

Outline and Reading

♦ Tree ADT (§6.1) Preorder and postorder traversals (§6.2.3) BinaryTree ADT (§6.3.1) Inorder traversal (§6.3.4) Euler Tour traversal (§6.3.4) Template method pattern (§6.3.5) Data structures for trees (§6.4)

What is a Tree

Tree Terminology

- Root: node without parent (A)
 Internal node: node with at least
 - one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

4

9/21/2007 8:11 AM

Trees

Tree ADT

- Generic methods:
 - integer size()
 - boolean isEmpty()
 - objectIterator elements()
 - positionIterator positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)

۲	Query methods:
	boolean isInternal(p)
	boolean isExternal(p)
	boolean isRoot(p)
۲	Update methods:
	swapElements(p, q)
	 object replaceElement(p, o)
۲	Additional update methods
	may be defined by data
	structures implementing the
	Tree ADT

Preorder Traversal

Postorder Traversal

Binary Tree

- A binary tree is a tree with the following properties:
 - Each internal node has two children
 - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
 - a tree consisting of a single node, or
 - a tree whose root has an ordered pair of children, each of which is a binary tree

Trees

Arithmetic Expression Tree

- internal nodes: operators
- external nodes: operands

• Example: arithmetic expression tree for the expression $(2 \times (a - 1) + (3 \times b))$

Properties of Binary Trees

BinaryTree ADT

The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT Additional methods: position leftChild(p) position rightChild(p) position sibling(p)

 Update methods may be defined by data structures implementing the BinaryTree ADT

9/21/2007 8:11 AM

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - x(v) = inorder rank of v

3

6

5

Trees

8

9

y(v) = depth of v

1

9/21/2007 8:11 AM

Algorithm inOrder(v) if isInternal (v) inOrder (leftChild (v)) visit(v) if isInternal (v) inOrder (rightChild (v))

13

Print Arithmetic Expressions

Evaluate Arithmetic Expressions

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes as special cases the preorder, postorder and inorder traversals

Trees

Х

16

- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)
 - on the right (postorder)

9/21/200	7 8:11 AM
77217200	/ 0.11/101

Data Structure for Trees

Data Structure for Binary Trees

