Merge Sort

Outline and Reading

- Divide-and-conquer paradigm (§10.1.1)
- Merge-sort (§10.1)
 - Algorithm
 - Merging two sorted sequences
 - Merge-sort tree
 - Execution example
 - Analysis

Generic merging and set operations (§10.2)

Summary of sorting algorithms

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data
 S in two disjoint subsets S₁ and S₂
 - Recur: solve the subproblems associated with S₁ and S₂
 - Conquer: combine the solutions for S₁ and S₂ into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Like heap-sort
 - It uses a comparator
 - It has O(n log n) running time
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Recur: recursively sort S₁ and S₂
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

Algorithm mergeSort(S, C) Input sequence S with n elements, comparator C Output sequence S sorted according to C if S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ mergeSort(S_1, C) mergeSort(S_2, C) $S \leftarrow merge(S_1, S_2)$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

Algorithm *merge*(A, B) Input sequences A and B with n/2 elements each **Output** sorted sequence of $A \cup B$ $S \leftarrow$ empty sequence while $\neg A.isEmpty() \land \neg B.isEmpty()$ **if** *A.first*().*element*() < *B.first*().*element*() S.insertLast(A.remove(A.first())) else S.insertLast(B.remove(B.first())) while ¬*A*.*isEmpty*() S.insertLast(A.remove(A.first())) while ¬*B.isEmpty*() S.insertLast(B.remove(B.first()))

5

return S

Sets

Merge-Sort Tree

- each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
- the root is the initial call
- the leaves are calls on subsequences of size 0 or 1

Analysis of Merge-Sort

- The height *h* of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth *i* is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- Thus, the total running time of merge-sort is $O(n \log n)$

Summary of Sorting Algorithms

-

Algorithm	Time	Notes				
selection-sort	O (n ²)	 slow in-place for small data sets (< 1K) 				
insertion-sort	O (n ²)	 slow in-place for small data sets (< 1K) 				
heap-sort	O (n log n)	 ◆ fast ◆ in-place ◆ for large data sets (1K — 1M) 				
merge-sort	O (n log n)	 fast sequential data access for huge data sets (> 1M) 				
	Se	ts 18				

Storing a Set in a List

- We can implement a set with a list
- Elements are stored sorted according to some canonical ordering
- The space used is O(n)
 - Nodes storing set elements in order

Generic Merging (§10.2)

- Generalized merge of two sorted lists
 A and B
- Template method genericMerge
- Auxiliary methods
 - aIsLess
 - bIsLess
 - bothEqual
- Runs in $O(n_A + n_B)$ time provided the auxiliary methods run in O(1) time

Algorithm *genericMerge*(A, B) $S \leftarrow$ empty sequence while $\neg A.isEmpty() \land \neg B.isEmpty()$ $a \leftarrow A.first().element(); b \leftarrow B.first().element()$ if a < balsLess(a, S); A.remove(A.first()) else if b < a**bIsLess(b, S)**; **B.remove(B.first())** else { $\boldsymbol{b} = \boldsymbol{a}$ } bothEqual(a, b, S) A.remove(A.first()); B.remove(B.first()) while ¬*A.isEmpty*() alsLess(a, S); A.remove(A.first()) while ¬*B.isEmpty*() **bIsLess(b, S)**; **B.remove(B.first())** return S

Sets

Using Generic Merge for Set Operations

- For example:
 - For intersection: only copy elements that are duplicated in both list
 - For union: copy every element from both lists except for the duplicates

Set Operations

- We represent a set by the sorted sequence of its elements
- By specializing the auxliliary methods he generic merge algorithm can be used to perform basic set operations:
 - union
 - intersection
 - subtraction
- The running time of an operation on sets A and B should be at most $O(n_A + n_B)$
- Set union: \blacksquare alsLess(a, S) S.insertFirst(a) $\bullet bIsLess(b, S)$ S.insertLast(b) **bothAreEqual(a, b, S)** S. insertLast(a) Set intersection: \blacksquare alsLess(a, S) { do nothing } $\bullet bIsLess(b, S)$ { do nothing } bothAreEqual(a, b, S) S. insertLast(a)

Quick-Sort

Outline and Reading

 \bullet Quick-sort (§10.3) Algorithm Partition step Quick-sort tree Execution example Analysis of quick-sort (§10.3.1) In-place quick-sort (§10.3.1) Summary of sorting algorithms

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into

X

E

L

Sets

G

- L elements less than x
- E elements equal x
- G elements greater than x
- Recur: sort L and G
- Conquer: join *L*, *E* and *G*

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quick-sort takes O(n) time

Sets

Algorithm *partition(S, p)* **Input** sequence *S*, position *p* of pivot Output subsequences *L*, *E*, *G* of the elements of S less than, equal to, or greater than the pivot, resp. *L*, *E*, *G* \leftarrow empty sequences $x \leftarrow S.remove(p)$ while ¬*S.isEmpty*() $y \leftarrow S.remove(S.first())$ if y < x*L.insertLast(y)* else if y = x*E.insertLast(y)* else { y > x } G.insertLast(y) return L, E, G 27

Quick-Sort Tree

- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

$$7 4 9 \underline{6} 2 \rightarrow 2 4 \underline{6} 7 9$$

Sets

Worst-case Running Time

Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- For a node of depth *i*, we expect
 - *i*/2 ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- The recursive calls consider
 - elements with rank less than h
 - elements with rank greater than k

Algorithm *inPlaceQuickSort(S, l, r)*

Input sequence *S*, ranks *l* and *r*

Output sequence *S* with the elements of rank between *l* and *r* rearranged in increasing order

if $l \ge r$

return

- $i \leftarrow$ a random integer between l and r
- $x \leftarrow S.elemAtRank(i)$
- $(h, k) \leftarrow inPlacePartition(x)$
- inPlaceQuickSort(S, l, h 1)inPlaceQuickSort(S, k + 1, r)

In-Place Partitioning

40

Perform the partition using two indices to split S into L and EYG (a similar method can split EYG into E and G).

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9 (pivot = 6)

k

Repeat until j and k cross:

- Scan j to the right until finding an element <a> x.
- Scan k to the left until finding an element < x.</p>
- Swap elements at indices j and k

Summary of Sorting Algorithms

Algorithm	Time	 Notes • in-place • slow (good for small inputs) 					
selection-sort	O (n ²)						
insertion-sort	O (n ²)	in-placeslow (good for small inputs)					
quick-sort	O(n log n) expected	 in-place, randomized fastest (good for large inputs) 					
heap-sort	O (n log n)	 in-place fast (good for large inputs) 					
merge-sort	O (n log n)	 sequential data access fast (good for huge inputs) 					
	Sets	41					

Bucket-Sort and Radix-Sort

Bucket-Sort (§10.5.1)

- Let be *S* be a sequence of *n* (key, element) items with keys in the range [0, N-1]
- Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)
 - Phase 1: Empty sequence *S* by moving each item (*k*, *o*) into its bucket *B*[*k*]
 - Phase 2: For i = 0, ..., N 1, move the items of bucket B[i] to the end of sequence S

Analysis:

- Phase 1 takes O(n) time
- Phase 2 takes O(n + N) time Bucket-sort takes O(n + N) time

Algorithm *bucketSort(S, N)* **Input** sequence *S* of (key, element) items with keys in the range [0, N-1]**Output** sequence *S* sorted by increasing keys $B \leftarrow$ array of N empty sequences while $\neg S.isEmpty()$ $f \leftarrow S.first()$ $(k, o) \leftarrow S.remove(f)$ B[k].insertLast((k, o)) for $i \leftarrow 0$ to N-1while ¬*B*[*i*].*isEmpty*() $f \leftarrow B[i].first()$ $(k, o) \leftarrow B[i].remove(f)$ S.insertLast((k, o))

Properties and Extensions

- Key-type Property
 - The keys are used as indices into an array and cannot be arbitrary objects
 - No external comparator
- Stable Sort Property
 - The relative order of any two items with the same key is preserved after the execution of the algorithm

Extensions

- Integer keys in the range [*a*, *b*]
 - Put item (k, o) into bucket
 B[k a]
- String keys from a set *D* of possible strings, where *D* has constant size (e.g., names of the 50 U.S. states)
 - Sort *D* and compute the rank *r*(*k*) of each string *k* of *D* in the sorted sequence
 - Put item (k, o) into bucket
 B[r(k)]

Lexicographic Order

• A *d*-tuple is a sequence of *d* keys $(k_1, k_2, ..., k_d)$, where key k_i is said to be the *i*-th dimension of the tuple Example: The Cartesian coordinates of a point in space are a 3-tuple The lexicographic order of two *d*-tuples is recursively defined as follows $(x_1, x_2, \dots, x_d) < (y_1, y_2, \dots, y_d)$ \Leftrightarrow $x_1 < y_1 \lor x_1 = y_1 \land (x_2, ..., x_d) < (y_2, ..., y_d)$ I.e., the tuples are compared by the first dimension, then by the second dimension, etc. Sets 46

Lexicographic-Sort

- \bullet Let C_i be the comparator that compares two tuples by their *i*-th dimension \bullet Let *stableSort*(*S*, *C*) be a stable sorting algorithm that uses comparator CLexicographic-sort sorts a sequence of *d*-tuples in lexicographic order by executing d times algorithm stableSort, one per dimension Lexicographic-sort runs in O(dT(n)) time, where T(n) is
 - the running time of *stableSort*

Algorithm *lexicographicSort(S)*

Input sequence *S* of *d*-tuples **Output** sequence *S* sorted in lexicographic order

for $i \leftarrow d$ downto 1 stableSort(S, C_i)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5, 1, 5) (7, 4, 6) (2, 4, 6)

(2, 1, 4) (5, 1, 5) (3, 2, 4) (7, 4, 6) (2, 4, 6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

Sets

Radix-Sort (§10.5.2)

Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension

 Radix-sort is applicable to tuples where the keys in each dimension *i* are integers in the range [0, N – 1]

Algorithm radixSort(S, N) Input sequence S of d-tuples such that $(0, ..., 0) \le (x_1, ..., x_d)$ and $(x_1, ..., x_d) \le (N - 1, ..., N - 1)$ for each tuple $(x_1, ..., x_d)$ in S Output sequence S sorted in lexicographic order for $i \leftarrow d$ downto 1

bucketSort(S, N)

Sets

Radix-Sort for Binary Numbers

Consider a sequence of *n b*-bit integers

 $\boldsymbol{x} = \boldsymbol{x}_{\boldsymbol{b}-1} \dots \boldsymbol{x}_1 \boldsymbol{x}_0$

- We represent each element as a *b*-tuple of integers in the range [0, 1] and apply radix-sort with N = 2
- This application of the radix-sort algorithm runs in O(bn) time
- For example, we can sort a sequence of 32-bit integers in linear time

Algorithm *binaryRadixSort(S)*

Input sequence S of b-bit
integersOutput sequence S sortedreplace each element x
of S with the item (0, x)for $i \leftarrow 0$ to b - 1replace the key k of
each item (k, x) of S
with bit x_i of xbucketSort(S, 2)

Sorting Lower Bound

51

Sets

Comparison-Based Sorting (§10.4)

merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x₁, x₂, ..., x_n.

Let us just count comparisons then.

Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

Decision Tree Height

- The height of this decision tree is a lower bound on the running time
 Every possible input permutation must lead to a separate leaf output.
 - If not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong.
- Since there are n!=1*2*...*n leaves, the height is at least log (n!) minimum height (time)

The Lower Bound

55

 Any comparison-based sorting algorithms takes at least log (n!) time

Therefore, any such algorithm takes time at least

$$\log(n!) \ge \log\left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log(n/2)$$

 That is, any comparison-based sorting algorithm must run in Ω(n log n) time.

Sets

The Selection Problem

57

- Given an integer k and n elements x₁, x₂, ..., x_n, taken from a total order, find the k-th smallest element in this set.
- Of course, we can sort the set in O(n log n) time and then index the k-th element.

Can we solve the selection problem faster?

Quick-Select (§10.7)

- Quick-select is a randomized selection algorithm based on the prune-and-search paradigm:
 - Prune: pick a random element x
 (called pivot) and partition S into

X

 $|L| < k \leq |L| + |E|$

(done)

L

 $k \leq |L|$

Sets

k > |L| + |E|k' = k - |L| - |E|

- L elements less than x
- E elements equal x
- G elements greater than x
- Search: depending on k, either answer is in E, or we need to recur on either L or G

Partition

- We partition an input sequence as in the quick-sort algorithm:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
 - Thus, the partition step of quick-select takes O(n) time

Sets

Algorithm *partition(S, p)* **Input** sequence *S*, position *p* of pivot Output subsequences *L*, *E*, *G* of the elements of S less than, equal to, or greater than the pivot, resp. *L*, *E*, *G* \leftarrow empty sequences $x \leftarrow S.remove(p)$ while ¬*S.isEmpty*() $y \leftarrow S.remove(S.first())$ if y < x*L.insertLast(y)* else if y = x*E.insertLast(y)* else { y > x } *G.insertLast*(y) return L, E, G 59

Quick-Select Visualization

- An execution of quick-select can be visualized by a recursion path
 - Each node represents a recursive call of quick-select, and stores k and the remaining sequence

Expected Running Time, Part 2

- Probabilistic Fact #2: Expectation is a linear function:
 - E(X + Y) = E(X) + E(Y)
 - $\bullet \quad E(cX) = cE(X)$
- Let T(n) denote the expected running time of quick-select.
- By Fact #2,
 - $T(n) \le T(3n/4) + bn^*$ (expected # of calls before a good call)
- By Fact #1,
 - $T(n) \le T(3n/4) + 2bn$
- That is, T(n) is a geometric series:
 - $T(n) \le 2bn + 2b(3/4)n + 2b(3/4)^2n + 2b(3/4)^3n + \dots$
- So T(n) is O(n).

We can solve the selection problem in O(n) expected time. 62

Deterministic Selection

63

- We can do selection in O(n) worst-case time.
 - Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
 - Divide S into n/5 sets of 5 each
 - Find a median in each set
 - Recursively find the median of the "baby" medians.

Min size	1	1	1	1	1	1	1	1	1	1	1	
for I	2	2	2	2	2	2	2	2	2	2	2	
	3	3	3	3	3	3	3	3	3	3	3	Min size
	4	4	4	4	4	4	4	4	4	4	4	
	5	5	5	5	5	5	5	5	5	5	5	for G

See Exercise C-4.24 for details of analysis.

Sets

Master Method

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

• The Master Theorem: 1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

64

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.