
9/14/2007 2:55 PM Vectors 1

Vectors



9/14/2007 2:55 PM Vectors 2

Outline and Reading

The Vector ADT (§5.1.1)
Array-based implementation (§5.1.2)



9/14/2007 2:55 PM Vectors 3

The Vector ADT
The Vector ADT stores 
objects to which it 
provides direct access 
An element can be 
accessed, inserted or 
removed by specifying 
its rank (number of 
elements preceding it)
An exception is 
thrown if an incorrect 
rank is specified (e.g., 
a negative rank)

Main vector operations:
elemAtRank(int r): returns the 
element at rank r without 
removing it
replaceAtRank(int r, Object o): 
replace the element at rank r with 
o
insertAtRank(int r, Object o): 
insert a new element o to have 
rank r
removeAtRank(int r): removes the 
element at rank r

Additional operations size() and 
isEmpty()



9/14/2007 2:55 PM Vectors 4

Applications of Vectors

Direct applications
Sorted collection of objects (elementary 
database)

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures



9/14/2007 2:55 PM Vectors 5

Array-based Vector
Use an array V of size N
A variable n keeps track of the size of the vector 
(number of elements stored)
Operation elemAtRank(r) is implemented in O(1)
time by returning V[r]

V
0 1 2 nr



9/14/2007 2:55 PM Vectors 6

Insertion
In operation insertAtRank(r, o), we need to make 
room for the new element by shifting forward the 
n − r elements V[r], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 nr

V
0 1 2 n

o
r



9/14/2007 2:55 PM Vectors 7

Deletion
In operation removeAtRank(r), we need to fill the 
hole left by the removed element by shifting 
backward the n − r − 1 elements V[r + 1], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 n

o
r

V
0 1 2 nr



9/14/2007 2:55 PM Vectors 8

Performance
In the array based implementation of a Vector

The space used by the data structure is O(n)
size, isEmpty, elemAtRank and replaceAtRank run in 
O(1) time
insertAtRank and removeAtRank run in O(n) time

In an insertAtRank operation, when the array 
is full, instead of throwing an exception, we 
can replace the array with a larger one



9/14/2007 2:55 PM Vectors 9

Lists and Sequences



9/14/2007 2:55 PM Vectors 10

Outline and Reading

Singly linked list
Position ADT and List ADT (§5.2.1)
Doubly linked list (§ 5.2.3)
Sequence ADT (§5.3.1)
Implementations of the sequence ADT 
(§5.3.3)



9/14/2007 2:55 PM Vectors 11

Singly Linked List
A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes
Each node stores

element
link to the next node

next

elem node

A B C D

∅



9/14/2007 2:55 PM Vectors 12

Stack with a Singly Linked List
We can implement a stack with a singly linked list
The top element is stored at the first node of the list
The space used is O(n) and each operation of the 
Stack ADT takes O(1) time 

∅t

nodes

elements



9/14/2007 2:55 PM Vectors 13

Queue with a Singly Linked List
We can implement a queue with a singly linked list

The front element is stored at the first node
The rear element is stored at the last node

The space used is O(n) and each operation of the 
Queue ADT takes O(1) time

f

r

∅

nodes

elements



9/14/2007 2:55 PM Vectors 14

Position ADT
The Position ADT models the notion of place 
within a data structure where a single object 
is stored
A special null position refers to no object.
Positions provide a unified view of diverse 
ways of storing data, such as

a cell of an array
a node of a linked list

Member functions:
Object& element(): returns the element stored at 
this position
bool isNull(): returns true if this is a null position



9/14/2007 2:55 PM Vectors 15

List ADT

The List ADT models a 
sequence of positions 
storing arbitrary objects
It establishes a 
before/after relation 
between positions
Generic methods:

size(), isEmpty()

Query methods:
isFirst(p), isLast(p)

Accessor methods:
first(), last()
before(p), after(p)

Update methods:
replaceElement(p, o), 
swapElements(p, q) 
insertBefore(p, o), 
insertAfter(p, o),
insertFirst(o), 
insertLast(o)
remove(p)



9/14/2007 2:55 PM Vectors 16

Doubly Linked List
A doubly linked list provides a natural 
implementation of the List ADT
Nodes implement Position and store:

element
link to the previous node
link to the next node

Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node



9/14/2007 2:55 PM Vectors 17

Insertion
We visualize operation insertAfter(p, X), which returns position q

A B X C

A B C

p

A B C

p

X

q

p q



9/14/2007 2:55 PM Vectors 18

Deletion
We visualize remove(p), where p = last()

A B C D

p

A B C

D

p

A B C



9/14/2007 2:55 PM Vectors 19

Performance
In the implementation of the List ADT 
by means of a doubly linked list

The space used by a list with n elements is 
O(n)
The space used by each position of the list 
is O(1)
All the operations of the List ADT run in 
O(1) time
Operation element() of the 
Position ADT runs in O(1) time



9/14/2007 2:55 PM Vectors 20

Sequence ADT
The Sequence ADT is the 
union of the Vector and 
List ADTs
Elements accessed by

Rank, or
Position

Generic methods:
size(), isEmpty()

Vector-based methods:
elemAtRank(r), 
replaceAtRank(r, o), 
insertAtRank(r, o), 
removeAtRank(r)

List-based methods:
first(), last(), 
before(p), after(p), 
replaceElement(p, o), 
swapElements(p, q), 
insertBefore(p, o), 
insertAfter(p, o), 
insertFirst(o), 
insertLast(o), 
remove(p)

Bridge methods:
atRank(r), rankOf(p)



9/14/2007 2:55 PM Vectors 21

Applications of Sequences
The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered 
collection of elements
Direct applications:

Generic replacement for stack, queue, vector, or 
list
small database (e.g., address book)

Indirect applications:
Building block of more complex data structures



9/14/2007 2:55 PM Vectors 22

Array-based Implementation
We use a 
circular array 
storing 
positions 
A position 
object stores:

Element
Rank

Indices f and l
keep track of 
first and last 
positions

0 1 2 3
positions

elements

S

lf



9/14/2007 2:55 PM Vectors 23

Sequence Implementations

nninsertAtRank, removeAtRank
11insertFirst, insertLast
1ninsertAfter, insertBefore

n1replaceAtRank
11replaceElement, swapElements

n1atRank, rankOf, elemAtRank
11size, isEmpty

1nremove

11first, last, before, after

ListArrayOperation


