
Stacks

O tlineOutline

The Stack ADT
Applications of StacksApplications of Stacks
Array-based implementation
Growable array based stackGrowable array-based stack

Stacks 2

Abst act Data T pes (ADTs)Abstract Data Types (ADTs)
An abstract data Example: ADT modeling aAn abstract data
type (ADT) is an
abstraction of a
d t t t

Example: ADT modeling a
simple stock trading system

The data stored are buy/sell
data structure
An ADT specifies:

Data stored

The data stored are buy/sell
orders
The operations supported are

Data stored
Operations on the
data

order buy(stock, shares, price)
order sell(stock, shares, price)
void cancel(order)

Error conditions
associated with
operations

()

Error conditions:
Buy/sell a nonexistent stock
C l i t t d

Stacks 3

p
Cancel a nonexistent order

The Stack ADTThe Stack ADT
The Stack ADT stores Auxiliary stackThe Stack ADT stores
arbitrary objects
Insertions and deletions

Auxiliary stack
operations:

top(): returns a reference
to the last insertedfollow the last-in first-out

scheme
Think of a spring-loaded

to the last inserted
element without removing
it
size(): returns the numberThink of a spring-loaded

plate dispenser
Main stack operations:

size(): returns the number
of elements stored
isEmpty(): returns a
Boolean value indicating

push(object o): inserts
element o
pop(): removes and returns

Boolean value indicating
whether no elements are
stored

Stacks 4

p p()
the last inserted element

E ceptionsExceptions
Attempting the In the Stack ADTAttempting the
execution of an
operation of ADT may

In the Stack ADT,
operations pop and
top cannot be p y

sometimes cause an
error condition, called

p
performed if the
stack is empty

an exception
Exceptions are said to
b “ h ” b

Attempting the
execution of pop or

be “thrown” by an
operation that cannot
be executed

top on an empty
stack throws an
EmptyStackException

Stacks 5

be executed EmptyStackException

Applications of StacksApplications of Stacks

Direct applications
Page-visited history in a Web browser
Undo sequence in a text editor
Saving local variables when one function calls
another and this one calls another and so onanother, and this one calls another, and so on.

Indirect applications
Auxiliary data structure for algorithmsAuxiliary data structure for algorithms
Component of other data structures

Stacks 6

C++ R n time StackC++ Run-time Stack
The C++ run-time system main() {The C++ run time system
keeps track of the chain of
active functions with a stack
When a function is called the

int i = 5;
foo(i);
}

bar
PC = 1
m = 6When a function is called, the

run-time system pushes on the
stack a frame containing

Local variables and return value

}

foo(int j) {
int k;

m = 6

foo
PC = 3Local variables and return value

Program counter, keeping track of
the statement being executed

When a function returns its

;
k = j+1;
bar(k);
}

PC = 3
j = 5
k = 6

When a function returns, its
frame is popped from the stack
and control is passed to the
method on top of the stack

}

bar(int m) {
…

main
PC = 2
i = 5

Stacks 7

method on top of the stack …
}

i 5

A a based StackArray-based Stack
A simple way of Algorithm size()A simple way of
implementing the
Stack ADT uses an
array

Algorithm size()
return t + 1

Al ith ()array
We add elements
from left to right

Algorithm pop()
if isEmpty() then

throw EmptyStackException
A variable keeps
track of the index of
the top element

else
t ← t − 1
return S[t + 1]p

S …

return S[t + 1]

Stacks 8

0 1 2 t

A a based Stack (cont)Array-based Stack (cont.)
The array storing theThe array storing the
stack elements may
become full
A push operation will

Algorithm push(o)
if t = S.length − 1 then

A push operation will
then throw a
FullStackException

Limitation of the array

throw FullStackException
else

t ← t + 1Limitation of the array-
based implementation
Not intrinsic to the
Stack ADT

t ← t + 1
S[t] ← o

Stack ADT

S …

Stacks 9

S
0 1 2 t

Pe fo mance and LimitationsPerformance and Limitations
Pe fo mancePerformance

Let n be the number of elements in the stack
The space used is O(n)The space used is O(n)
Each operation runs in time O(1)

LimitationsLimitations
The maximum size of the stack must be defined a
priori , and cannot be changed
Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks 10

Comp ting SpansComputing Spans
We show how to use a stack 6

7
We show how to use a stack
as an auxiliary data structure
in an algorithm
Gi X th 4

5
6

Given an array X, the span
S[i] of X[i] is the maximum
number of consecutive
l t X[j] i di t l

2
3

elements X[j] immediately
preceding X[i] and such that
X[j] ≤ X[i]

0
1

0 1 2 3 4
Spans have applications to
financial analysis

E.g., stock at 52-week high
6 3 4 5 2X

0 1 2 3 4

Stacks 11

g , g
1 1 2 3 1S

Q ad atic Algo ithmQuadratic Algorithm
Algorithm spans1(X n)Algorithm spans1(X, n)

Input array X of n integers
Output array S of spans of X #
S f i tS ← new array of n integers n
for i ← 0 to n − 1 do n

s ← 1 n
while s ≤ i ∧ X[i − s] ≤ X[i] 1 + 2 + …+ (n − 1)

s ← s + 1 1 + 2 + …+ (n − 1)
S[i] ← s nS[i] ← s n

return S 1

Stacks 12

Algorithm spans1 runs in O(n2) time

Comp ting Spans ith a StackComputing Spans with a Stack
We keep in a stack theWe keep in a stack the
indices of the elements
visible when “looking
b k” 5

6
7

back”
We scan the array from
left to right 3

4
5

left to right
Let i be the current index
We pop indices from the
stack until we find index j 0

1
2

stack until we find index j
such that X[i] < X[j]
We set S[i] ← i − j
We push i onto the stack

0
0 1 2 3 4 5 6 7

Stacks 13

We push i onto the stack

Linea Algo ithmLinear Algorithm
Algorithm spans2(X, n) #Each index of the

S ← new array of n integers n
A ← new empty stack 1
for i ← 0 to n − 1 do n

Each index of the
array

Is pushed into the
stack exactly one

while (¬A.isEmpty() ∧
X[top()] ≤ X[i]) do n

j ← A.pop() n

stack exactly one
Is popped from
the stack at most
once

if A.isEmpty() then n
S[i] ← i + 1 n

else

The statements in
the while-loop are
executed at most

j ← top() n
S[i] ← i − j n

A.push(i) n

n times
Algorithm spans2
runs in O(n) time

Stacks 14

p ()
return S 1

runs in O(n) time

G o able A a based StackGrowable Array-based Stack
In a push operation when ()In a push operation, when
the array is full, instead of
throwing an exception, we

l th ith

Algorithm push(o)
if t = S.length − 1 then

A ← new array of
can replace the array with
a larger one
How large should the new

y
size …

for i ← 0 to t do
A[i] ← S[i]How large should the new

array be?
incremental strategy:

A[i] ← S[i]
S ← A

t ← t + 1
S[]

gy
increase the size by a
constant c
doubling strategy: double

S[t] ← o

Stacks 15

doubling strategy: double
the size

Compa ison of the St ategiesComparison of the Strategies

We compare the incremental strategy and
the doubling strategy by analyzing the total
ti T() d d t f i ftime T(n) needed to perform a series of n
push operations
We assume that we start with an emptyWe assume that we start with an empty
stack represented by an array of size 1
We call amortized time of a push operationWe call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Stacks 16

series of operations, i.e., T(n)/n

Inc emental St ateg Anal sisIncremental Strategy Analysis

W l h / iWe replace the array k = n/c times
The total time T(n) of a series of n push
operations is proportional tooperations is proportional to

n + c + 2c + 3c + 4c + … + kc
= n + c(1 + 2 + 3 + … + k)

= n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)O(n2)
The amortized time of a push operation is

O(n)

Stacks 17

()

Do bling St ateg Anal sisDoubling Strategy Analysis
We replace the array k = log2 n 2
times
The total time T(n) of a series
of push operations is

geometric series
of n push operations is
proportional to

n + 1 + 2 + 4 + 8 + + 2k 1

2

1
4

n + 1 + 2 + 4 + 8 + …+ 2
= n + 2k + 1 −1

= 2n −1

1 1

82n 1
T(n) is O(n)
The amortized time of a push

Stacks 18

p
operation is

O(1)

Stack Inte face in C++Stack Interface in C++

I t f template <typename Object>Interface
corresponding to
our Stack ADT

template typename Object
class Stack {
public:

int size();our Stack ADT
Requires the
definition of class

int size();
bool isEmpty();
Object& top()definition of class

EmptyStackException
Most similar STL

throw(EmptyStackException);
void push(Object o);
Object pop()Most similar STL

construct is vector
Object pop()

throw(EmptyStackException);
};

Stacks 19

A a based Stack in C++Array-based Stack in C++
template <typename Object>template <typename Object>
class ArrayStack {
private:

i t it // t k it

bool isEmpty()
{ return (t < 0); }

Object pop()int capacity; // stack capacity
Object *S; // stack array
int top; // top of stack
bli

Object pop()
throw(EmptyStackException) {

if(isEmpty())
throw EmptyStackExceptionpublic:

ArrayStack(int c) {
capacity = c;

throw EmptyStackException
(“Access to empty stack”);

return S[t--];
}S = new Object[capacity];

t = –1;
}

}
// … (other functions omitted)

Stacks 20

Queues

1/26/2009 12:00 PM Queues 21

O tline and ReadingOutline and Reading

The Queue ADT
Implementation with a circular arrayImplementation with a circular array
Growable array-based queue
Queue interface in C++Queue interface in C++

1/26/2009 12:00 PM Queues 22

The Q e e ADTThe Queue ADT
The Queue ADT stores arbitrary Auxiliary queue
objects
Insertions and deletions follow
the first-in first-out scheme

y q
operations:

front(): returns the element
at the front without

Insertions are at the rear of the
queue and removals are at the
front of the queue

removing it
size(): returns the number
of elements stored
i E t () tMain queue operations:

enqueue(Object o): inserts an
element o at the end of the

isEmpty(): returns a
Boolean indicating whether
no elements are stored

Exceptionsqueue
dequeue(): removes and
returns the element at the front
of the queue

Exceptions
Attempting the execution of
dequeue or front on an
empty queue throws an

1/26/2009 12:00 PM Queues 23

of the queue empty queue throws an
EmptyQueueException

Applications of Q e esApplications of Queues

Direct applications
Waiting lists, bureaucracyg , y
Access to shared resources (e.g., printer)
Multiprogrammingp g g

Indirect applications
Auxiliary data structure for algorithmsAuxiliary data structure for algorithms
Component of other data structures

1/26/2009 12:00 PM Queues 24

A a based Q e eArray-based Queue
Use an array of size N in a circular fashiony
Two variables keep track of the front and rear
f index of the front element
r index immediately past the rear elementr index immediately past the rear element

Array location r is kept empty

normal configuration
Q

0 1 2 rf

normal configuration

Q
wrapped-around configuration

1/26/2009 12:00 PM Queues 25

Q
0 1 2 fr

Q e e Ope ations
e.g. N=17, f=4, r=14
size=(17-4+14) mod 17

Queue Operations
Hint: use the Algorithm size()

size=27 mod 17
size=10

Hint: use the
modulo operator

Algorithm size()
return (N − f + r) mod N

[or = ((N+r)-f) mod N]
Al ith i E ()Algorithm isEmpty()

return (f = r)

N

Q

N

Q
0 1 2 rf

Q

1/26/2009 12:00 PM Queues 26

Q
0 1 2 fr

Q e e Ope ations (cont)Queue Operations (cont.)
Algorithm enqueue(o)Operation enqueue g q ()

if size() = N − 1 then
throw FullQueueException

else

Operation enqueue
throws an exception if
the array is full
This exception is else

Q[r] ← o
r ← (r + 1) mod N

This exception is
implementation-
dependent

Q
0 1 2 rff

Q
0 1 2 fr

1/26/2009 12:00 PM Queues 27

f

Q e e Ope ations (cont)Queue Operations (cont.)
Operation dequeue Algorithm dequeue()Operation dequeue
throws an exception
if the queue is empty
This exception is

g q ()
if isEmpty() then

throw EmptyQueueException
elseThis exception is

specified in the
queue ADT

else
o ← Q[f]
f ← (f + 1) mod N
return o

Q
0 1 2 rf

Q

1/26/2009 12:00 PM Queues 28

0 1 2 fr

G o able A a based Q e eGrowable Array-based Queue
In an enq e e ope ation hen the a a isIn an enqueue operation, when the array is
full, instead of throwing an exception, we
can replace the array with a larger onecan replace the array with a larger one
Similar to what we did for an array-based
stackstack
The enqueue operation has amortized
running time g

O(n) with the incremental strategy
O(1) with the doubling strategy

1/26/2009 12:00 PM Queues 29

I f l C Q I t fInformal C++ Queue Interface

I f l C template <typename Object>Informal C++
interface for our
Queue ADT

template typename Object
class Queue {
public:

int size();Queue ADT
Requires the
definition of class

int size();
bool isEmpty();
Object& front()definition of class

EmptyQueueException
No corresponding

throw(EmptyQueueException);
void enqueue(Object o);
Object dequeue()No corresponding

built-in STL class
Object dequeue()

throw(EmptyQueueException);
};

1/26/2009 12:00 PM Queues 30

