\V

Merge Sort

[72|94—>2479]

/\.
[7|2—>27] [9|4—>49]
/\
7 —7 22 [9—)9] [4—)4]

(1.
N

Sets

Outline and Reading

N

Divide-and-conquer paradigm (§10.1.1)
Merge-sort (§10.1)

= Algorithm

= Merging two sorted sequences

= Merge-sort tree

= Execution example

= Analysis

Generic merging and set operations (§10.2)
Summary of sorting algorithms

Sets

N

Divide-and conquer is a
general algorithm design
paradigm:

= Divide: divide the input data

S in two disjoint subsets S;
and S,

= Recur: solve the
subproblems associated
with S;and S,

s Conquer: combine the
solutions for S; and S, into a
solution for S

The base case for the
recursion are subproblems of
sizeOorl

Sets

Divide-and-Conquer

Merge-sort is a sorting

algorithm based on the
divide-and-conquer
paradigm

Like heap-sort

m [t uses a comparator

= It has O(n log n) running
time

Unlike heap-sort

m It does not use an
auxiliary priority queue

= It accesses data in a
sequential manner
(suitable to sort data on a
disk)

Merge-Sort

N

Merge-sort on an input
sequence S with n
elements consists of
three steps:

= Divide: partition S into
two sequences S;and S,

of about n/2 elements
each

= Recur: recursively sort S,
and S,

Algorithm mergeSort(S, C)

| nput sequence S with n
elements, comparator C

Output sequence S sorted
accordingto C

If S.size() >1
(S, S,) « partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S <« merge(S,, S,)

= Conquer: merge S, and
S,into a unique sorted
sequence

Sets

N

The conquer step of

merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B

Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

Merging Two Sorted Sequences

Algorithm merge(A, B)

| nput sequences A and B with
n/2 elements each

Output sorted sequence of A U B

S « empty sequence

while —A.IsEmpty() A =B.isEmpty()
if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))
else
S.insertLast(B.remove(B.first()))

while —A.IsEmpty()
S.insertLast(A.remove(A.first()))

while —B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Sets 5

Merge-Sort Tree

N

" & An execution of merge-sort is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores
» unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution

= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[72|94—>2479]

712527 [s14a549]

[7—)7] 2> 2 [9—)9] 44

Sets 6

Execution Example

#Partition

729413861]

“Execution Example (cont.)

#Recursive call, partition

(72943861]

N

Execution Example (cont.)

#Recursive call, partition

(72943861]

Execution Example (cont.)

#Recursive call, base case

(72943861]

Execution Example (cont.)

#Recursive call, base case

(72943861]

Execution Example (cont.)

#Merge

(72943861]

(72194]

EZEEasSan

71252 7]

/A\ A

7—>7 2—>2

Execution Example (cont.)

#Recursive call, ..., base case, merge

(72943861]

(72194]

/\

U|2+27 o4 > 4 9]

N //\\ ANV

[7_>7] [2—>2] 9—>9 4_>4 """""""""

Sets 13

Execution Example (cont.)

#Merge

(72943861]

7219452479

AN

712527 (945 409]

Execution Example (cont.)

#Recursive call, ..., merge, merge

(72943861]
/\.
(7219452479 [3861> 136 8]
T AN
712527 [94->49] 38538 [61-156]

Execution Example (cont.)

#Merge

729413861 >5123467809]

P AN RERRARR L

(7219452479 (38615136 8|
e

N

Analysis of Merge-Sort

The height h of the merge-sort tree is O(log n)
= at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)
= We partition and merge 2' sequences of size n/2!
= we make 2+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #segs size

0 1 n []
1 2 n/2 [] [J
| 2 n/2 |] |]] |]

Sets 17

N

Summary of Sorting Algorithms

Algorithm

Time

Notes

selection-sort

O(n?)

slow
in-place
for small data sets (< 1K)

Insertion-sort

O(n?)

Slow
in-place
for small data sets (< 1K)

heap-sort

O(n log n)

fast
in-place
for large data sets (1K — 1M)

merge-sort

O(n log n)

fast
sequential data access
for huge data sets (> 1M)

Sets 18

\V

Sets

N

Sets

19

Storing a Set in a List

N
\J

We can implement a set with a list

Elements are stored sorted according to some
canonical ordering

The space used is O(n)

o o e o e o el e e) — — —— —— b —— i —— i —— o —— o — o o — s o o} e o o e o b — —— ————— ot ——

“Nodes storing set elements in order

List ——

I
|
|
|
|
|
I
\

|
|
|
|
|
|
|
|
\

20

N

Generalized merge
of two sorted lists
A and B

Template method
genericMerge

Auxiliary methods
m alslLess
= blsLess
= bothEqual

Runs in O(n,+ng)
time provided the

auxiliary methods
run in O(1) time

Generic Merging (§10.2)

Algorithm genericMerge(A, B)

S « empty sequence
while —A.IsEmpty() A =B.isEmpty()
a < Afirst().element(); b « B.first().element()
ifa<b
alsLess(a, S); A.remove(A.first())
elseifb<a
blsLess(b, S); B.remove(B.first())
else{ b=a}
bothEqual(a, b, S)
A.remove(A.first()); B.remove(B.first())
while —A.iIsEmpty()
alsLess(a, S); A.remove(A.first())
while —B.isEmpty()
blsLess(b, S); B.remove(B.first())
return S

Sets 21

Using Generic Merge
Jfor Set Operations

N

Any of the set operations can be
implemented using a generic merge

For example:

= For intersection: only copy elements that
are duplicated in both list

= For union: copy every element from both
lists except for the duplicates

All methods run in linear time.

Sets 22

Set Operations

)
N

We represent a set by the # Set union:
sorted sequence of its = alsLess(a, S)
elements S.insertFirst(a)

By specializing the auxliliary = DbisLess(b, S)
methods he generic merge S.insertLast(b)
algorithm can be used to = bothAreEqual(a, b, S)
Perfo”.“ basic set S. insertLast(a)
operations: |

Set intersection:
m alslLess(a, S)
{ do nothing }
m DblsLess(b, S)
{ do nothing }
s bothAreEqual(a, b, S)
S. insertLast(a)

= union
= intersection
= subtraction
The running time of an

operation on sets A and B
should be at most O(n,+ng)

Sets 23

N
¥

Quick-Sort

| 74962524679 |

/\

(42524 |

N

(252] |

]

(79579 |

959

Sets

1
Y

24

Outline and Reading

#Quick-sort (§10.3)
= Algorithm
= Partition step
= Quick-sort tree
» Execution example

#Analysis of quick-sort (§10.3.1)
#In-place quick-sort (§10.3.1)
#Summary of sorting algorithms

Sets

25

Quick-Sort

N

Quick-sort is a randomized
sorting algorithm based »
on the divide-and-conquer
paradigm:

= Divide: pick a random

element x (called pivot) and
partition S into

\) \
+ L elements less than x Y

Y Y
+ E elements equal x L E G
* G elements greater than x
s Recur: sort L and G
= Conquer: join L, E and G X

Sets 26

Partition

N

4 We partition an input
sequence as follows:

= We remove, in turn, each
element y from S and

= WeinsertyintoL, EorG,
depending on the result of
the comparison with the
pivot x
Each insertion and removal

is at the beginning or at the

end of a sequence, and

hence takes O(1) time

Thus, the partition step of
quick-sort takes O(n) time

IS

L

Algorithm partition(s, p)
| nput sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G « empty sequences
X <— S.remove(p)
while =S.isEmpty()
y < S.remove(S.first())
if y <x
L.insertLast(y)
elseif y =x
E.insertLast(y)
else{y>x}
G.insertLast(y)
returnL, E, G

Sets 27

N

Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree

= Each node represents a recursive call of quick-sort and stores
» Unsorted sequence before the execution and its pivot
» Sorted sequence at the end of the execution

= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962 5>246709]

Sets 28

N

Execution Example

#Pjvot selection

| 72943761

29

N

Execution Example (cont.)

#Partition, recursive call, pivot selection

(72943761]

30

Execution Example (cont.)

#Partition, recursive call, base case

(72943761]

31

Execution Example (cont.)

#Recursive call, ..., base case, join

[72943761]

24315123 4]

=
de

32

Execution Example (cont.)

#Recursive call, pivot selection

[72943761]

(243151234 [7 02

=T

1->1 [43—)34]

33

Execution Example (cont.)

#Partition, ..., recursive call, base case

[72943761]
/\
(243151234 (797]

™

151 (43 > 3 4] B 959

Sets 34

Execution Example (cont.)

#J]oin, join

72943761 5123467709 |

P AN RERRARR L

(243151234 (792 > 729 |

151 (43 > 3 4] B 959

Sets 35

Worst-case Running Time

The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

One of L and G has size n — 1 and the other has size 0

The running time is proportional to the sum
n+(n-1)+...+2+1

Thus, the worst-case running time of quick-sort is O(n?)

N

depth time
0 n [J
1 n-1 (] []

Sets 36

N

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s
s Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

72943761] | 72943761]
m &~~~ ~a
(2431] (797] L) (7294376)
Good call Bad call

A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
H_l\ ~ JH_J

Bad pivots Good pivots Bad pivots

Sets 37

Expected Running Time, Part 2

@ Probabilistic Fact: The expected number of coin tosses required in
order to get k heads is 2k

For a node of depth i, we expect
m i/2 ancestors are good calls
= The size of the input sequence for the current call is at most (3/4)2n

Therefore, we have expected height time per level

= For a node of depth 2log, ., f S ow
the expected input size is one
= The expected height of the
quick-sort tree is O(log n)
4 The amount or work done at the
nodes of the same depth is O(n)

Thus, the expected running time
of quick-sort is O(n log n)

O(log n)

A

total expected time: O(n log n)

Sets 38

In-Place Quick-Sort

N

Quick-sort can be implemented
to run in-place

In the partition step, we use

Algorithm inPlaceQuickSort(S, I, r)

replace operations to rearrange Input sequence S, ranks| and r
the elements of the input Output sequence S with the
sequence such that elements of rank between | and r

rearranged in increasing order

m the elements less than the

pivot have rank less than h ifl=r
= the elements equal to the pivot return
have rank between h and k | < arandom integer between | and r
= the elements greater than the X < S.elemAtRank(i)
pivot have rank greater than k (h, k) < inPlacePartition(x)
The recursive calls consider inPlaceQuickSort(S, I, h — 1)
= elements with rank less than h inPlaceQuickSort(S, k+ 1, r)
= elements with rank greater
than k

Sets 39

In-Place Partitioning

Perform the partition using two indices to split S into L
and EYG (a similar method can split EYG into E and G).

] K
(32510735927989769] (pivot =6)

Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan k to the left until finding an element < x.
= Swap elements at indices j and k

|£|:

(32510[7[3592[79897609 |
| — | —

"

Sets 40

N

Summary of Sorting Algorithms

Algorithm Time Notes
selection-sort O(n?) z isrllgl\::\la(cgeood for small inputs)
insertion-sort O(n?) z LT;I\?\IIa(CGJeood for small inputs)
quick-sort Oeg(np|e(():?eg) z :‘r;_slzclaasie(,gf;dd?g:ilzaercgle inputs)
heap-sort O(nlog n) z:;-s[’zl?gsod for large inputs)
T O(n log n) # sequential data access

fast (good for huge inputs)

Sets

41

\V

Bucket-Sort and Radix-Sort

3 b/v[7,d]—[7,g]— |

(t&a]—'
SEINEIRNEEEREE

012 3 456 7 809

N

Sets

42

C_ gl

Bucket-Sort (§10.5.1)

)
N
@ Let be S be a sequence of n Algorithm bucketSort(S, N)
(key, element) items with keys Input sequence S of (key, element)
in the range [0, N — 1] items with keys in the range
Bucket-sort uses the keys as [0, N —1]
indices into an auxiliary array B Output sequence S sorted by
of sequences (buckets) Increasing keys
Phase 1: Empty sequence S by B < array of N empty sequences
moving each item (k, o) into its while —S.isEmpty()
bucket B[] f « S.first()
Phase 2: Fori=0, ..., N-1, move (k, 0) < S.remove(f)
the items of bucket BJ[i] to the B[K].insertLast((k, 0))
enc!of sequence S for i< OtoN — 1
Analysis: while —B[i].isEmpty()
= Phase 1 takes O(n) time f « BJi].first()
= Phase 2 takes O(n + N) time (k, 0) < BI[i].remove(f)
Bucket-sort takes O(n + N) time S.insertLast((k, 0))

Sets 43

Example

N

Key range [0, 9]

B@\@\@@@JQQ
1 2 3 4 5 6

(Lo)—{za)—(E0)—(7d—{7.9}{7¢)

Sets

08

44

N

= The keys are used as
indices into an array
and cannot be arbitrary
objects

= No external comparator

Stable Sort Property

= The relative order of
any two items with the
same key is preserved
after the execution of
the algorithm

Sets

Properties and Extensions

Key-type Property Extensions

I

= Integer keys in the range [a, b]
+ Put item (k, 0) into bucket
B[k — 4]
= String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
+ Sort D and compute the rank
r(k) of each string k of D in
the sorted sequence
» Put item (k, 0) into bucket
B[r(k)]

45

N

Lexicographic Order

A d-tuple is a sequence of d keys (k,, k,, ..., ky), where
key k; is said to be the i-th dimension of the tuple

#® Example:
= The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(X1, Xo0 vy Xg) < V10 Yoo --00 V)
e

X1 <Y1V X = YA (Xgr weey Xg) < (Y2 -5 Vo)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

Sets 46

N

*®

*®

Let C; be the comparator
that compares two tuples by
their i-th dimension

Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C

Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension

Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Lexicographic-Sort

Algorithm lexicographicSort(S)

| nput sequence S of d-tuples
Output sequence S sorted in
lexicographic order

for i « d downto 1
stableSort(S, C))

Sets

Example:

(7,4,6) (5,1,5) (2,4,6) (2,1, 4) (3, 2, 4)
(2,1,4) (3,2 4) (51,5) (7,4,6) (2,4,6)
(2,1,4) (51,5) (3, 2, 4) (7,4,6) (2,4,6)
(2,1,4) (2,4,6) (3,2, 4) (51,5) (7,4,6)

47

N

/Radix-Sort (§10.5.2) ##i®

Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm

0 20

in each dimension Algorithm radixSort(S, N)

Radix-sort is applicable Input sequence S of d-tuples such
to tuples where the that (O, ..., 0) < (X4, ..., X4) and
keys in each dimension i (X, oo Xg) S(N=1, ..., N—1)
are integers in the for each tuple (xy, ..., Xg) INS

B Output sequence S sorted in
range [0, N — 1] . :
, o lexicographic order
¢ g"z‘g(";'iolr\tl);uns n ame for i « d downto 1
bucketSort(S, N)

Sets 48

Radix-Sort for
Binary Numbers

N

Consider a sequence of n

b-bit integers
X=Xy 1. XX

We represent each element
as a b-tuple of integers in
the range [0, 1] and apply
radix-sort with N = 2

This application of the
radix-sort algorithm runs in
O(bn) time

For example, we can sort a
sequence of 32-bit integers
in linear time

Sets

o Ch

Algorithm binaryRadixSort(S)
| nput sequence S of b-bit
Integers
Output sequence S sorted

replace each element x
of S with the item (0, x)
fori<Otob-1

replace the key k of
each item (k, x) of S
with bit X; of x

bucketSort(S, 2)

49

N

1001

1110

Example

0010

0001

Sorting a sequence of 4-bit integers

1001

1110

Sets

0001

1110

50

\V

Sorting Lower Bound

N

Sets

51

Comparison-Based
Sorting (§10.4)

Many sorting algorithms are comparison based.
= They sort by making comparisons between pairs of objects
s Examples: bubble-sort, selection-sort, insertion-sort, heap-sort,
merge-sort, quick-sort, ...
Let us therefore derive a lower bound on the running
time of any algorithm that uses comparisons to sort n
elements, Xy, X5, ..., X,.

yes

Sets 52

N

Counting Comparisons

- @Let us just count comparisons then.

Each possible run of the algorithm corresponds
to a root-to-leaf path in a decision tree

? ? ? ?
X, < X j E<k<x|.] [xm<x .][xp<xq.

/N /N /N /N

Sets 53

Decision Tree Height

N

The height of this decision tree is a lower bound on the running time

4 Every possible input permutation must lead to a separate leaf
output.

= If not, some input ...4...5... would have same output ordering as
...5...4..., which would be wrong.

Since there are n!=1*2*,..*n leaves, the height is at least log (n!)
minimum height (time)
A

log (n!)

? ?
Xe<Xf 1 [Xk<X|.

X <
/N /N / N\

J
I n! "
Sets 54

The Lower Bound

Any comparison-based sorting algorithms takes at
least log (n!) time

Therefore, any such algorithm takes time at least

N

n

log (n!) > log (2)2 _(n/2)log(n/2).

That is, any comparison-based sorting algorithm must
run in Q(n log n) time.

Sets 55

Selection

N

The Selection Problem jZ@]

Given an integer k and n elements X, X5, ..., X,
taken from a total order, find the k-th smallest
element in this set.

Of course, we can sort the set in O(n log n) time
and then index the k-th element.

k=3 (74962 >24679)|

Can we solve the selection problem faster?

Sets 57

Quick-Select (§10.7)

)
\
Quick-select is a randomized
selection algorithm based on .
the prune-and-search
paradigm:
= Prune: pick a random element x
(called pivot) and partition S into
+ L elements less than x X
+ E elements equal x \ Y / \—y—’ \ ' /
* G elements greater than x L E G
= Search: depending on k, either | <L ‘ K> |L|+|E]
answer is in E, or we need to K’ =k-|L|-|E]|
recur on either L or G
L] <k <[|L[+|E|
(done)

Sets 58

Partition

N

L

4 \We partition an input
sequence as in the quick-sort
algorithm:

= We remove, in turn, each
element y from S and

= WeinsertyintoL, EorG,
depending on the result of
the comparison with the
pivot x
Each insertion and removal is

at the beginning or at the

end of a sequence, and

hence takes O(1) time

Thus, the partition step of
quick-select takes O(n) time

IS

L

Algorithm partition(S, p)

| nput sequence S, position p of pivot
Output subsequences L, E, G of the

elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G « empty sequences
X <— S.remove(p)
while =S.isEmpty()
y < S.remove(S.first())
if y <x
L.insertLast(y)
elseif y =x
E.insertLast(y)
else{y>x}
G.insertLast(y)
returnL, E, G

Sets

59

Quick-Select Visualization

N

" & An execution of quick-select can be visualized by a
recursion path

= Each node represents a recursive call of quick-select, and
stores k and the remaining sequence

(k=5,S=(7 4 9326 51 8)

([k=2,5=(7 4 9 6 5 8) |

(k=2,S=(7 4 6 5)]

k=1, S=(7 6 5)]

L5 J

Sets 60

N

Expected Running Time ..‘;?i:

Consider a recursive call of quick-select on a sequence of size s
s Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

72943761] | 72943761]
m &~ ~a
(2431] (797] L) (7294376)
Good call Bad call

A call is good with probability 1/2
= 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
H_l\ ~ JH_J

Bad pivots Good pivots Bad pivots

Sets 61

Expected Running Time,
Part 2

N

"& Probabilistic Fact #1: The expected number of coin tosses required in
order to get one head is two

Probabilistic Fact #2: Expectation is a linear function:
s E(X+Y)=EX)+E(Y)
m E(cX)=cE(X)
Let T(n) denote the expected running time of quick-select.

4 By Fact #2,
s T(n) <T(3n/4) + bn* (expected # of calls before agood call)
+ By Fact #1,
m T(n) <T(3n/4) + 2bn
Thatis, T(n) is a geometric series:
s T(n) <2bn + 2b(3/4)n + 2b(3/4)*n + 2b(3/4)*n + ...
S0 T(n) is O(n).
We can solve the selection problem in O(n) expected

time.
Sets 62

Deterministic Selection

We can do selection in O(n) worst-case time.

Main idea: recursively use the selection algorithm itself to find a
good pivot for quick-select:

s Divide S into n/5 sets of 5 each
s Find a median in each set
= Recursively find the median of the “baby” medians.

N

Min size i
forL

Min size
for G

u AW N =
]

U A WIN =
1

See Exercise C-4.24 for details of analysis.

Sets 63

Master Method

Many divide-and-conquer recurrence equations have
the form:

Tin) = C If n<d
(n)_{aT(n/b)+ f(n) if n>d

N

The Master Theorem:
1. if f(n)isO(n'***), then T (n) is@(n'%?)

2. if f(n)is®(n**log" n), then T (n)is®(n'**?log"** n)
3. if f(n)isQ(n'®*), thenT(n)is®(f (n)),
provided af (n/b) < of (n) for someod < 1.

Sets 64

