
CS 251 Spring 2009
Midterm 1 Examination
Answers

 1

Question 1.

Given the function f(n)=nlogn, find functions gi(n) that differ from f(n) by more
than constants such that:

a. f(n) is O(g0(n))
b. f(n) is O(g1(n)), Ω(g1(n)), and Θ(g1(n))
c. f(n) is ω(g2(n))
d. f(n) is o(g3(n)) (i.e. “little o”)
e. f(n) is O(g4(n)) and o(g4(n))

a. n2

b. nlogn+n
c. n
d. n2

e. n2

 2

Question 2.

Consider a black box that generates integer numbers, one at a time, with the
property that a new number is within 10 of the previous number. In other words,

|Ai+1 - Ai| ≤ 10, for any Ai+1 and Ai generated consecutively.

Here is an example of a sequence of numbers generated by the black box:

101, 102, 107, 107, 99, 89, 89, 99, 102, 102, 102, …

Design a data structure that stores the numbers, does not waste memory space,
does not store duplicates, stores the number of times a number was generated,
and allows inserting a newly generated number in constant time. Your answer
should include a description of the data structure, a pseudocode description of
the algorithm for inserting a newly generated number, and a justification of the
fact that insertion takes constant time.

class DLL {
int val;
int appsN;
DLL *next, *prev;
};

DLL* Insert(int newNumber, DLL *prevInsert) {

 if (prevInsert->val == newNumber) {
 prevInsert->appsN++;
 return prevInsert;
 }

 if (newNumber < prevInsert->val) {
 while (prevInsert->prev) {
 if (prevInsert->prev->val == newNumber) {
 prevInsert->prev->appsN++;
 return prevInsert->prev;
 }
 if (prevInsert->prev->val < newNumber) {
 return InsertAfter(prevInsert->prev, newNumber);
 }
 prevInsert = prevInsert->prev;
 }
 return InsertFirst(prevInsert, newNumber);
 }

 if (prevInsert->val < newNumber) { similar to previous case}

 3

DLL* InsertFirst(DLL *oldHead, int newNumber) {

 DLL *newNode = new DLL();
 newNode->val = newNumber;
 newNode->appsN = 1;

 newNode->prev = NULL;
 newNode->next = oldHead;

 oldHead->prev = newNode;

 return newNode;

}

DLL* InsertAfter(DLL *afterThis, int newNumber) {

 DLL *newNode = new DLL();
 newNode->val = newNumber;
 newNode->appsN = 1;

 newNode->prev = afterThis;
 newNode->next = afterThis->next;

 if (afterThis->next)
 afterThis->next->prev = newNode;
 afterThis->next = newNode;

 return newNode;

}

Justification: the while loop is executed at most 10 times since each time it is
executed the current number decreases/increases by at least 1 because we
store unique integers, and since it has to decrease/increase by at most 10.

 4

Question 3.

A binary tree is defined as a tree with a single node, or, a tree whose root has an
ordered pair of children which are binary trees.

a. Show that, for any binary tree T, e ≤ 2h, where e is the number of leafs in
T, and h is the height of T.

b. Give a pseudocode description of an algorithm that takes a binary tree T
as input and trims it down to a binary tree in which all leafs have the same
depth d, where d is the minimum depth of any leaf in T.

Point values for problems and pieces listed in []. Points were awarded based on
correctness or at least attempting something.

a. [5]
Induction hypothesis: e ≤ 2h

[1] proof is by induction on height of tree

base case
[1] a binary tree of height 0 is just a single node and has e =1 ≤ 20 leaves

induction step
[1] by definition can create a tree by taking a node a making as its children 2
binary trees: X of height x and Y of height y. Thus our new tree Z consisting of a
node with X and Y as children will have height 1+max{x,y}
[2] by the inductive hypothesis, e=e in X + e in Y <= 2x+ 2y <= 2*2max{x,y}=
2(1+max{x,y})

b. [5]
[1]
trimtomindepth(T)
d=findd(T)
trim(T,d,0)

[2]
findd(T)
if T->left==NULL
 return 0
ld=findd(T->left)
rd=findd(T->right)
if ld < rd
 return ld+1
else
 return rd+1

[2]

 5

trim(T,d,h)
if h==d
 delete(T->left)
 T->left=NULL
 delete(T->right)
 T->right=NULL
else
 trim(T->left,d,h+1)
 trim(T->right,d,h+1)

[3]

delete(T)
 if (T->left)
 delete(T->left)
 if (T->right)
 delete(T->right)

 6

