Analysis of Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
Running Time (§3.1)

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics
Experimental Studies (§ 3.1.1)

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a function, like the built-in `clock()` function, to get an accurate measure of the actual running time
- Plot the results
Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
Pseudocode (§3.1.2)

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm `arrayMax(A, n)`

Input array `A` of `n` integers

Output maximum element of `A`

```
currentMax ← A[0]
for `i` ← 1 to `n` − 1 do
    if `A[i]` > `currentMax` then
        `currentMax` ← `A[i]`
return `currentMax`
```
Pseudocode Details

Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces

Method declaration
Algorithm method (arg [, arg...])
Input ...
Output ...

Method/Function call
var.method (arg [, arg...])

Return value
return expression

Expressions
← Assignment
(like = in C++)
= Equality testing
(like == in C++)

Superscripts and other mathematical formatting allowed
The Random Access Machine (RAM) Model

- A CPU
- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time.
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
Counting Primitive Operations (§3.4.1)

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

Algorithm arrayMax(A, n)

<table>
<thead>
<tr>
<th>Operation</th>
<th># operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>currentMax ← A[0]</td>
<td>2</td>
</tr>
<tr>
<td>for i ← 1 to n − 1 do</td>
<td>2 + n</td>
</tr>
<tr>
<td>if A[i] > currentMax then</td>
<td>2(n − 1)</td>
</tr>
<tr>
<td>currentMax ← A[i]</td>
<td>2(n − 1)</td>
</tr>
<tr>
<td>{ increment counter i }</td>
<td></td>
</tr>
<tr>
<td>return currentMax</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>7n − 1</td>
</tr>
</tbody>
</table>
Algorithm *arrayMax* executes $7n - 1$ primitive operations in the worst case. Define:

- $a = \text{Time taken by the fastest primitive operation}$
- $b = \text{Time taken by the slowest primitive operation}$

Let $T(n)$ be worst-case time of *arrayMax*. Then

$$a (7n - 1) \leq T(n) \leq b(7n - 1)$$

Hence, the running time $T(n)$ is bounded by two linear functions.
Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$

- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm arrayMax
Growth Rates

- Growth rates of functions:
 - Linear $\approx n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$

- In a log-log chart, the slope of the line corresponds to the growth rate of the function.
Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms

Examples
- $10^2n + 10^5$ is a linear function
- $10^5n^2 + 10^8n$ is a quadratic function
Big-Oh Notation (§3.5)

Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.

Example: $2n + 10$ is $O(n)$
- $2n + 10 \leq cn$
- $(c - 2)n \geq 10$
- $n \geq 10/(c - 2)$
- Pick $c = 3$ and $n_0 = 10$
Big-Oh Example

Example: the function n^2 is not $O(n)$

- $n^2 \leq cn$
- $n \leq c$
- The above inequality cannot be satisfied since c must be a constant
More Big-Oh Examples

- $7n-2$
 $7n-2$ is $O(n)$
 need $c > 0$ and $n_0 \geq 1$ such that $7n-2 \leq c \cdot n$ for $n \geq n_0$
 this is true for $c = 7$ and $n_0 = 1$

- $3n^3 + 20n^2 + 5$
 $3n^3 + 20n^2 + 5$ is $O(n^3)$
 need $c > 0$ and $n_0 \geq 1$ such that $3n^3 + 20n^2 + 5 \leq c \cdot n^3$ for $n \geq n_0$
 this is true for $c = 4$ and $n_0 = 21$

- $3 \log n + \log \log n$
 $3 \log n + \log \log n$ is $O(\log n)$
 need $c > 0$ and $n_0 \geq 1$ such that $3 \log n + \log \log n \leq c \cdot \log n$ for $n \geq n_0$
 this is true for $c = 4$ and $n_0 = 2$
Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.
- The statement “$f(n)$ is $O(g(n))$” means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$.
- We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th></th>
<th>$f(n)$ is $O(g(n))$</th>
<th>$g(n)$ is $O(f(n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(n)$ grows more</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$f(n)$ grows more</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Same growth</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Big-Oh Rules

If is \(f(n) \) a polynomial of degree \(d \), then \(f(n) \) is \(O(n^d) \), i.e.,

1. Drop lower-order terms
2. Drop constant factors

Use the smallest possible class of functions
- Say “\(2n \) is \(O(n) \)” instead of “\(2n \) is \(O(n^2) \)”

Use the simplest expression of the class
- Say “\(3n + 5 \) is \(O(n) \)” instead of “\(3n + 5 \) is \(O(3n) \)”
Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation.
- To perform the asymptotic analysis:
 - We find the worst-case number of primitive operations executed as a function of the input size.
 - We express this function with big-Oh notation.

Example:
- We determine that algorithm `arrayMax` executes at most $7n - 1$ primitive operations.
- We say that algorithm `arrayMax` “runs in $O(n)$ time”.

Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.
Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages.
- The i-th prefix average of an array X is average of the first $(i+1)$ elements of X:
 $$A[i] = \frac{X[0] + X[1] + \ldots + X[i]}{i+1}$$
- Computing the array A of prefix averages of another array X has applications to financial analysis.
Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition.

Algorithm $\text{prefixAverages}1(X, n)$

- **Input** array X of n integers
- **Output** array A of prefix averages of X

1. $A \leftarrow$ new array of n integers
2. for $i \leftarrow 0$ to $n - 1$ do
 1. $s \leftarrow X[0]$
 2. for $j \leftarrow 1$ to i do
 1. $s \leftarrow s + X[j]$
 2. $A[i] \leftarrow s / (i + 1)$
3. return A
Arithmetic Progression

- The running time of `prefixAverages1` is $O(1 + 2 + \ldots + n)$
- The sum of the first n integers is $n(n + 1) / 2$
 - There is a simple visual proof of this fact
- Thus, algorithm `prefixAverages1` runs in $O(n^2)$ time
Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum.

Algorithm \textit{prefixAverages2}(X, n)

\textbf{Input} array X of n integers
\textbf{Output} array A of prefix averages of X

\begin{align*}
A & \leftarrow \text{new array of } n \text{ integers} \\
& \quad \# \text{operations} \\
& \quad n \\
s & \leftarrow 0 \\
& \quad \# \text{operations} \\
& \quad 1 \\
& \text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do} \\
& \quad s \leftarrow s + X[i] \\
& \quad \# \text{operations} \\
& \quad n \\
& \quad A[i] \leftarrow s / (i + 1) \\
& \quad \# \text{operations} \\
& \quad n \\
& \text{return } A \\
& \quad \# \text{operations} \\
& \quad 1
\end{align*}

Algorithm \textit{prefixAverages2} runs in \(O(n)\) time.
Math you need to Review

- Summations (Sec. 1.3.1)
- Logarithms and Exponents (Sec. 1.3.2)

properties of logarithms:
- \(\log_b(xy) = \log_b x + \log_b y \)
- \(\log_b (x/y) = \log_b x - \log_b y \)
- \(\log_b x^a = a \log_b x \)
- \(\log_b a = \log_x a / \log_x b \)

properties of exponentials:
- \(a^{(b+c)} = a^b a^c \)
- \(a^{bc} = (a^b)^c \)
- \(a^b / a^c = a^{(b-c)} \)
- \(b = a^{\log_a b} \)
- \(b^c = a^{c \log_a b} \)
Relatives of Big-Oh

- **big-Omega**
 - \(f(n) \) is \(\Omega(g(n)) \) if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)

- **big-Theta**
 - \(f(n) \) is \(\Theta(g(n)) \) if there are constants \(c' > 0 \) and \(c'' > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(c' \cdot g(n) \leq f(n) \leq c'' \cdot g(n) \) for \(n \geq n_0 \)

- **little-o**
 - \(f(n) \) is \(o(g(n)) \) if, for any constant \(c > 0 \), there is an integer constant \(n_0 \geq 0 \) such that \(f(n) \leq c \cdot g(n) \) for \(n \geq n_0 \)

- **little-omega**
 - \(f(n) \) is \(\omega(g(n)) \) if, for any constant \(c > 0 \), there is an integer constant \(n_0 \geq 0 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)
Intuition for Asymptotic Notation

Big-Oh
- \(f(n) \) is \(O(g(n)) \) if \(f(n) \) is asymptotically less than or equal to \(g(n) \)

big-Omega
- \(f(n) \) is \(\Omega(g(n)) \) if \(f(n) \) is asymptotically greater than or equal to \(g(n) \)

big-Theta
- \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \) is asymptotically equal to \(g(n) \)

little-oh
- \(f(n) \) is \(o(g(n)) \) if \(f(n) \) is asymptotically strictly less than \(g(n) \)

little-omega
- \(f(n) \) is \(\omega(g(n)) \) if \(f(n) \) is asymptotically strictly greater than \(g(n) \)
Example Uses of the Relatives of Big-Oh

- $5n^2$ is $\Omega(n^2)$

 $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

 let $c = 5$ and $n_0 = 1$

- $5n^2$ is $\Omega(n)$

 $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

 let $c = 1$ and $n_0 = 1$

- $5n^2$ is $\omega(n)$

 $f(n)$ is $\omega(g(n))$ if, for any constant $c > 0$, there is an integer constant $n_0 \geq 0$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

 need $5n_0^2 \geq c \cdot n_0 \rightarrow$ given c, the n_0 that satisfies this is $n_0 \geq c/5 \geq 0$