Heaps and Priority Queues
Priority Queue
ADT (§ 7.1)

A priority queue stores a collection of items
An item is a pair (key, element)

Main methods of the Priority Queue ADT
- `insertItem(k, o)` inserts an item with key k and element o
- `removeMin()` removes the item with the smallest key

Additional methods
- `minKey(k, o)` returns, but does not remove, the smallest key of an item
- `minElement()` returns, but does not remove, the element of an item with smallest key
- `size()`, `isEmpty()`

Applications:
- Standby flyers
- Auctions
- Stock market
Total Order Relation

- Keys in a priority queue can be arbitrary objects on which an order is defined.
- Two distinct items in a priority queue can have the same key.

Mathematical concept of total order relation \leq

- **Reflexive** property:
 \[x \leq x \]

- **Antisymmetric** property:
 \[x \leq y \land y \leq x \Rightarrow x = y \]

- **Transitive** property:
 \[x \leq y \land y \leq z \Rightarrow x \leq z \]
Comparator ADT (§7.1.4)

- A *comparator* encapsulates the action of comparing two objects according to a given total order relation.
- A generic priority queue uses a comparator as a template argument, to define the comparison function (<, =, >)
- The comparator is external to the keys being compared. Thus, the same objects can be sorted in different ways by using different comparators.
- When the priority queue needs to compare two keys, it uses its comparator.
Using Comparators in C++

A comparator class overloads the "()" operator with a comparison function.
Example: Compare two points in the plane lexicographically.

```cpp
class LexCompare {
public:
    int operator()(Point a, Point b) {
        if (a.x < b.x) return -1
        else if (a.x > b.x) return +1
        else if (a.y < b.y) return -1
        else if (a.y > b.y) return +1
        else return 0;
    }
};
```

To use the comparator, define an object of this type, and invoke it using its "()" operator:

Example of usage:

```cpp
Point p(2.3, 4.5);
Point q(1.7, 7.3);
LexCompare lexCompare;
if (lexCompare(p, q) < 0)
    cout << "p less than q";
else if (lexCompare(p, q) == 0)
    cout << "p equals q";
else if (lexCompare(p, q) > 0)
    cout << "p greater than q";
```
We can use a priority queue to sort a set of comparable elements

- Insert the elements one by one with a series of `insertItem(e, e)` operations
- Remove the elements in sorted order with a series of `removeMin()` operations

The running time of this sorting method depends on the priority queue implementation

Algorithm PQ-Sort(S, C)

Input sequence `S`, comparator `C` for the elements of `S`

Output sequence `S` sorted in increasing order according to `C`

`P ←` priority queue with comparator `C`

while `!S.isEmpty()`

`e ← S.remove (S.first())`

`P.insertItem(e, e)`

while `!P.isEmpty()`

`e ← P.minElement()`

`P.removeMin()`

`S.insertLast(e)`
Sequence-based Priority Queue

Implementation with an unsorted list

Performance:
- `insertItem` takes $O(1)$ time since we can insert the item at the beginning or end of the sequence
- `removeMin`, `minKey` and `minElement` take $O(n)$ time since we have to traverse the entire sequence to find the smallest key

Implementation with a sorted list

Performance:
- `insertItem` takes $O(n)$ time since we have to find the place where to insert the item
- `removeMin`, `minKey` and `minElement` take $O(1)$ time since the smallest key is at the beginning of the sequence
Selection-Sort

Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence

Running time of Selection-sort:

- Inserting the elements into the priority queue with n `insertItem` operations takes $O(n)$ time
- Removing the elements in sorted order from the priority queue with n `removeMin` operations takes time proportional to $1 + 2 + \ldots + n$

Selection-sort runs in $O(n^2)$ time
Insertion-Sort

Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence

1 2 3 4 5

Running time of Insertion-sort:

- Inserting the elements into the priority queue with \(n \) insertItem operations takes time proportional to
\[
1 + 2 + \ldots + n
\]

- Removing the elements in sorted order from the priority queue with a series of \(n \) removeMin operations takes \(O(n) \) time

Insertion-sort runs in \(O(n^2) \) time
What is a heap? (§ 7.3.1)

A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:

- **Heap-Order:** for every internal node v other than the root, $key(v) \geq key(parent(v))$

- **Complete Binary Tree:** let h be the height of the heap
 - for $i = 0, \ldots, h - 1$, there are 2^i nodes of depth i
 - at depth $h - 1$, the internal nodes are to the left of the external nodes

The last node of a heap is the rightmost internal node of depth $h - 1$.
Height of a Heap

Theorem: A heap storing n keys has height $O(\log n)$

Proof: (we apply the complete binary tree property)

- Let h be the height of a heap storing n keys
- Since there are 2^i keys at depth $i = 0, \ldots, h - 2$ and at least one key at depth $h - 1$, we have $n \geq 1 + 2 + 4 + \ldots + 2^{h-2} + 1$
- Thus, $n \geq 2^{h-1}$, i.e., $h \leq \log n + 1$
Heaps and Priority Queues

- We can use a heap to implement a priority queue.
- We store a (key, element) item at each internal node.
- We keep track of the position of the last node.
- For simplicity, we show only the keys in the pictures.

(2, Sue)
(5, Pat)
(9, Jeff)
(7, Anna)
(6, Mark)
Insertion into a Heap (§7.3.2)

- Method insertItem of the priority queue ADT corresponds to the insertion of a key \(k \) to the heap.

- The insertion algorithm consists of three steps:
 - Find the insertion node \(z \) (the new last node).
 - Store \(k \) at \(z \) and expand \(z \) into an internal node.
 - Restore the heap-order property (discussed next).
Upheap

After the insertion of a new key k, the heap-order property may be violated.

Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node.

Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k.

Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time.
Removal from a Heap (§7.3.2)

- Method `removeMin` of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps:
 - Replace the root key with the key of the last node w.
 - Compress w and its children into a leaf.
 - Restore the heap-order property (discussed next).
Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated.
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root.
- The swapping is done with the sibling with the smallest key.
- Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k.
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time.
Updating the Last Node

- The insertion node can be found by traversing a path of $O(\log n)$ nodes
 - Go up until a left child or the root is reached
 - If a left child is reached, go to the right child
 - Go down left until a leaf is reached

- Similar algorithm for updating the last node after a removal
Heap-Sort (§7.3.4)

Consider a priority queue with \(n \) items implemented by means of a heap

- the space used is \(O(n) \)
- methods `insertItem` and `removeMin` take \(O(\log n) \) time
- methods `size`, `isEmpty`, `minKey`, and `minElement` take time \(O(1) \) time

Using a heap-based priority queue, we can sort a sequence of \(n \) elements in \(O(n \log n) \) time

The resulting algorithm is called heap-sort

Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort
Merging Two Heaps

- We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform downheap to restore the heap-order property
Bottom-up Heap Construction (§7.3.5)

- We can construct a heap storing n given keys in using a bottom-up construction with $\log n$ phases.
- In phase i, pairs of heaps with $2^i - 1$ keys are merged into heaps with $2^{i+1} - 1$ keys.
Example (contd.)
Example (end)
Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path).
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is \(O(n) \).
- Thus, bottom-up heap construction runs in \(O(n) \) time.
- Bottom-up heap construction is faster than \(n \) successive insertions and speeds up the first phase of heap-sort.
Vector-based Heap
Implementation (§7.3.3)

- We can represent a heap with \(n \) keys by means of a vector of length \(n + 1 \)
- For the node at rank \(i \)
 - the left child is at rank \(2i \)
 - the right child is at rank \(2i + 1 \)
- Links between nodes are not explicitly stored
- The leaves are not represented
- The cell of at rank 0 is not used
- Operation insertItem corresponds to inserting at rank \(n + 1 \)
- Operation removeMin corresponds to removing at rank \(n \)
- Yields in-place heap-sort