
9/21/2007 8:11 AM Trees 1

Trees



9/21/2007 8:11 AM Trees 2

Outline and Reading

Tree ADT (§6.1)
Preorder and postorder traversals (§6.2.3)
BinaryTree ADT (§6.3.1)
Inorder traversal (§6.3.4)
Euler Tour traversal (§6.3.4)
Template method pattern (§6.3.5)
Data structures for trees (§6.4)



9/21/2007 8:11 AM Trees 3

What is a Tree
In computer science, a 
tree is an abstract model 
of a hierarchical 
structure
A tree consists of nodes 
with a parent-child 
relation
Applications:

Organization charts
File systems
Programming 
environments

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada



9/21/2007 8:11 AM Trees 4

subtree

Tree Terminology
Root: node without parent (A)
Internal node: node with at least 
one child (A, B, C, F)
External node (a.k.a. leaf ): node 
without children (E, I, J, K, G, H, D)
Ancestors of a node: parent, 
grandparent, grand-grandparent, 
etc.
Depth of a node: number of 
ancestors
Height of a tree: maximum depth 
of any node (3)
Descendant of a node: child, 
grandchild, grand-grandchild, etc.

A

B DC

G HE F

I J K

Subtree: tree consisting of 
a node and its 
descendants



9/21/2007 8:11 AM Trees 5

Tree ADT
We use positions to abstract 
nodes
Generic methods:

integer size()
boolean isEmpty()
objectIterator elements()
positionIterator positions()

Accessor methods:
position root()
position parent(p)
positionIterator children(p)

Query methods:
boolean isInternal(p)
boolean isExternal(p)
boolean isRoot(p)

Update methods:
swapElements(p, q)
object replaceElement(p, o)

Additional update methods 
may be defined by data 
structures implementing the 
Tree ADT



9/21/2007 8:11 AM Trees 6

Preorder Traversal
A traversal visits the nodes of a 
tree in a systematic manner
In a preorder traversal, a node is 
visited before its descendants 
Application: print a structured 
document

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme1.1 Greed 1.2 Avidity 2.3 Bank

Robbery

1

2

3

5

4 6 7 8

9

Algorithm preOrder(v)
visit(v)
for each child w of v

preorder (w)



9/21/2007 8:11 AM Trees 7

Postorder Traversal
In a postorder traversal, a 
node is visited after its 
descendants
Application: compute space 
used by files in a directory and 
its subdirectories

Algorithm postOrder(v)
for each child w of v

postOrder (w)
visit(v)

cs16/

homeworks/ todo.txt
1Kprograms/

DDR.java
10K

Stocks.java
25K

h1c.doc
3K

h1nc.doc
2K

Robot.java
20K

9

3

1

7

2 4 5 6

8



9/21/2007 8:11 AM Trees 8

Binary Tree
A binary tree is a tree with the 
following properties:

Each internal node has two 
children
The children of a node are an 
ordered pair

We call the children of an internal 
node left child and right child
Alternative recursive definition: a 
binary tree is either

a tree consisting of a single node, 
or
a tree whose root has an ordered 
pair of children, each of which is a 
binary tree

Applications:
arithmetic expressions
decision processes
searching

A

B C

F GD E

H I



9/21/2007 8:11 AM Trees 9

Arithmetic Expression Tree
Binary tree associated with an arithmetic expression

internal nodes: operators
external nodes: operands

Example: arithmetic expression tree for the 
expression (2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b



9/21/2007 8:11 AM Trees 10

Decision Tree
Binary tree associated with a decision process

internal nodes: questions with yes/no answer
external nodes: decisions

Example: dining decision

Want a fast meal?

How about coffee? On expense account?

Starbucks Spike’s Al Forno Café Paragon

Yes No

Yes No Yes No



9/21/2007 8:11 AM Trees 11

Properties of Binary Trees
Notation
n number of nodes
e number of 

external nodes
i number of internal 

nodes
h height

Properties:
e = i + 1
n = 2e − 1
h ≤ i
h ≤ (n − 1)/2
e ≤ 2h

h ≥ log2 e
h ≥ log2 (n + 1) − 1



9/21/2007 8:11 AM Trees 12

BinaryTree ADT

The BinaryTree ADT 
extends the Tree 
ADT, i.e., it inherits 
all the methods of 
the Tree ADT
Additional methods:

position leftChild(p)
position rightChild(p)
position sibling(p)

Update methods 
may be defined by 
data structures 
implementing the 
BinaryTree ADT



9/21/2007 8:11 AM Trees 13

Inorder Traversal
In an inorder traversal a 
node is visited after its left 
subtree and before its right 
subtree
Application: draw a binary 
tree

x(v) = inorder rank of v
y(v) = depth of v

Algorithm inOrder(v)
if isInternal (v)

inOrder (leftChild (v))
visit(v)
if isInternal (v)

inOrder (rightChild (v))

3

1

2

5

6

7 9

8

4



9/21/2007 8:11 AM Trees 14

Print Arithmetic Expressions
Specialization of an inorder 
traversal

print operand or operator 
when visiting node
print “(“ before traversing left 
subtree
print “)“ after traversing right 
subtree

Algorithm printExpression(v)
if isInternal (v)

print(“(’’)
printExpression(leftChild (v))

print(v.element ())
if isInternal (v)

printExpression (rightChild (v))
print (“)’’)+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))



9/21/2007 8:11 AM Trees 15

Evaluate Arithmetic Expressions
Specialization of a postorder 
traversal

recursive method returning 
the value of a subtree
when visiting an internal 
node, combine the values 
of the subtrees

Algorithm evalExpr(v)
if isExternal (v)

return v.element ()
else

x ← evalExpr(leftChild (v))
y ← evalExpr(rightChild (v))
◊ ← operator stored at v
return x ◊ y+

××

−2

5 1

3 2



9/21/2007 8:11 AM Trees 16

Euler Tour Traversal
Generic traversal of a binary tree
Includes as special cases the preorder, postorder and inorder traversals
Walk around the tree and visit each node three times:

on the left (preorder)
from below (inorder)
on the right (postorder)

+

×

−2

5 1

3 2

L
B

R×



9/21/2007 8:11 AM Trees 17

∅

Data Structure for Trees
A node is represented by 
an object storing

Element
Parent node
Sequence of children 
nodes

Node objects implement 
the Position ADT

B

DA

C E

F

B

∅ ∅

A D F

∅

C

∅

E



9/21/2007 8:11 AM Trees 18

Data Structure for Binary Trees
A node is represented 
by an object storing

Element
Parent node
Left child node
Right child node

Node objects implement 
the Position ADT

B

DA

C E

∅ ∅

∅ ∅ ∅ ∅

B

A D

C E

∅


