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Outline and Reading
Graphs (§12.1)

Definition
Applications
Terminology
Properties
ADT

Data structures for graphs (§12.2)
Edge list structure
Adjacency list structure
Adjacency matrix structure
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Graph
A graph is a pair (V, E), where

V is a set of nodes, called vertices
E is a collection of pairs of vertices, called edges
Vertices and edges are positions and store elements

Example:
A vertex represents an airport and stores the three-letter airport code
An edge represents a flight route between two airports and stores the 
mileage of the route
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Edge Types
Directed edge

ordered pair of vertices (u,v)
first vertex u is the origin
second vertex v is the destination
e.g., a flight

Undirected edge
unordered pair of vertices (u,v)
e.g., a flight route

Directed graph
all the edges are directed
e.g., route network

Undirected graph
all the edges are undirected
e.g., flight network

ORD PVD
flight

AA 1206

ORD PVD849
miles
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John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications
Electronic circuits

Printed circuit board
Integrated circuit

Transportation networks
Highway network
Flight network

Computer networks
Local area network
Internet
Web

Databases
Entity-relationship diagram
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Terminology
End vertices (or endpoints) of 
an edge

U and V are the endpoints of a
Edges incident on a vertex

a, d, and b are incident on V
Adjacent vertices

U and V are adjacent
Degree of a vertex

X has degree 5 
Parallel edges

h and i are parallel edges
Self-loop

j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j
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P1

Terminology (cont.)
Path

sequence of alternating 
vertices and edges 
begins with a vertex
ends with a vertex
each edge is preceded and 
followed by its endpoints

Simple path
path such that all its vertices 
and edges are distinct

Examples
P1=(V,b,X,h,Z) is a simple path
P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 
path that is not simple

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2
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Terminology (cont.)
Cycle

circular sequence of alternating 
vertices and edges 
each edge is preceded and 
followed by its endpoints

Simple cycle
cycle such that all its vertices 
and edges are distinct

Examples
C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 
simple cycle
C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)
is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2
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Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
Σv deg(v) = 2m
Proof: each edge is 

counted twice
Property 2

In an undirected graph 
with no self-loops and 
no multiple edges
m ≤ n (n − 1)/2

Proof: each vertex has 
degree at most (n − 1)

What is the bound for a 
directed graph?

Example
n = 4
m = 6
deg(v) = 3
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Main Methods of the Graph ADT
Vertices and edges

are positions
store elements

Accessor methods
aVertex()
incidentEdges(v)
endVertices(e)
isDirected(e)
origin(e)
destination(e)
opposite(v, e)
areAdjacent(v, w)

Update methods
insertVertex(o)
insertEdge(v, w, o)
insertDirectedEdge(v, w, o)
removeVertex(v)
removeEdge(e)

Generic methods
numVertices()
numEdges()
vertices()
edges()
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Edge List Structure
Vertex object

element
reference to position in 
vertex sequence

Edge object
element
origin vertex object
destination vertex object
reference to position in 
edge sequence

Vertex sequence
sequence of vertex 
objects

Edge sequence
sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d
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Adjacency List Structure
Edge list structure
Incidence sequence 
for each vertex

sequence of 
references to edge 
objects of incident 
edges

Augmented edge 
objects

references to 
associated 
positions in 
incidence 
sequences of end 
vertices

u

v

w
a b

a

u v w

b
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Adjacency Matrix Structure
Edge list structure
Augmented vertex 
objects

Integer key (index) 
associated with vertex

2D-array adjacency 
array

Reference to edge 
object for adjacent 
vertices
Null for non 
nonadjacent vertices

The “old fashioned”
version just has 0 for 
no edge and 1 for edge

u

v

w
a b

2

1

0

210

∅∅

∅

∅∅

a

u v w0 1 2

b
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Asymptotic Performance

n2n + mn + mSpace

n2deg(v)mremoveVertex(v)
111insertEdge(v, w, o)
n211insertVertex(o)

111removeEdge(e)

1min(deg(v), deg(w))mareAdjacent (v, w)
ndeg(v)mincidentEdges(v)

Adjacency 
Matrix

Adjacency
List

Edge
List

n vertices, m edges
no parallel edges
no self-loops
Bounds are “big-Oh”
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Depth-First Search

DB

A

C

E
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Outline and Reading
Definitions (§12.1)

Subgraph
Connectivity
Spanning trees and forests

Depth-first search (§12.3.1)
Algorithm
Example
Properties
Analysis

Applications of DFS
Path finding
Cycle finding
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Subgraphs
A subgraph S of a graph 
G is a graph such that 

The vertices of S are a 
subset of the vertices of G
The edges of S are a 
subset of the edges of G

A spanning subgraph of G 
is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph
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Connectivity

A graph is 
connected if there is 
a path between 
every pair of 
vertices
A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G

Connected graph

Non connected graph with two 
connected components
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Trees and Forests
A (free) tree is an 
undirected graph T such 
that

T is connected
T has no cycles

This definition of tree is 
different from the one of 
a rooted tree

A forest is an undirected 
graph without cycles
The connected 
components of a forest 
are trees

Tree

Forest
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Spanning Trees and Forests
A spanning tree of a 
connected graph is a 
spanning subgraph that is 
a tree
A spanning tree is not 
unique unless the graph is 
a tree
Spanning trees have 
applications to the design 
of communication 
networks
A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree
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Depth-First Search
Depth-first search (DFS) 
is a general technique 
for traversing a graph
A DFS traversal of a 
graph G 

Visits all the vertices and 
edges of G
Determines whether G is 
connected
Computes the connected 
components of G
Computes a spanning 
forest of G

DFS on a graph with n
vertices and m edges 
takes O(n + m ) time
DFS can be further 
extended to solve other 
graph problems

Find and report a path 
between two given 
vertices
Find a cycle in the graph

Depth-first search is to 
graphs what Euler tour 
is to binary trees
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DFS Algorithm
The algorithm uses a mechanism 
for setting and getting “labels” of 
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)
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Example

DB
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C

E

DB
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E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)
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DFS and Maze Traversal 
The DFS algorithm is 
similar to a classic 
strategy for exploring 
a maze

We mark each 
intersection, corner 
and dead end (vertex) 
visited
We mark each corridor 
(edge ) traversed
We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)
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Properties of DFS
Property 1

DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v

DB

A

C

E
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Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
DFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

Recall that Σv deg(v) = 2m
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Path Finding
We can specialize the DFS 
algorithm to find a path 
between two given 
vertices u and z
We call DFS(G, u) with u
as the start vertex
We use a stack S to keep 
track of the path between 
the start vertex and the 
current vertex
As soon as destination 
vertex z is encountered, 
we return the path as the 
contents of the stack 

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if  v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)
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Cycle Finding
We can specialize the 
DFS algorithm to find a 
simple cycle
We use a stack S to 
keep track of the path 
between the start vertex 
and the current vertex
As soon as a back edge 
(v, w) is encountered, 
we return the cycle as 
the portion of the stack 
from the top to vertex w

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)
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Breadth-First Search

CB

A

E

D

L0

L1

F
L2
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Outline and Reading
Breadth-first search (§12.3.2)

Algorithm
Example
Properties
Analysis
Applications

DFS vs. BFS
Comparison of applications
Comparison of edge labels
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Breadth-First Search
Breadth-first search 
(BFS) is a general 
technique for traversing 
a graph
A BFS traversal of a 
graph G 

Visits all the vertices and 
edges of G
Determines whether G is 
connected
Computes the connected 
components of G
Computes a spanning 
forest of G

BFS on a graph with n
vertices and m edges 
takes O(n + m ) time
BFS can be further 
extended to solve other 
graph problems

Find and report a path 
with the minimum 
number of edges 
between two given 
vertices 
Find a simple cycle, if 
there is one
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BFS Algorithm
The algorithm uses a 
mechanism for setting and 
getting “labels” of vertices 
and edges

Algorithm BFS(G, s)
L0 ← new empty sequence
L0.insertLast(s)
setLabel(s, VISITED)
i ← 0
while ¬Li.isEmpty()

Li +1 ← new empty sequence
for all v ∈ Li.elements() 

for all e ∈ G.incidentEdges(v)
if getLabel(e) = UNEXPLORED

w ← opposite(v,e)
if  getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
setLabel(w, VISITED)
Li +1.insertLast(w)

else
setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)
Input graph G
Output labeling of the edges 

and partition of the 
vertices  of G 

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

BFS(G, v)
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Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)
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Example (cont.)
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Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts
of Gs

Property 3
For each vertex v in Li

The path of  Ts from s to v has i
edges 
Every path from s to v in Gs has at 
least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F
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Analysis
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or CROSS

Each vertex is inserted once into a sequence Li
Method incidentEdges() is called once for each vertex
BFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

Recall that Σv deg(v) = 2m
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Applications
Using the template method pattern, we can 
specialize the BFS traversal of a graph G to 
solve the following problems in O(n + m) time

Compute the connected components of G
Compute a spanning forest of G
Find a simple cycle in G, or report that G is a 
forest
Given two vertices of G, find a path in G between 
them with the minimum number of edges, or 
report that no such path exists
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DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

√Biconnected components

√Shortest paths

√√
Spanning forest, connected 
components, paths, cycles

BFSDFSApplications
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DFS vs. BFS (cont.)
Back edge (v,w)

w is an ancestor of v in 
the tree of discovery 
edges

Cross edge (v,w)
w is in the same level as 
v or in the next level in 
the tree of discovery 
edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS
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Directed Graphs
JFK

BOS

MIA

ORD

LAX
DFW

SFO
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Outline and Reading (§12.4)

Reachability (§12.4.1)
Directed DFS
Strong connectivity

Transitive closure (§12.4.2)
The Floyd-Warshall Algorithm

Directed Acyclic Graphs (DAG’s) (§12.4.3)
Topological Sorting
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Digraphs

A digraph is a graph 
whose edges are all 
directed

Short for “directed graph”

Applications
one-way streets
flights
task scheduling A

C

E

B

D
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Digraph Properties

A graph G=(V,E) such that
Each edge goes in one direction:

Edge (a,b) goes from a to b, but not b to a.

If G is simple, m < n*(n-1).
If we keep in-edges and out-edges in separate 
adjacency lists, we can perform listing of in-
edges and out-edges in time proportional to 
their size.

A

C

E

B

D
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Digraph Application
Scheduling: edge (a,b) means task a must be 
completed before b can be started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171
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Directed DFS
We can specialize 
the traversal 
algorithms (DFS and 
BFS) to digraphs by 
traversing edges 
only along their 
direction
A directed DFS 
starting a a vertex s
determines the 
vertices reachable 
from s

A

C

E

B

D
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Reachability

DFS tree rooted at v: vertices reachable 
from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F



Graphs 49

Strong Connectivity
Each vertex can reach all other vertices

a

d

c

b

e

f

g
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Pick a vertex v in G.
Perform a DFS from v in G.

If there’s a w not visited, print “no”.

Let G’ be G with edges reversed.
Perform a DFS from v in G’.

If there’s a w not visited, print “no”.
Else, print “yes”.

Running time: O(n+m).

Strong Connectivity 
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g
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Maximal subgraphs such that each vertex can reach 
all other vertices in the subgraph
Can also be done in O(n+m) time using DFS

Strongly Connected 
Components

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g
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Transitive Closure
Given a digraph G, the 
transitive closure of G is the 
digraph G* such that

G* has the same vertices 
as G
if G has a directed path 
from u to v (u ≠ v), G*
has a directed edge from 
u to v

The transitive closure 
provides reachability 
information about a digraph

B

A

D

C

E

B

A

D

C

E

G

G*
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Computing the 
Transitive Closure

We can perform 
DFS starting at 
each vertex

O(n(n+m))

If there's a way to get  
from A to B and from        
B to C, then there's a        
way to get from A to C.

Alternatively ... Use 
dynamic programming: 
The Floyd-Warshall
Algorithm
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Floyd-Warshall
Transitive Closure

Idea #1: Number the vertices 1, 2, …, n.
Idea #2: Consider paths that use only 
vertices numbered 1, 2, …, k, as 
intermediate vertices:

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(add this edge if it’s not already in)
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Floyd-Warshall’s Algorithm
Floyd-Warshall’s algorithm 
numbers the vertices of G as 
v1 , …, vn and computes a 
series of digraphs G0, …, Gn

G0=G
Gk has a directed edge (vi, vj) 
if G has a directed path from 
vi to vj with intermediate 
vertices in the set {v1 , …, vk}

We have that Gn = G*
In phase k, digraph Gk is 
computed from Gk − 1

Running time: O(n3), 
assuming areAdjacent is O(1) 
(e.g., adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G* of G
i ← 1
for all v ∈ G.vertices()

denote v as vi
i ← i + 1

G0 ← G
for k ← 1 to n do

Gk ← Gk − 1
for i ← 1 to n (i ≠ k) do

for j ← 1 to n (j ≠ i, k) do
if Gk − 1.areAdjacent(vi, vk) ∧

Gk − 1.areAdjacent(vk, vj)
if ¬Gk.areAdjacent(vi, vj)

Gk.insertDirectedEdge(vi, vj , k)
return Gn
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Floyd-Warshall Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO

v2

v1
v3

v4

v5

v6

v7
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Floyd-Warshall, Iteration 1

JFK
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MIA
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v5

v6

v7
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Floyd-Warshall, Iteration 2

JFK

BOS

MIA
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DFW
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v2

v1
v3
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v5

v6

v7
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Floyd-Warshall, Iteration 3

JFK

BOS

MIA

ORD
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SFO

v2
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v5

v6

v7
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Floyd-Warshall, Iteration 4

JFK
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MIA

ORD
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v2
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v5

v6

v7
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Floyd-Warshall, Iteration 5

JFK
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v5

v6

v7
BOS
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Floyd-Warshall, Iteration 6
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Floyd-Warshall, Conclusion

JFK

MIA

ORD

LAX
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v2

v1
v3

v4

v5

v6

v7
BOS
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DAGs and Topological Ordering
A directed acyclic graph (DAG) is a 
digraph that has no directed cycles
A topological ordering of a digraph 
is a numbering 

v1 , …, vn

of the vertices such that for every 
edge (vi , vj), we have i < j
Example: in a task scheduling 
digraph, a topological ordering a 
task sequence that satisfies the 
precedence constraints

Theorem
A digraph admits a topological 
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological 
ordering of G

v1

v2

v3

v4 v5
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write c.s. program

play

Topological Sorting
Number vertices so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical day1

2 3

4 5

6

7

8

9

10
11

Go out w/ friends



Graphs 66

Running time: O(n + m).  Why?

Algorithm for Topological Sorting

Method TopologicalSort(G)
H ← G // Temporary copy of G
n ← G.numVertices()
while H is not empty do

Let v be a vertex with no outgoing edges
Label v ← n
n ← n - 1
Remove v from H
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Topological Sorting 
Algorithm using DFS

O(n+m) time

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the vertices of G

in the connected component of v
setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
topologicalDFS(G, w)

else
{e is a forward or cross edge}

Label v with topological number n
n ← n - 1

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

n ← G.numVertices()
for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)
for all e ∈ G.edges()

setLabel(e, UNEXPLORED)
for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED
topologicalDFS(G, v)
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Topological Sorting Example
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Topological Sorting Example

9
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Topological Sorting Example

8

9
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Topological Sorting Example

7
8
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Topological Sorting Example
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Topological Sorting Example
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Shortest Paths
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Outline and Reading
Weighted graphs (§12.1)

Shortest path problem
Shortest path properties

Dijkstra’s algorithm  (§12.6.1)
Algorithm
Edge relaxation

The Bellman-Ford algorithm  
Shortest paths in DAGs
All-pairs shortest paths 
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Weighted Graphs
In a weighted graph, each edge has an associated numerical 
value, called the weight of the edge
Edge weights may represent distances, costs, etc.
Example:

In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports
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Shortest Path Problem
Given a weighted graph and two vertices u and v, we want to 
find a path of minimum total weight between u and v.

Length of a path is the sum of the weights of its edges.
Example:

Shortest path between Providence and Honolulu
Applications

Internet packet routing 
Flight reservations
Driving directions
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Shortest Path Properties
Property 1:

A subpath of a shortest path is itself a shortest path
Property 2:

There is a tree of shortest paths from a start vertex to all the other 
vertices

Example:
Tree of shortest paths from Providence
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Dijkstra’s Algorithm
The distance of a vertex 
v from a vertex s is the 
length of a shortest path 
between s and v
Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s
Assumptions:

the graph is connected
the edges are 
undirected
the edge weights are 
nonnegative

We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices
We store with each vertex v a 
label d(v) representing the 
distance of v from s in the 
subgraph consisting of the cloud 
and its adjacent vertices
At each step

We add to the cloud the vertex 
u outside the cloud with the 
smallest distance label, d(u)
We update the labels of the 
vertices adjacent to u (edge 
relaxation)
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Edge Relaxation
Consider an edge e = (u,z)
such that

u is the vertex most recently 
added to the cloud
z is not in the cloud

The relaxation of edge e 
updates distance d(z) as 
follows:
d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

10

zs
u

d(z) = 60
d(u) = 50

10

zs
u

e

e
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Example (cont.)
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Dijkstra’s Algorithm
A priority queue stores 
the vertices outside the 
cloud

Key: distance
Element: vertex

Locator-based methods
insert(k,e) returns a 
locator 
replaceKey(l,k) changes 
the key of an item

We store two labels 
with each vertex:

distance (d(v) label)
locator in priority 
queue

Algorithm DijkstraDistances(G, s)
Q ← new heap-based priority queue
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
Q.replaceKey(getLocator(z),r)
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Analysis
Graph operations

Method incidentEdges is called once for each vertex
Label operations

We set/get the distance and locator labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations
Each vertex is inserted once into and removed once from the priority 
queue, where each insertion or removal takes O(log n) time
The key of a vertex in the priority queue is modified at most deg(w) 
times, where each key change takes O(log n) time 

Dijkstra’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure

Recall that Σv deg(v) = 2m
The running time can also be expressed as O(m log n) since the 
graph is connected
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Extension
We can extend 
Dijkstra’s algorithm to 
return a tree of 
shortest paths from 
the start vertex to all 
other vertices
We store with each 
vertex a third label:

parent edge in the 
shortest path tree

In the edge relaxation 
step, we update the 
parent label

Algorithm DijkstraShortestPathsTree(G, s)

…

for all v ∈ G.vertices()
…
setParent(v, ∅)
…

for all e ∈ G.incidentEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Why Dijkstra’s Algorithm 
Works

Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.
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Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed.
When the previous node, D, on the 
true shortest path was considered, 
its distance was correct.
But the edge (D,F) was relaxed at 
that time!
Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex.
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Why It Doesn’t Work for 
Negative-Weight Edges

If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud. 

CB
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F

0
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5 9

48

7 1
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6

0 -8

Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.

C’s true distance is 1, but 
it is already in the cloud 

with d(C)=5!
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Bellman-Ford Algorithm
Works even with negative-
weight edges
Must assume directed 
edges (for otherwise we 
would have negative-
weight cycles)
Iteration i finds all shortest 
paths that use i edges.
Running time: O(nm).
Can be extended to detect 
a negative-weight cycle if it 
exists 

How?

Algorithm BellmanFord(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

for i ← 1 to n-1 do
for each e ∈ G.edges()

{ relax edge e }
u ← G.origin(e)
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
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DAG-based Algorithm

Works even with 
negative-weight edges
Uses topological order
Uses simple data 
structures
Is much faster than 
Dijkstra’s algorithm
Running time: O(n+m).

Algorithm DagDistances(G, s)
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

Perform a topological sort of the vertices
for u ← 1 to n do    {in topological order}

for each e ∈ G.outEdges(u)
{ relax edge e }
z ← G.opposite(u,e)
r ← getDistance(u) + weight(e)
if r < getDistance(z)

setDistance(z,r)
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All-Pairs Shortest Paths
Find the distance 
between every pair of 
vertices in a weighted 
directed graph G.
We can make n calls to 
Dijkstra’s algorithm (if no 
negative edges), which 
takes O(nmlog n) time.
Likewise, n calls to 
Bellman-Ford would take 
O(n2m) time.
We can achieve O(n3) 
time using dynamic 
programming (similar to 
the Floyd-Warshall
algorithm).

Algorithm AllPair(G) {assumes vertices 1,…,n}
for all vertex pairs (i,j) 

if i = j
D0[i,i] ← 0

else if (i,j) is an edge in G
D0[i,j] ← weight of edge (i,j)

else
D0[i,j] ← + ∞

for k ← 1 to n do    
for i ← 1 to n do    

for j ← 1 to n do    
Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

return Dn

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(compute weight of this edge)
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Minimum Spanning Trees
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Outline and Reading

Minimum Spanning Trees (§12.7)
Definitions
A crucial fact

The Prim-Jarnik Algorithm (§12.7.2)

Kruskal's Algorithm (§12.7.1)

Baruvka's Algorithm
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Minimum Spanning Tree
Spanning subgraph

Subgraph of a graph G
containing all the vertices of G

Spanning tree
Spanning subgraph that is 
itself a (free) tree

Minimum spanning tree (MST)
Spanning tree of a weighted 
graph with minimum total 
edge weight

Applications
Communications networks
Transportation networks
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Cycle Property
Cycle Property:

Let T be a minimum 
spanning tree of a 
weighted graph G
Let e be an edge of G
that is not in T and let C
be the cycle formed by e
with T
For every edge f of C,
weight(f) ≤ weight(e)

Proof:
By contradiction
If weight(f) > weight(e) we 
can get a spanning tree 
of smaller weight by 
replacing e with f

8
4

2 3
6

7

7

9

8
e

C
f

8
4

2 3
6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree 
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U V

Partition Property
Partition Property:

Consider a partition of the vertices of 
G into subsets U and V
Let e be an edge of minimum weight 
across the partition
There is a minimum spanning tree of 
G containing edge e

Proof:
Let T be an MST of G
If T does not contain e, consider the 
cycle C formed by e with T and let  f
be an edge of C across the partition
By the cycle property,

weight(f) ≤ weight(e)
Thus, weight(f) = weight(e)
We obtain another MST by replacing 
f  with e

7
4

2 8
5

7

3

9

8 e

f

7
4

2 8
5

7

3

9

8 e

f

Replacing f with e yields
another MST

U V
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Prim-Jarnik’s Algorithm
Similar to Dijkstra’s algorithm (for a connected graph)
We pick an arbitrary vertex s and we grow the MST as a 
cloud of vertices, starting from s
We store with each vertex v a label d(v) = the smallest 
weight of an edge connecting v to a vertex in the cloud 
At each step:

We add to the cloud the 
vertex u outside the cloud 
with the smallest distance 
label

We update the labels of the 
vertices adjacent to u
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Prim-Jarnik’s Algorithm (cont.)
A priority queue stores 
the vertices outside the 
cloud

Key: distance
Element: vertex

Locator-based methods
insert(k,e) returns a 
locator 
replaceKey(l,k) changes 
the key of an item

We store three labels 
with each vertex:

Distance
Parent edge in MST
Locator in priority queue

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Example
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Example (contd.)
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Analysis
Graph operations

Method incidentEdges is called once for each 
vertex

Label operations
We set/get the distance, parent and locator 
labels of vertex z O(deg(z)) times
Setting/getting a label takes O(1) time

Priority queue operations
Each vertex is inserted once into and 
removed once from the priority queue, 
where each insertion or removal takes O(log 
n) time
The key of a vertex w in the priority queue is 
modified at most deg(w) times, where each 
key change takes O(log n) time 

Prim-Jarnik’s algorithm runs in O((n + m) 
log n) time provided the graph is 
represented by the adjacency list structure

Recall that Σv deg(v) = 2m
The running time is O(m log n) since the 
graph is connected

Algorithm PrimJarnikMST(G)
Q ← new heap-based priority queue
s ← a vertex of G
for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else
setDistance(v, ∞)

setParent(v, ∅)
l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()
u ← Q.removeMin()
for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)
r ← weight(e)
if r < getDistance(z)

setDistance(z,r)
setParent(z,e)
Q.replaceKey(getLocator(z),r)
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Kruskal’s Algorithm
A priority queue stores 
the edges outside the 
cloud

Key: weight
Element: edge

At the end of the 
algorithm

We are left with one 
cloud that encompasses 
the MST
A tree T which is our 
MST

Algorithm KruskalMST(G)
for each vertex V in G do

define a Cloud(v) of {v}
let Q be a priority queue.
Insert all edges into Q using their 
weights as the key
T ∅
while T has fewer than n-1 edges do

edge e = T.removeMin()
Let u, v be the endpoints of e
if Cloud(v) ≠ Cloud(u) then

Add edge e to T
Merge Cloud(v) and Cloud(u)

return T
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Kruskal
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Data Structure for 
Kruskal Algortihm

The algorithm maintains a forest of trees
An edge is accepted if it connects distinct trees
We need a data structure that maintains a partition, 
i.e., a collection of disjoint sets, with the operations:
-find(u): return the set storing u
-union(u,v): replace the sets storing u and v with 
their union
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Representation of a 
Partition

Each set is stored in a sequence
Each element has a reference back to the set

operation find(u) takes O(1) time, and returns the set of 
which u is a member.
in operation union(u,v), we move the elements of the 
smaller set to the sequence of the larger set and update 
their references
the time for operation union(u,v) is min(nu,nv), where nu
and nv are the sizes of the sets storing u and v

Whenever an element is processed, it goes into a 
set of size at least double, hence each element is 
processed at most log n times
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Partition-Based 
Implementation

A partition-based version of Kruskal’s Algorithm 
performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G):
Input: A weighted graph G.
Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.
Let Q be a priority queue storing the edges of G, sorted by their weights
Let T be an initially-empty tree
while Q is not empty do

(u,v) ← Q.removeMinElement()
if P.find(u) != P.find(v) then

Add (u,v) to T
P.union(u,v)

return T

Running time: 
O((n+m)log n)
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Baruvka’s Algorithm
Like Kruskal’s Algorithm, Baruvka’s algorithm grows many 
“clouds” at once.

Each iteration of the while-loop halves the number of connected 
compontents in T.

The running time is O(m log n).

Algorithm BaruvkaMST(G)
T V {just the vertices of G}

while T has fewer than n-1 edges do
for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.
if e is not already in T then

Add edge e to T
return T
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Traveling Salesperson Problem
A tour of a graph is a spanning cycle 
(e.g., a cycle that goes through all 
the vertices)
A traveling salesperson tour of a 
weighted graph is a tour that is 
simple (i.e., no repeated vertices or 
edges) and has has minimum weight
No polynomial-time algorithms are 
known for computing traveling 
salesperson tours
The traveling salesperson problem 
(TSP) is a major open problem in 
computer science

Find a polynomial-time algorithm  
computing a traveling salesperson 
tour or prove that none exists
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(with weight 17)


