Stacks

=%

/R

Outline

@®The Stack ADT

@ Applications of Stacks

® Array-based implementation
@ Growable array-based stack

Stacks

Abstract Data Types (ADTSs)

/R

@ An abstract data @ Example: ADT modeling a
type (ADT) Isan simple stock trading system

abstraction of a = The data stored are buy/sell
data structure orders

@ An ADT specifies: = The operations supported are

= Data stored + order buy(stock, shares, price)

= Operations on the + order sell(stock, shares, price)
data + void cancel(order)

= Error conditions = Error conditions:
associated with + Buy/sell a nonexistent stock
Operatlons

+ Cancel a nonexistent order

Stacks 3

The Stack ADT

p
\J
#® The Stack ADT stores @ Auxiliary stack
arbitrary objects operations:
Insertions and deletions = top(): returns a reference
follow the last-in first-out to-the last nserted......-
element without removing
scheme 4
@ Think of a spring-loaded s size(): returns the number
plate dispenser of elements stored
@ Main stack operations: = ISEmpty(): returns a
: o Boolean value indicating
= push(object 0): inserts
whether no elements are
element o

stored
= pop(): removes and returns

the last inserted element

Stacks 4

/R

Exceptions

@ Attempting the # In the Stack ADT,
execution of an operations pop and
operation of ADT may top cannot be
sometimes cause an performed if the
error condition, called stack Is empty
an exception ® Attempting the

@ Exceptions are said to execution of pop or
be “thrown” by an top on an empty

operation that cannot stack throws an
be executed EmptyStackException

Stacks 5

Applications of Stacks

/R

@ Direct applications
= Page-visited history in a Web browser
= Undo seguence in a text editor

= Saving local variables when one function calls
another, and this one calls another, and so on.

® Indirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

Stacks

C++ Run-time Stack

& The C++ run-time system mginQ_{ |
keeps track of the chain of Inti =5;
active functions with a stack foo(l);

@ When a function is called, the }
run-time system pushes on the foo(int j) {
stack a frame containing 0tk

= Local variables and return value]
5 . k=]+1;
= Program counter, keeping track of .
the statement being executed bar(k);
® When a function returns, its }

frame is popped from the stack -
and control is passed to the bar(int m)
method on top of the stack

Stacks

bar
PC=1
m=26

foo
PC=3
J=5
k=26

main
PC=2
|1=5

Array-based Stack

/R

@ A simple way of
Implementing the
Stack ADT uses an
array

® \We add elements

from left to right

@ A variable keeps
track of the index of
the top element

Algorithm size()
returnt+ 1

Algorithm pop()
If iIsEmpty() then
throw EmptyStackException
else
te—t-1
return Sjt + 1]

sCIITTTTTIN ~ SITT

0 1 2

Stacks 8

/R

@ The array storing the
stack elements may
become full

® A push operation will
then throw a
FullStackException

= Limitation of the array-
based Iimplementation

= Not intrinsic to the
Stack ADT

Array-based Stack (cont.)

Algorithm push(o)
If t =S.length — 1 then
throw FullStackException
else
te—t+1
St] « o

sLITTTTTTN - SNILITTTTT]

01 2

Stacks 9

Performance and Limitations

/R

® Performance
s Let n be the number of elements in the stack
m The space used is O(n)
= Each operation runs in time O(1)

@ Limitations

s The maximum size of the stack must be defined a
priori , and cannot be changed

= Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks 10

Computing Spans

/R

#® We show how to use a stack ¢
as an auxiliary data structure g
In an algorithm

Given an array X, the span
g[i] of X[i] is the maximum 3

number of consecutive 2
elements X[j] immediately 1
preceding X[i] and such that g
X[l < X[i]

Spans have applications to
financial analysis
m E.g., stock at 52-week high

Stacks

n X

1
613|452
111231

JA\

Quadratic Algorithm

Algorithm spansl(X, n)
Input array X of n integers
Output array S of spans of X
S <« new array of n integers
fori<-Oton—-1do

S« 1
whiles<i A X[I — 5] < X][i]
S«s+1
Sli}«'s
return S

5 5 O 1

1+2+...+(nh-1)
1+2+...+(n-1)
n
1

® Algorithm spansl runs in O(n?) time

Stacks

12

Computing Spans with a Stack

/R

€ \We keep in a stack the 7
indices of the elements 6l
visible when “looking
back” S 7
We scan the array from - i
left to right 37]
= Let i be the current index 2 -
= We pop indices from the 1 IJ
stack until we find index | 0 e —

such that X[i] < X]j]
m We set §[i] <1 —]
= We push i onto the stack

012345867

Stacks 13

Linear Algorithm

/R

Each index of the
array

= IS pushed into the
stack exactly one

= IS popped from
the stack at most

once

#® The statements in
the while-loop are
executed at most
n times

@ Algorithm spans2
runs in O(n) time

Algorithm spans2(X, n)
S « new array of n integers
A <« new empty stack
fori<-Oton-1do
while (—A.IsEmpty() A
X[top()] < X[i]) do
J < A.pop()
If A.isEmpty() then
Si]«i1+1
else
J <= top()
S[i] «1—]
A.push(i)
return S

5 5 355 S5 - 5 3t

R 35 O 5

Stacks

/R

€ In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with
a larger one

® How large should the new
array be?

= Incremental strategy:
Increase the size by a
constant c

= doubling strategy: double
the size

Stacks

Growable Array-based Stack

Algorithm push(o)

If t =S.length — 1 then
A < new array of
size...
for i« Ototdo
All] « Si]

S« A
te—t+1
S[t] « o0

15

Comparison of the Strategies

/R

® \We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n

push operations

\We assume that we start with an empty
stack represented by an array of size 1

® \We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Stacks

16

Incremental Strategy Analysis

/R

@ \We replace the array k = n/c times

@ The total time T(n) of a series of n push
operations is proportional to

n+c+2c+3c+4c+... +kc
=n+c(l+2+3+...+Kk)
=n+ ck(k +1)/2
@ Since cis a constant, T(n) is O(n + k?), i.e.,
O(n?)
The amortized time of a push operation is
= O(n)

Stacks

17

Doubling Strategy Analysis

/R

" @ We replace the array k = log, n
times

® The total time T(n) of a series
of n push operations Is

proportional to
nN+1+2+4+8+...+2K
=n+2k+1-1
=2n -1
€ T(n) is O(n)
@ The amortized time of a push
operation Is
s O(1) Stacks

geometric series

2

18

/R

® Interface
corresponding to
our Stack ADT

® Requires the
definition of class
EmptyStackException

@ Most similar STL
construct Is vector

Stack Interface iIn C++

template <typename Object>
class Stack {
public:
Int size();
bool ISEmpty();
Object& top()
throw(EmptyStackException);
void push(Object 0);
Object pop()
throw(EmptyStackException);

Stacks 19

JA\

Array-based Stack In C++

template <typename Object>
class ArrayStack {
private:
int capacity;
Object *S;
int top;
public:
ArrayStack(int ¢) {
capacity = c;
S = new Object[capacity];
= _]_’

bool iIsEmpty()
{ return (t<0); }

Object pop()
throw(EmptyStackException) {
If(ISEmpty())
throw EmptyStackException

(“Access to empty stack”);
return Sft--|;

}

Stacks 20

A
\/

/4

1/26/2009 12:00 PM

Queues

21

Outline and Reading

/R

@ The Queue ADT

@ |mplementation with a circular array
@ Growable array-based queue

#® Queue interface in C++

1/26/2009 12:00 PM Queues 22

The Queue ADT

p
\4
& The Queue ADT stores arbitrary € Auxiliary queue
objects operations:
® Insertions and deletions follow s front(): returns the element
the first-in first-out scheme at the _fron_t without
@ Insertions are at the rear of the removing it
queue and removals are at the = size(): returns the number
front of the queue of elements stored

= ISEmpty(): returns a

¢ Main queue operations: Boolean indicating whether

= enqueue(Object 0): inserts an no elements are stored
element o at the end of the :
queue @ Exceptions
= dequeue(): removes and = Attempting the execution of
returns the element at the front dequeue or front on an
of the queue empty queue throws an
EmptyQueueException

1/26/2009 12:00 PM Queues 23

/R

Applications of Queues

@ Direct applications
= Walting lists, bureaucracy
m Access to shared resources (e.g., printer)

= Multiprogramming

® Indirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

1/26/2009 12:00 PM Queues 24

Array-based Queue

/R

#® Use an array of size N in a circular fashion

@ Two variables keep track of the front and rear
f index of the front element
r index immediately past the rear element

@ Array location r is kept empty

Q

Q

normal configuration

HEEEEEEEN
012 f r
wrapped-around configuration
HER HEER
012 r f

1/26/2009 12:00 PM

Queues

25

/R

@ Hint: use the

e.g. N=17,f=4,r=14
Size=(17-4+14) mod 17

Queue Operations sz=27mod17 N

size=10

Algorithm size()

modulo operator return (N —f +r) mod N

[or = ((N+r)-f) mod N]
Algorithm isEmpty()

return (f=r)
N /
— P —
Q HEEEEEEEN
012 —f r
QLI T] HEEE
012 r f

1/26/2009 12:00 PM

Queues 26

/R

Q

Q

dependent

Queue Operations (cont.)

Operation enqueue Algorithm enqueue(o)

throws an exception if If size() =N — 1then

the array is full throw FullQueueException
This exception is else

Implementation- Q[r] «o

r<-(r+1) modN

012

f

I

012

1/26/2009 12:00 PM

r

f

Queues 27

Queue Operations (cont.)

/R

@ Operation dequeue | Algorithm dequeu()
throws an exception If iIsEmpty() then
If the queue is empty throw EmptyQueueException
@ This exception is else
specified in the 0 « Q[f]
queue ADT f « (f +1) mod N
return o
Q HEEEEEEEN
012 f r
QLITT] HEER
012 r f

1/26/2009 12:00 PM Queues 28

Growable Array-based Queue

/R

® In an enqueue operation, when the array is
full, instead of throwing an exception, we
can replace the array with a larger one

€ Similar to what we did for an array-based
stack

® The enqueue operation has amortized
running time
= O(n) with the incremental strategy
= O(1) with the doubling strategy

1/26/2009 12:00 PM Queues 29

/R

Informal C++ Q

#® Informal C++
Interface for our
Queue ADT

® Requires the
definition of class
EmptyQueueException

@ No corresponding
built-in STL class

Jeue Interface

template <typename Object>
class Queue {
public:
Int size();
bool ISEmpty();
Object& front()
throw(EmptyQueueException);
void enqueue(Object 0);
Object dequeue()
throw(EmptyQueueException);

1/26/2009 12:00 PM Queues 30

