Pattern Matching
Outline and Reading

- **Strings** (§11.1)
- **Pattern matching algorithms**
 - Brute-force algorithm (§11.2.1)
 - Boyer-Moore algorithm (§11.2.2)
 - Knuth-Morris-Pratt algorithm (§11.2.3)
Strings

A string is a sequence of characters

Examples of strings:
- C++ program
- HTML document
- DNA sequence
- Digitized image

An alphabet Σ is the set of possible characters for a family of strings

Example of alphabets:
- ASCII (used by C and C++)
- Unicode (used by Java)
- $\{0, 1\}$
- $\{A, C, G, T\}$

Let P be a string of size m
- A substring $P[i..j]$ of P is the subsequence of P consisting of the characters with ranks between i and j
- A prefix of P is a substring of the type $P[0..i]$
- A suffix of P is a substring of the type $P[i..m-1]$

Given strings T (text) and P (pattern), the pattern matching problem consists of finding a substring of T equal to P

Applications:
- Text editors
- Search engines
- Biological research
Brute-Force Algorithm

The brute-force pattern matching algorithm compares the pattern P with the text T for each possible shift of P relative to T, until either

- a match is found, or
- all placements of the pattern have been tried

Brute-force pattern matching runs in time $O(nm)$

Example of worst case:
- $T = \text{aaa} \ldots \text{ah}$
- $P = \text{aaah}$
- may occur in images and DNA sequences
- unlikely in English text

Algorithm $\text{BruteForceMatch}(T, P)$

Input text T of size n and pattern P of size m

Output starting index of a substring of T equal to P or -1 if no such substring exists

for $i \leftarrow 0$ to $n - m$

{ test shift i of the pattern }

$j \leftarrow 0$

while $j < m \land T[i + j] = P[j]$

$j \leftarrow j + 1$

if $j = m$

return i {match at i}

{else mismatch at i}

return -1 {no match anywhere}
The Boyer-Moore's pattern matching algorithm is based on two heuristics.

Looking-glass heuristic: Compare P with a subsequence of T moving backwards.

Character-jump heuristic: When a mismatch occurs at $T[i] = c$:
- If P contains c, shift P to align the last occurrence of c in P with $T[i]$.
- Else, shift P to align $P[0]$ with $T[i+1]$.

Example

```
pattern matching algorithm
r i t h m
r i t h m
r i t h m
r i t h m
r i t h m
r i t h m
```

Pattern Matching
Last-Occurrence Function

Boyer-Moore’s algorithm preprocesses the pattern P and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where $L(c)$ is defined as:

- the largest index i such that $P[i] = c$ or
- -1 if no such index exists.

Example:

- $\Sigma = \{a, b, c, d\}$
- $P = abacab$

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(c)$</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>

The last-occurrence function can be represented by an array indexed by the numeric codes of the characters.

The last-occurrence function can be computed in time $O(m + s)$, where m is the size of P and s is the size of Σ.
The Boyer-Moore Algorithm

Algorithm `BoyerMooreMatch(T, P, \Sigma)`

\[L \leftarrow \text{lastOccurrenceFunction}(P, \Sigma) \]
\[i \leftarrow m - 1 \]
\[j \leftarrow m - 1 \]

repeat
 if \(T[i] = P[j] \)
 if \(j = 0 \)
 return \(i \) \{ match at \(i \) \}
 else
 \(i \leftarrow i - 1 \)
 \(j \leftarrow j - 1 \)
 else
 \{ character-jump \}
 \(l \leftarrow L[T[i]] \)
 \(i \leftarrow i + m - \min(j, 1 + l) \)
 \(j \leftarrow m - 1 \)
until \(i > n - 1 \)
return \(-1\) \{ no match \}

Case 1: \(j \leq 1 + l \)

Case 2: \(1 + l \leq j \)
Example
Analysis

- Boyer-Moore’s algorithm runs in time $O(nm + s)$
- Example of worst case:
 - $T = \text{aaa ... a}$
 - $P = \text{baaa}$
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore’s algorithm is significantly faster than the brute-force algorithm on English text
The KMP Algorithm - Motivation

Knuth-Morris-Pratt’s algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.

When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?

Answer: the largest prefix of $P[0..j]$ that is a suffix of $P[1..j]$

No need to repeat these comparisons

Resume comparing here
KMP Failure Function

Knuth-Morris-Pratt’s algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself.

The failure function $F(j)$ is defined as the size of the largest prefix of $P[0..j]$ that is also a suffix of $P[1..j]$.

Knuth-Morris-Pratt’s algorithm modifies the brute-force algorithm so that if a mismatch occurs at $P[j] \neq T[i]$ we set $j \leftarrow F(j - 1)$.

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[j]$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>$F(j)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
The KMP Algorithm

- The failure function can be represented by an array and can be computed in $O(m)$ time.

- At each iteration of the while-loop, either
 - i increases by one, or
 - the shift amount $i - j$ increases by at least one (observe that $F(j - 1) < j$)

- Hence, there are no more than $2n$ iterations of the while-loop.

- Thus, KMP’s algorithm runs in optimal time $O(m + n)$

Algorithm `KMPMatch(T, P)`

```plaintext
F ← failureFunction(P)
i ← 0
j ← 0
while $i < n$
  if $T[i] = P[j]$
    if $j = m - 1$
      return $i - j$ { match }
    else
      $i ← i + 1$
      $j ← j + 1$
  else
    if $j > 0$
      $j ← F[j - 1]$
    else
      $i ← i + 1$

return $-1$ { no match }
```
Computing the Failure Function

- The failure function can be represented by an array and can be computed in \(O(m) \) time.
- The construction is similar to the KMP algorithm itself.
- At each iteration of the while-loop, either
 - \(i \) increases by one, or
 - the shift amount \(i - j \) increases by at least one (observe that \(F(j - 1) < j \))
- Hence, there are no more than \(2m \) iterations of the while-loop

Algorithm \text{failureFunction}(P)

\[
\begin{align*}
F[0] & \leftarrow 0 \\
i & \leftarrow 1 \\
j & \leftarrow 0 \\
\text{while } i < m & \\
\text{if } P[i] = P[j] & \\
\{ \text{we have matched } j + 1 \text{ chars} \} & \\
F[i] & \leftarrow j + 1 \\
i & \leftarrow i + 1 \\
j & \leftarrow j + 1 \\
\text{else if } j > 0 & \\
\{ \text{use failure function to shift } P \} & \\
j & \leftarrow F[j - 1] \\
\text{else} & \\
F[i] & \leftarrow 0 \{ \text{ no match } \} \\
i & \leftarrow i + 1
\end{align*}
\]
Example

![Pattern Matching Example](image)

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P[j]</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>F(j)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Tries
Outline and Reading

- Standard tries (§11.3.1)
- Compressed tries (§11.3.2)
- Suffix tries (§11.3.3)
- Huffman encoding tries (§11.4.1)
Preprocessing Strings

- Preprocessing the pattern speeds up pattern matching queries
 - After preprocessing the pattern, KMP’s algorithm performs pattern matching in time proportional to the text size
- If the text is large, immutable and searched for often (e.g., works by Shakespeare), we may want to preprocess the text instead of the pattern
- A trie is a compact data structure for representing a set of strings, such as all the words in a text
 - A trie supports pattern matching queries in time proportional to the pattern size
The standard trie for a set of strings S is an ordered tree such that:

- Each node but the root is labeled with a character
- The children of a node are alphabetically ordered
- The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings $S = \{ \text{bear, bell, bid, bull, buy, sell, stock, stop} \}$
A standard trie uses $O(n)$ space and supports searches, insertions and deletions in time $O(dm)$, where:

- n: total size of the strings in S
- m: size of the string parameter of the operation
- d: size of the alphabet
Word Matching with a Trie

- We insert the words of the text into a trie.
- Each leaf stores the occurrences of the associated word in the text.
A compressed trie has internal nodes of degree at least two.

It is obtained from standard trie by compressing chains of “redundant” nodes.
Compact Representation

Compact representation of a compressed trie for an array of strings:
- Stores at the nodes ranges of indices instead of substrings
- Uses $O(s)$ space, where s is the number of strings in the array
- Serves as an auxiliary index structure

S[3] = stock

Diagram showing the compact representation with indices and substrings.
Suffix Trie (1)

The suffix trie of a string X is the compressed trie of all the suffixes of X.

```
minimize
0 1 2 3 4 5 6 7
```
Suffix Trie (2)

Compact representation of the suffix trie for a string \(X \) of size \(n \) from an alphabet of size \(d \)

- Uses \(O(n) \) space
- Supports arbitrary pattern matching queries in \(X \) in \(O(dm) \) time, where \(m \) is the size of the pattern

```
minimize
0 1 2 3 4 5 6 7
```

Pattern Matching
Encoding Trie (1)

- A code is a mapping of each character of an alphabet to a binary code-word.
- A prefix code is a binary code such that no code-word is the prefix of another code-word.
- An encoding trie represents a prefix code:
 - Each leaf stores a character.
 - The code word of a character is given by the path from the root to the leaf storing the character (0 for a left child and 1 for a right child).

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>010</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Encoding Trie (2)

- Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X
 - Frequent characters should have long code-words
 - Rare characters should have short code-words

Example
- $X = \text{abracadabra}$
- T_1 encodes X into 29 bits
- T_2 encodes X into 24 bits
Huffman’s Algorithm

- Given a string X, Huffman’s algorithm constructs a prefix code that minimizes the size of the encoding of X.
- It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X.
- A heap-based priority queue is used as an auxiliary structure.

Algorithm $HuffmanEncoding(X)$

Input: string X of size n
Output: optimal encoding trie for X

1. $C \leftarrow distinctCharacters(X)$
2. computeFrequencies(C, X)
3. $Q \leftarrow$ new empty heap
4. for all $c \in C$
 - $T \leftarrow$ new single-node tree storing c
 - $Q.insert(getFrequency(c), T)$
5. while $Q.size() > 1$
 - $f_1 \leftarrow Q.minKey()$
 - $T_1 \leftarrow Q.removeMin()$
 - $f_2 \leftarrow Q.minKey()$
 - $T_2 \leftarrow Q.removeMin()$
 - $T \leftarrow join(T_1, T_2)$
 - $Q.insert(f_1 + f_2, T)$
6. return $Q.removeMin()$
Example

\(X = \text{abracadabra} \)

Frequencies

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Pattern Matching