Trees
Outline and Reading

- Tree ADT (§6.1)
- Preorder and postorder traversals (§6.2.3)
- BinaryTree ADT (§6.3.1)
- Inorder traversal (§6.3.4)
- Euler Tour traversal (§6.3.4)
- Template method pattern (§6.3.5)
- Data structures for trees (§6.4)
What is a Tree

In computer science, a tree is an abstract model of a hierarchical structure.

A tree consists of nodes with a parent-child relation.

Applications:
- Organization charts
- File systems
- Programming environments
Tree Terminology

- **Root**: node without parent (A)
- **Internal node**: node with at least one child (A, B, C, F)
- **External node** (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- **Ancestors of a node**: parent, grandparent, grand-grandparent, etc.
- **Depth of a node**: number of ancestors
- **Height of a tree**: maximum depth of any node (3)
- **Descendant of a node**: child, grandchild, grand-grandchild, etc.

Subtree: tree consisting of a node and its descendants
Tree ADT

- We use positions to abstract nodes

Generic methods:
- integer size()
- boolean isEmpty()
- objectIterator elements()
- positionIterator positions()

Accessor methods:
- position root()
- position parent(p)
- positionIterator children(p)

Query methods:
- boolean isInternal(p)
- boolean isExternal(p)
- boolean isRoot(p)

Update methods:
- swapElements(p, q)
- object replaceElement(p, o)

Additional update methods may be defined by data structures implementing the Tree ADT
Preorder Traversal

A traversal visits the nodes of a tree in a systematic manner.

In a preorder traversal, a node is visited before its descendants.

Application: print a structured document

Algorithm preOrder(v)

visit(v)

for each child w of v

preorder(w)
Postorder Traversal

- In a postorder traversal, a node is visited after its descendants.
- Application: compute space used by files in a directory and its subdirectories.

Algorithm \texttt{postOrder}(v)

\begin{itemize}
 \item for each child \(w \) of \(v \)
 \item \texttt{postOrder}(w)
 \item \texttt{visit}(v)
\end{itemize}
Binary Tree

A binary tree is a tree with the following properties:
- Each internal node has two children
- The children of a node are an ordered pair

We call the children of an internal node left child and right child

Alternative recursive definition: a binary tree is either
- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a binary tree

Applications:
- arithmetic expressions
- decision processes
- searching
Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
 - internal nodes: operators
 - external nodes: operands

Example: arithmetic expression tree for the expression $(2 \times (a - 1) + (3 \times b))$
Decision Tree

- Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions
- Example: dining decision

Example:
- Want a fast meal?
 - Yes: How about coffee?
 - Yes: Starbucks
 - No: Spike’s
 - No: On expense account?
 - Yes: Al Forno
 - No: Café Paragon
Properties of Binary Trees

Notation
- \(n \) number of nodes
- \(e \) number of external nodes
- \(i \) number of internal nodes
- \(h \) height

Properties:
- \(e = i + 1 \)
- \(n = 2e - 1 \)
- \(h \leq i \)
- \(h \leq (n - 1)/2 \)
- \(e \leq 2^h \)
- \(h \geq \log_2 e \)
- \(h \geq \log_2 (n + 1) - 1 \)
BinaryTree ADT

The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT.

Additional methods:
- \texttt{position leftChild(p)}
- \texttt{position rightChild(p)}
- \texttt{position sibling(p)}

Update methods may be defined by data structures implementing the BinaryTree ADT.
Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree.
- **Application:** draw a binary tree
 - \(x(v) \) = inorder rank of \(v \)
 - \(y(v) \) = depth of \(v \)

Algorithm \(\text{inOrder}(v) \)

```plaintext
if isInternal \((v)\)
    inOrder \((\text{leftChild}(v))\)
    visit(v)
if isInternal \((v)\)
    inOrder \((\text{rightChild}(v))\)
```

![Binary Tree Diagram]

9/21/2007 8:11 AM
Print Arithmetic Expressions

Specialization of an inorder traversal
- print operand or operator when visiting node
- print "(" before traversing left subtree
- print ")" after traversing right subtree

Algorithm $printExpression(v)$

1. $\text{if } isInternal(v)$
 - print("(")
 - $printExpression(leftChild(v))$
 - print(v.element())
2. $\text{if } isInternal(v)$
 - $printExpression(rightChild(v))$
 - print (")")

$((2 \times (a - 1)) + (3 \times b))$
Evaluate Arithmetic Expressions

Specialization of a postorder traversal

- recursive method returning the value of a subtree
- when visiting an internal node, combine the values of the subtrees

Algorithm \textit{evalExpr}(v)

\begin{algorithm}
\begin{algorithmic}
\If {isExternal (v)}
\State \textbf{return} \textit{v.element}()
\ElsIf {}\textit{operator stored at v}
\State \textbf{return} \textit{x} \text{\textcircled{\texttt{operator}}} \textit{y}
\EndIf
\end{algorithmic}
\end{algorithm}

\begin{itemize}
\item $2 \times 5 - 1$
\item 3×2
\end{itemize}
Euler Tour Traversal

- Generic traversal of a binary tree
- Includes as special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
 - on the left (preorder)
 - from below (inorder)
 - on the right (postorder)
Data Structure for Trees

- A node is represented by an object storing:
 - Element
 - Parent node
 - Sequence of children nodes

- Node objects implement the Position ADT
Data Structure for Binary Trees

- A node is represented by an object storing:
 - Element
 - Parent node
 - Left child node
 - Right child node

- Node objects implement the Position ADT