Question 1.

Given the function \(f(n) = n \log n \), find functions \(g_i(n) \) that differ from \(f(n) \) by more than constants such that:

a. \(f(n) \) is \(O(g_0(n)) \)
b. \(f(n) \) is \(O(g_1(n)) \), \(\Omega(g_1(n)) \), and \(\Theta(g_1(n)) \)
c. \(f(n) \) is \(\omega(g_2(n)) \)
d. \(f(n) \) is \(o(g_3(n)) \) (i.e. “little o”)
e. \(f(n) \) is \(O(g_4(n)) \) and \(o(g_4(n)) \)

a. \(n^2 \)
b. \(n \log n + n \)
c. \(n \)
d. \(n^2 \)
e. \(n^2 \)
Question 2.

Consider a black box that generates integer numbers, one at a time, with the property that a new number is within 10 of the previous number. In other words,

$$|A_{i+1} - A_i| \leq 10$$, for any $$A_{i+1}$$ and $$A_i$$ generated consecutively.

Here is an example of a sequence of numbers generated by the black box:

101, 102, 107, 107, 99, 89, 89, 99, 102, 102, 102, …

Design a data structure that stores the numbers, does not waste memory space, does not store duplicates, stores the number of times a number was generated, and allows inserting a newly generated number in constant time. Your answer should include a description of the data structure, a pseudocode description of the algorithm for inserting a newly generated number, and a justification of the fact that insertion takes constant time.

class DLL {
 int val;
 int appsN;
 DLL *next, *prev;
};

DLL* Insert(int newNumber, DLL *prevInsert) {

 if (prevInsert->val == newNumber) {
 prevInsert->appsN++;
 return prevInsert;
 }

 if (newNumber < prevInsert->val) {
 while (prevInsert->prev) {
 if (prevInsert->prev->val == newNumber) {
 prevInsert->prev->appsN++;
 return prevInsert->prev;
 }
 if (prevInsert->prev->val < newNumber) {
 return InsertAfter(prevInsert->prev, newNumber);
 }
 prevInsert = prevInsert->prev;
 }
 prevInsert = prevInsert->prev;
 return InsertFirst(prevInsert, newNumber);
 }

 if (prevInsert->val < newNumber) { similar to previous case}
DLL* **InsertFirst**(DLL *oldHead, int newNumber) {

 DLL *newNode = new DLL();
 newNode->val = newNumber;
 newNode->appsN = 1;

 newNode->prev = NULL;
 newNode->next = oldHead;

 oldHead->prev = newNode;

 return newNode;
}

DLL* **InsertAfter**(DLL *afterThis, int newNumber) {

 DLL *newNode = new DLL();
 newNode->val = newNumber;
 newNode->appsN = 1;

 newNode->prev = afterThis;
 newNode->next = afterThis->next;

 if (afterThis->next)
 afterThis->next->prev = newNode;
 afterThis->next = newNode;

 return newNode;
}

Justification: the while loop is executed at most 10 times since each time it is executed the current number decreases/increases by at least 1 because we store unique integers, and since it has to decrease/increase by at most 10.
Question 3.

A binary tree is defined as a tree with a single node, or, a tree whose root has an ordered pair of children which are binary trees.

a. Show that, for any binary tree T, $e \leq 2^h$, where e is the number of leaves in T, and h is the height of T.

b. Give a pseudocode description of an algorithm that takes a binary tree T as input and trims it down to a binary tree in which all leaves have the same depth d, where d is the minimum depth of any leaf in T.

Point values for problems and pieces listed in []. Points were awarded based on correctness or at least attempting something.

a. [5]
 Induction hypothesis: $e \leq 2^h$
 [1] proof is by induction on height of tree

 base case
 [1] a binary tree of height 0 is just a single node and has $e = 1 \leq 2^d$ leaves

 induction step
 [1] by definition can create a tree by taking a node a making as its children 2 binary trees: X of height x and Y of height y. Thus our new tree Z consisting of a node with X and Y as children will have height $1 + \max \{x, y\}$
 [2] by the inductive hypothesis, $e = e$ in $X + e$ in $Y \leq 2^x + 2^y \leq 2^{\max \{x, y\}} = 2^{1 + \max \{x, y\}}$

b. [5]
 [1]
 trimtomindepth(T)
 d=findd(T)
 trim(T,d,0)

 [2]
 findd(T)
 if T->left==NULL
 return 0
 ld=findd(T->left)
 rd=findd(T->right)
 if ld < rd
 return ld+1
 else
 return rd+1
trim(T, d, h)
if h == d
 delete(T->left)
 T->left = NULL
 delete(T->right)
 T->right = NULL
else
 trim(T->left, d, h + 1)
 trim(T->right, d, h + 1)

[3]

delete(T)
 if (T->left)
 delete(T->left)
 if (T->right)
 delete(T->right)