A
\V

Vectors

9/14/2007 2:55 PM

Vectors

N

N

Outline and Reading

#The Vector ADT (85.1.1)
#Array-based implementation (85.1.2)

9/14/2007 2:55 PM Vectors

The Vector ADT

p
U@ The Vector ADT stores # Main vector operations:
objects to which it = elemAtRank(int r): returns the
provides direct access element at rank r without
An element can be Fempving it
accessed, inserted or m replaceAtRank(int r, Object 0):
removed by specifying replace the element at rank r with
its rank (number of 0
elements preceding it) o !nsertAtRank(int r, Object 0):
An exception is Insert a new element o to have
rank r

thrown if an incorrect
rank is specified (e.g.,
a negative rank)

s removeAtRank(int r): removes the
element at rank r

Additional operations size() and
ISEmpty()

9/14/2007 2:55 PM Vectors 3

N

Applications of Vectors

#Direct applications

= Sorted collection of objects (elementary
database)

#|ndirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

9/14/2007 2:55 PM Vectors

N

Array-based Vector

Use an array V of size N

A variable n keeps track of the size of the vector
(number of elements stored)

Operation elemAtRank(r) is implemented in O(1)

time by returning V|r]

Vitttitrtrrrrrrrrrrrtd
012 r n

9/14/2007 2:55 PM Vectors

Insertion

N

|In operation insertAtRank(r, 0), we need to make
room for the new element by shifting forward the
n—r elements V|r], ..., V[n — 1]

In the worst case (r = 0), this takes O(n) time

Vitttttrrrrrrrrrrrt
012 r n
VIIIIIIIIIiiIIIIIII
012 r n

Vittitittlel bt
012 r n

9/14/2007 2:55 PM Vectors

Deletion

N

In operation removeAtRank(r), we need to fill the
hole left by the removed element by shifting
backward the n—r -1 elements V[r + 1], ..., V[n — 1]

In the worst case (r = 0), this takes O(n) time

Vittitittlel bt
012 r n
VIIIIIIIIIiiIIIIIII
012 r n

Vitttttrrrrrrrrrrrt
012 r n

9/14/2007 2:55 PM Vectors 7

Performance

N

|n the array based implementation of a Vector
= The space used by the data structure is O(n)

= Size, ISEmpty, elemAtRank and replaceAtRank run in
O(1) time

= InsertAtRank and removeAtRank run in O(n) time
In an insertAtRank operation, when the array

Is full, instead of throwing an exception, we
can replace the array with a larger one

9/14/2007 2:55 PM Vectors 8

A
\V

Lists and Sequences

g S

N

9/14/2007 2:55 PM Vectors

Outline and Reading

N

#Singly linked list

#Position ADT and List ADT (85.2.1)
#Doubly linked list (§ 5.2.3)
#Sequence ADT (85.3.1)

#|mplementations of the sequence ADT
(85.3.3)

9/14/2007 2:55 PM Vectors 10

N

Singly Linked List

A singly linked list is a

concrete data structure | next .
=g | o— i
consisting of a sequence :] i
of nodes | l i
Each node stores ; i
= element . elem node |
= link to the next node N R B s St et S ’

® I ® I ® —1— (J

—ﬁ
A\ 4

—

—

9/14/2007 2:55 PM Vectors

11

N

Stack with a Singly Linked List

We can implement a stack with a singly linked list
The top element is stored at the first node of the list

The space used is O(n) and each operation of the
Stack ADT takes O(1) time

9/14/2007 2:55 PM Vectors 12

N

Queue with a Singly Linked List

We can implement a queue with a singly linked list
s The front element is stored at the first node
s The rear element is stored at the last node

The space used is O(n) and each operation of the

9/14/2007 2:55 PM Vectors 13

Position ADT

The Position ADT models the notion of place
within a data structure where a single object
IS stored

A special null position refers to no object.
Positions provide a unified view of diverse
ways of storing data, such as
= a cell of an array
= a node of a linked list

Member functions:

m Object& element(): returns the element stored at
this position
= bool isNull(): returns true if this is a null position

N

9/14/2007 2:55 PM Vectors

14

List ADT

N

The List ADT models a Accessor methods:

sequence of positions n first(), last()
storing arbitrary objects = before(p), after(p)

|t establishes a # Update methods:
before/after relation = replaceElement(p, o),
between positions swapElements(p,)

Generic methods: = InsertBefore(p, o),

_ _ InsertAfter(p, o),
" size(), IsEmpty() m InsertFirst(o),
Query methods: insertLast(0)
m iSFirst(p), isLast(p) = remove(p)

9/14/2007 2:55 PM Vectors 15

N

Doubly Linked List

A doubly linked list provides a natural
iImplementation of the List ADT
Nodes implement Position and store:
= element
= link to the previous node
= link to the next node

Special trailer and header nodes

nodes/positions

N
|

=

/

-

~

\

elements

9/14/2007 2:55 PM Vectors

16

Insertion

N

\We visualize operation insertAfter(p, X), which returns position q

P
A NES AN ES AN S
\A \B \C

L[
\A

L[
\A

9/14/2007 2:55 PM Vectors 17

Deletion

N

rd

/'\

N~

!
\

/ # We visualize remove(p), where p = last()

!
\

Ve

!
\

Ve

9/14/2007 2:55 PM

T

rd

ST

B

Vectors

...............................
. ..
. .

Performance

N

#|n the iImplementation of the List ADT
by means of a doubly linked list

= The space used by a list with n elements Is
O(n)

= The space used by each position of the list
s O(1)

= All the operations of the List ADT run In
O(1) time

= Operation element() of the
Position ADT runs in O(1) time

9/14/2007 2:55 PM Vectors 19

N

Sequence ADT

The Sequence ADT is the
union of the Vector and

List ADTs

Elements accessed by
= Rank, or

s Position

Generic methods:
= size(), isEmpty()

Vector-based methods:

= elemAtRank(r),
replaceAtRank(r, 0),
InsertAtRank(r, o),
removeAtRank(r)

9/14/2007 2:55 PM

Vectors

List-based methods:

m first(), last(),
before(p), after(p),
replaceElement(p, 0)
swapElements(p, q),
iInsertBefore(p, 0),
iInsertAfter(p, o),
InsertFirst(o),
InsertLast(o0),
remove(p)

Bridge methods:
s atRank(r), rankOf(p)

20

N

Applications of Sequences

The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered
collection of elements

Direct applications:
= Generic replacement for stack, queue, vector, or
list
= small database (e.g., address book)
Indirect applications:
= Building block of more complex data structures

9/14/2007 2:55 PM Vectors 21

f‘\

Array based Implementation

We use a
circular array
storing
positions

A position
object stores:

= Element
s Rank

Indices f and |
keep track of
first and last
positions

9/14/2007 2:55 PM

———

d'

ﬂ)

=

N\
emmemsl

I
I
)

Fisroan §
\ \\ ? / _po_sm_on_s,)
[]) /

Vectors

22

Sequence Implementations

N

L

Operation

Array

List

size, ISEmpty

1

atRank, rankOf, elemAtRank

first, last, before, after

replaceElement, swapElements

replaceAtRank

InsertAtRank, removeAtRank

InsertFirst, insertLast

InsertAfter, insertBefore

remove

= e N R

- - T D D

9/14/2007 2:55 PM Vectors

23

