertices
Find a cycle in the graph

Depth-first search is to
graphs what Euler tour
is to binary trees

Graphs 22

DFS Algorithm
The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

Graphs 23

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

Graphs 24

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Graphs 25

DFS and Maze Traversal
The DFS algorithm is
similar to a classic
strategy for exploring
a maze

We mark each
intersection, corner
and dead end (vertex)
visited
We mark each corridor
(edge) traversed
We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

Graphs 26

Properties of DFS
Property 1

DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

DB

A

C

E

Graphs 27

Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

Recall that Σv deg(v) = 2m

Graphs 28

Path Finding
We can specialize the DFS
algorithm to find a path
between two given
vertices u and z
We call DFS(G, u) with u
as the start vertex
We use a stack S to keep
track of the path between
the start vertex and the
current vertex
As soon as destination
vertex z is encountered,
we return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)

Graphs 29

Cycle Finding
We can specialize the
DFS algorithm to find a
simple cycle
We use a stack S to
keep track of the path
between the start vertex
and the current vertex
As soon as a back edge
(v, w) is encountered,
we return the cycle as
the portion of the stack
from the top to vertex w

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)

Graphs 30

Breadth-First Search

CB

A

E

D

L0

L1

F
L2

Graphs 31

Outline and Reading
Breadth-first search (§12.3.2)

Algorithm
Example
Properties
Analysis
Applications

DFS vs. BFS
Comparison of applications
Comparison of edge labels

Graphs 32

Breadth-First Search
Breadth-first search
(BFS) is a general
technique for traversing
a graph
A BFS traversal of a
graph G

Visits all the vertices and
edges of G
Determines whether G is
connected
Computes the connected
components of G
Computes a spanning
forest of G

BFS on a graph with n
vertices and m edges
takes O(n + m) time
BFS can be further
extended to solve other
graph problems

Find and report a path
with the minimum
number of edges
between two given
vertices
Find a simple cycle, if
there is one

Graphs 33

BFS Algorithm
The algorithm uses a
mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G, s)
L0 ← new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ← 0
while ¬Li.isEmpty()

Li +1 ← new empty sequence
for all v ∈ Li.elements()

for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges

and partition of the
vertices of G

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)

Graphs 34

Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

Graphs 35

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Graphs 36

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

Graphs 37

Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and
edges of Gs

Property 2
The discovery edges labeled by
BFS(G, s) form a spanning tree Ts
of Gs

Property 3
For each vertex v in Li

The path of Ts from s to v has i
edges
Every path from s to v in Gs has at
least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

Graphs 38

Analysis
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence Li
Method incidentEdges() is called once for each vertex
BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

Recall that Σv deg(v) = 2m

Graphs 39

Applications
Using the template method pattern, we can
specialize the BFS traversal of a graph G to
solve the following problems in O(n + m) time

Compute the connected components of G
Compute a spanning forest of G
Find a simple cycle in G, or report that G is a
forest
Given two vertices of G, find a path in G between
them with the minimum number of edges, or
report that no such path exists

Graphs 40

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

√Biconnected components

√Shortest paths

√√
Spanning forest, connected
components, paths, cycles

BFSDFSApplications

Graphs 41

DFS vs. BFS (cont.)
Back edge (v,w)

w is an ancestor of v in
the tree of discovery
edges

Cross edge (v,w)
w is in the same level as
v or in the next level in
the tree of discovery
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Graphs 42

Directed Graphs
JFK

BOS

MIA

ORD

LAX
DFW

SFO

Graphs 43

Outline and Reading (§12.4)

Reachability (§12.4.1)
Directed DFS
Strong connectivity

Transitive closure (§12.4.2)
The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAG’s) (§12.4.3)
Topological Sorting

Graphs 44

Digraphs

A digraph is a graph
whose edges are all
directed

Short for “directed graph”

Applications
one-way streets
flights
task scheduling A

C

E

B

D

Graphs 45

Digraph Properties

A graph G=(V,E) such that
Each edge goes in one direction:

Edge (a,b) goes from a to b, but not b to a.

If G is simple, m < n*(n-1).
If we keep in-edges and out-edges in separate
adjacency lists, we can perform listing of in-
edges and out-edges in time proportional to
their size.

A

C

E

B

D

Graphs 46

Digraph Application
Scheduling: edge (a,b) means task a must be
completed before b can be started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171

Graphs 47

Directed DFS
We can specialize
the traversal
algorithms (DFS and
BFS) to digraphs by
traversing edges
only along their
direction
A directed DFS
starting a a vertex s
determines the
vertices reachable
from s

A

C

E

B

D

Graphs 48

Reachability

DFS tree rooted at v: vertices reachable
from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

Graphs 49

Strong Connectivity
Each vertex can reach all other vertices

a

d

c

b

e

f

g

Graphs 50

Pick a vertex v in G.
Perform a DFS from v in G.

If there’s a w not visited, print “no”.

Let G’ be G with edges reversed.
Perform a DFS from v in G’.

If there’s a w not visited, print “no”.
Else, print “yes”.

Running time: O(n+m).

Strong Connectivity
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

Graphs 51

Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph
Can also be done in O(n+m) time using DFS

Strongly Connected
Components

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

Graphs 52

Transitive Closure
Given a digraph G, the
transitive closure of G is the
digraph G* such that

G* has the same vertices
as G
if G has a directed path
from u to v (u ≠ v), G*
has a directed edge from
u to v

The transitive closure
provides reachability
information about a digraph

B

A

D

C

E

B

A

D

C

E

G

G*

Graphs 53

Computing the
Transitive Closure

We can perform
DFS starting at
each vertex

O(n(n+m))

If there's a way to get
from A to B and from
B to C, then there's a
way to get from A to C.

Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

Graphs 54

Floyd-Warshall
Transitive Closure

Idea #1: Number the vertices 1, 2, …, n.
Idea #2: Consider paths that use only
vertices numbered 1, 2, …, k, as
intermediate vertices:

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(add this edge if it’s not already in)

Graphs 55

Floyd-Warshall’s Algorithm
Floyd-Warshall’s algorithm
numbers the vertices of G as
v1 , …, vn and computes a
series of digraphs G0, …, Gn

G0=G
Gk has a directed edge (vi, vj)
if G has a directed path from
vi to vj with intermediate
vertices in the set {v1 , …, vk}

We have that Gn = G*
In phase k, digraph Gk is
computed from Gk − 1

Running time: O(n3),
assuming areAdjacent is O(1)
(e.g., adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i ← 1
for all v ∈ G.vertices()

denote v as vi
i ← i + 1

G0 ← G
for k ← 1 to n do

Gk ← Gk − 1
for i ← 1 to n (i ≠ k) do

for j ← 1 to n (j ≠ i, k) do
if Gk − 1.areAdjacent(vi, vk) ∧

Gk − 1.areAdjacent(vk, vj)
if ¬Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)
return Gn

Graphs 56

Floyd-Warshall Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 57

Floyd-Warshall, Iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 58

Floyd-Warshall, Iteration 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 59

Floyd-Warshall, Iteration 3

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 60

Floyd-Warshall, Iteration 4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7

Graphs 61

Floyd-Warshall, Iteration 5

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS

Graphs 62

Floyd-Warshall, Iteration 6

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS

Graphs 63

Floyd-Warshall, Conclusion

JFK

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
BOS

Graphs 64

DAGs and Topological Ordering
A directed acyclic graph (DAG) is a
digraph that has no directed cycles
A topological ordering of a digraph
is a numbering

v1 , …, vn

of the vertices such that for every
edge (vi , vj), we have i < j
Example: in a task scheduling
digraph, a topological ordering a
task sequence that satisfies the
precedence constraints

Theorem
A digraph admits a topological
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

Graphs 65

write c.s. program

play

Topological Sorting
Number vertices so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical day1

2 3

4 5

6

7

8

9

10
11

Go out w/ friends

Graphs 66

Running time: O(n + m). Why?

Algorithm for Topological Sorting

Method TopologicalSort(G)
H ← G // Temporary copy of G
n ← G.numVertices()
while H is not empty do

Let v be a vertex with no outgoing edges
Label v ← n
n ← n - 1
Remove v from H

Graphs 67

Topological Sorting
Algorithm using DFS

O(n+m) time

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the vertices of G

in the connected component of v
setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
topologicalDFS(G, w)

else
{e is a forward or cross edge}

Label v with topological number n
n ← n - 1

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

n ← G.numVertices()
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)

Graphs 68

Topological Sorting Example

Graphs 69

Topological Sorting Example

9

Graphs 70

Topological Sorting Example

8

9

Graphs 71

Topological Sorting Example

7
8

9

Graphs 72

Topological Sorting Example

7
8

6

9

Graphs 73

Topological Sorting Example

7
8

56

9

Graphs 74

Topological Sorting Example

7

4

8

56

9

Graphs 75

Topological Sorting Example

7

4

8

56

3

9

Graphs 76

Topological Sorting Example
2

7

4

8

56

3

9

Graphs 77

Topological Sorting Example
2

7

4

8

56

1

3

9

Graphs 78

Shortest Paths

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

Graphs 79

Outline and Reading
Weighted graphs (§12.1)

Shortest path problem
Shortest path properties

Dijkstra’s algorithm (§12.6.1)
Algorithm
Edge relaxation

The Bellman-Ford algorithm
Shortest paths in DAGs
All-pairs shortest paths

Graphs 80

Weighted Graphs
In a weighted graph, each edge has an associated numerical
value, called the weight of the edge
Edge weights may represent distances, costs, etc.
Example:

In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233
337

2555

142 1205

Graphs 81

Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to
find a path of minimum total weight between u and v.

Length of a path is the sum of the weights of its edges.
Example:

Shortest path between Providence and Honolulu
Applications

Internet packet routing
Flight reservations
Driving directions

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233
337

2555

142 1205

Graphs 82

Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other
vertices

Example:
Tree of shortest paths from Providence

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

138717
43

1843

1099
1120

1233
337

2555

142 1205

Graphs 83

Dijkstra’s Algorithm
The distance of a vertex
v from a vertex s is the
length of a shortest path
between s and v
Dijkstra’s algorithm
computes the distances
of all the vertices from a
given start vertex s
Assumptions:

the graph is connected
the edges are
undirected
the edge weights are
nonnegative

We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices
We store with each vertex v a
label d(v) representing the
distance of v from s in the
subgraph consisting of the cloud
and its adjacent vertices
At each step

We add to the cloud the vertex
u outside the cloud with the
smallest distance label, d(u)
We update the labels of the
vertices adjacent to u (edge
relaxation)

Graphs 84

Edge Relaxation
Consider an edge e = (u,z)
such that

u is the vertex most recently
added to the cloud
z is not in the cloud

The relaxation of edge e
updates distance d(z) as
follows:
d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

10

zs
u

d(z) = 60
d(u) = 50

10

zs
u

e

e

Graphs 85

Example

CB

A

E

D

F

0

428

∞ ∞

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Graphs 86

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Graphs 87

Dijkstra’s Algorithm
A priority queue stores
the vertices outside the
cloud

Key: distance
Element: vertex

Locator-based methods
insert(k,e) returns a
locator
replaceKey(l,k) changes
the key of an item

We store two labels
with each vertex:

distance (d(v) label)
locator in priority
queue

Algorithm DijkstraDistances(G, s)
Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)

Graphs 88

Analysis
Graph operations

Method incidentEdges is called once for each vertex
Label operations

We set/get the distance and locator labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations
Each vertex is inserted once into and removed once from the priority
queue, where each insertion or removal takes O(log n) time
The key of a vertex in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

Dijkstra’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

Recall that Σv deg(v) = 2m
The running time can also be expressed as O(m log n) since the
graph is connected

Graphs 89

Extension
We can extend
Dijkstra’s algorithm to
return a tree of
shortest paths from
the start vertex to all
other vertices
We store with each
vertex a third label:

parent edge in the
shortest path tree

In the edge relaxation
step, we update the
parent label

Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
setParent(v, ∅)
…

for all e ∈ G.incidentEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Graphs 90

Why Dijkstra’s Algorithm
Works

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.
When the previous node, D, on the
true shortest path was considered,
its distance was correct.
But the edge (D,F) was relaxed at
that time!
Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex.

Graphs 91

Why It Doesn’t Work for
Negative-Weight Edges

If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

CB

A

E

D

F

0

457

5 9

48

7 1

2 5

6

0 -8

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud

with d(C)=5!

Graphs 92

Bellman-Ford Algorithm
Works even with negative-
weight edges
Must assume directed
edges (for otherwise we
would have negative-
weight cycles)
Iteration i finds all shortest
paths that use i edges.
Running time: O(nm).
Can be extended to detect
a negative-weight cycle if it
exists

How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

for i ← 1 to n-1 do
for each e ∈ G.edges()

{ relax edge e }
u ← G.origin(e)
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Graphs 93

∞

-2

Bellman-Ford Example

∞∞

0

∞

∞

∞

48

7 1

-2 5

-2

3 9

∞

0

∞

∞

∞

48

7 1

-2 5
3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞

48

7 1

-2 5
3 9

∞

8 -2 4

-15

6
1

9

-25

0

1

-1

9

48

7 1

-2 5

-2

3 9
4

Graphs 94

DAG-based Algorithm

Works even with
negative-weight edges
Uses topological order
Uses simple data
structures
Is much faster than
Dijkstra’s algorithm
Running time: O(n+m).

Algorithm DagDistances(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

Perform a topological sort of the vertices
for u ← 1 to n do {in topological order}

for each e ∈ G.outEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)

Graphs 95

∞

-2

DAG Example

∞∞

0

∞

∞

∞

48

7 1

-5 5

-2

3 9

∞

0

∞

∞

∞

48

7 1

-5 5
3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞

48

7 1

-5 5
3 9

∞

-2 4

-1

1 7

-25

0

1

-1

7

48

7 1

-5 5

-2

3 9
4

1

1

2 43

6 5

1

2 43

6 5

8

1

2 43

6 5

1

2 43

6 5

5

0

(two steps)

Graphs 96

All-Pairs Shortest Paths
Find the distance
between every pair of
vertices in a weighted
directed graph G.
We can make n calls to
Dijkstra’s algorithm (if no
negative edges), which
takes O(nmlog n) time.
Likewise, n calls to
Bellman-Ford would take
O(n2m) time.
We can achieve O(n3)
time using dynamic
programming (similar to
the Floyd-Warshall
algorithm).

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j)

if i = j
D0[i,i] ← 0

else if (i,j) is an edge in G
D0[i,j] ← weight of edge (i,j)

else
D0[i,j] ← + ∞

for k ← 1 to n do
for i ← 1 to n do

for j ← 1 to n do
Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)

Graphs 97

Minimum Spanning Trees

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 98

Outline and Reading

Minimum Spanning Trees (§12.7)
Definitions
A crucial fact

The Prim-Jarnik Algorithm (§12.7.2)

Kruskal's Algorithm (§12.7.1)

Baruvka's Algorithm

Graphs 99

Minimum Spanning Tree
Spanning subgraph

Subgraph of a graph G
containing all the vertices of G

Spanning tree
Spanning subgraph that is
itself a (free) tree

Minimum spanning tree (MST)
Spanning tree of a weighted
graph with minimum total
edge weight

Applications
Communications networks
Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

Graphs 100

Cycle Property
Cycle Property:

Let T be a minimum
spanning tree of a
weighted graph G
Let e be an edge of G
that is not in T and let C
be the cycle formed by e
with T
For every edge f of C,
weight(f) ≤ weight(e)

Proof:
By contradiction
If weight(f) > weight(e) we
can get a spanning tree
of smaller weight by
replacing e with f

8
4

2 3
6

7

7

9

8
e

C
f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

Graphs 101

U V

Partition Property
Partition Property:

Consider a partition of the vertices of
G into subsets U and V
Let e be an edge of minimum weight
across the partition
There is a minimum spanning tree of
G containing edge e

Proof:
Let T be an MST of G
If T does not contain e, consider the
cycle C formed by e with T and let f
be an edge of C across the partition
By the cycle property,

weight(f) ≤ weight(e)
Thus, weight(f) = weight(e)
We obtain another MST by replacing
f with e

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V

Graphs 102

Prim-Jarnik’s Algorithm
Similar to Dijkstra’s algorithm (for a connected graph)
We pick an arbitrary vertex s and we grow the MST as a
cloud of vertices, starting from s
We store with each vertex v a label d(v) = the smallest
weight of an edge connecting v to a vertex in the cloud
At each step:

We add to the cloud the
vertex u outside the cloud
with the smallest distance
label

We update the labels of the
vertices adjacent to u

Graphs 103

Prim-Jarnik’s Algorithm (cont.)
A priority queue stores
the vertices outside the
cloud

Key: distance
Element: vertex

Locator-based methods
insert(k,e) returns a
locator
replaceKey(l,k) changes
the key of an item

We store three labels
with each vertex:

Distance
Parent edge in MST
Locator in priority queue

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Graphs 104

Example

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

8 ∞

∞

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 ∞

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 7

2

5 4

7

Graphs 105

Example (contd.)

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

B
D

C

A

F

E

7
4

2
8

5

7

3

9

8

0 3

2

5 4

7

Graphs 106

Analysis
Graph operations

Method incidentEdges is called once for each
vertex

Label operations
We set/get the distance, parent and locator
labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations
Each vertex is inserted once into and
removed once from the priority queue,
where each insertion or removal takes O(log
n) time
The key of a vertex w in the priority queue is
modified at most deg(w) times, where each
key change takes O(log n) time

Prim-Jarnik’s algorithm runs in O((n + m)
log n) time provided the graph is
represented by the adjacency list structure

Recall that Σv deg(v) = 2m
The running time is O(m log n) since the
graph is connected

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)

Graphs 107

Kruskal’s Algorithm
A priority queue stores
the edges outside the
cloud

Key: weight
Element: edge

At the end of the
algorithm

We are left with one
cloud that encompasses
the MST
A tree T which is our
MST

Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of {v}
let Q be a priority queue.
Insert all edges into Q using their
weights as the key
T ∅
while T has fewer than n-1 edges do

edge e = T.removeMin()
Let u, v be the endpoints of e
if Cloud(v) ≠ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T

Graphs 108

Kruskal
Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 109

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Example

Graphs 110

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 111

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 112

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 113

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 114

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 115

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 116

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 117

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 118

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 119

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 120

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 121

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846 621

802

1464

1235

337

Graphs 122

Data Structure for
Kruskal Algortihm

The algorithm maintains a forest of trees
An edge is accepted if it connects distinct trees
We need a data structure that maintains a partition,
i.e., a collection of disjoint sets, with the operations:
-find(u): return the set storing u
-union(u,v): replace the sets storing u and v with
their union

Graphs 123

Representation of a
Partition

Each set is stored in a sequence
Each element has a reference back to the set

operation find(u) takes O(1) time, and returns the set of
which u is a member.
in operation union(u,v), we move the elements of the
smaller set to the sequence of the larger set and update
their references
the time for operation union(u,v) is min(nu,nv), where nu
and nv are the sizes of the sets storing u and v

Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

Graphs 124

Partition-Based
Implementation

A partition-based version of Kruskal’s Algorithm
performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do

(u,v) ← Q.removeMinElement()
if P.find(u) != P.find(v) then

Add (u,v) to T
P.union(u,v)

return T

Running time:
O((n+m)log n)

Graphs 125

Baruvka’s Algorithm
Like Kruskal’s Algorithm, Baruvka’s algorithm grows many
“clouds” at once.

Each iteration of the while-loop halves the number of connected
compontents in T.

The running time is O(m log n).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than n-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T

Graphs 126

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846
621

802

1464

1235

337

Baruvka
Example

Graphs 127

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846
621

802

1464

1235

337

Graphs 128

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946
1090

1121

2342

1846
621

802

1464

1235

337

Graphs 129

Traveling Salesperson Problem
A tour of a graph is a spanning cycle
(e.g., a cycle that goes through all
the vertices)
A traveling salesperson tour of a
weighted graph is a tour that is
simple (i.e., no repeated vertices or
edges) and has has minimum weight
No polynomial-time algorithms are
known for computing traveling
salesperson tours
The traveling salesperson problem
(TSP) is a major open problem in
computer science

Find a polynomial-time algorithm
computing a traveling salesperson
tour or prove that none exists

B
D

C

A

F

E

7
4

2
8

5

3

2

6

1

Example of traveling
salesperson tour
(with weight 17)

