Recursive Algorithms
Implemented in Python
Reading

• Zelle 13.2
• Recursive algorithms (pseudocode, Algorithms slides)
Recursion

• A problem solving paradigm
• An approach for designing algorithms
• Given a recursive algorithm, there is always an equivalent non-recursive algorithm
 – Recursive algorithm often simpler
Recursion problem solving paradigm

- You don’t solve the problem directly
- Split the problem until it becomes trivial
- Compute solution to problem by combining solutions of sub-problems
3 elements of recursive algorithm

• Termination condition
 – At some point recursion has to stop
 – For example, don’t go beyond leafs
 • Leafs don’t have children, referring to children leafs causes algorithm to crash

• Recursive call
 – Algorithm calls itself on subsets of the input data
 – One ore more recursive calls
 • For binary tree we had two recursive calls, one for each child

• Work done before, between, and after recursive calls
Examples

• We have seen several recursive algorithms
 – Binary tree traversal
 • Counting number of nodes in binary trees
 • Evaluation of arithmetic expression stored in a binary tree
 • Printing out arithmetic expression stored in a binary tree
 – Computing factorial of n
 – Finding the minimum element of an array of numbers
 – Binary search

• Now let’s implement these and other recursive algorithms in Python
Binary trees in Python

- An array of triples (i.e. an array of arrays with 3 elements, a 2-D array of nx3 in size)
- One triple per node
 - Data, index of left child, index of right child
- First triple corresponds to root
- An index of -1 corresponds to null (i.e. no such child)
- Example for tree on the right
 - [[13, 1, 2], [3, 3, 4], [32, 5, -1], [1, 6, 7], [6, 8, -1], [19, 9, 10], [-1, -1, -1], [2, -1, -1], [5, -1, -1], [10, -1, -1], [24, -1, -1]]
 - Black numbers are data
 - Red numbers are indices
Given a binary tree T encoded using an array of triples, how does one test whether a node with index $currNode$ is a leaf?

A. $T[currNode][0] == -1$ and $T[currNode][1] == -1$
B. $T[currNode][1] == -1$ and $T[currNode][2] == -1$
C. $T[currNode][1] == -1$ or $T[currNode][2] == -1$
D. Either B or C
E. None of the above
Counting nodes in binary tree

// PSEUDOCODE

Input:
T // link to root of binary tree

Output:
// count of nodes
CountBTR(T)
 if T == NULL
 return 0
 endif
 return CountBTR(T->left) + 1 + CountBTR(T->right)
endCountBTR

Python
currNode is index of current node

def CountBTR(T, currNode):
 if currNode == -1:
 return 0
 left = T[currNode][1]
 right = T[currNode][2]
 return CountBTR(T, left) + 1 + CountBTR(T, right)
Arithmetic expression evaluation

Input:
T // link to root of arithm. expr. tree

Output:
// value of arithmetic expression

EvalAEBTR(T)
def EvalAEBTR(T, currNode):
 left = T[currNode][1]
 right = T[currNode][2]
 if left == -1:
 return T[currNode][0]
 if T[currNode][0] == '+':
 return EvalAEBTR(T, left) + EvalAEBTR(T, right)
 elif T[currNode][0] == '-':
 return EvalAEBTR(T, left) - EvalAEBTR(T, right)
 elif T[currNode][0] == '*':
 return EvalAEBTR(T, left) * EvalAEBTR(T, right)
 elif T[currNode][0] == '/':
 return EvalAEBTR(T, left) / EvalAEBTR(T, right)

endswitch
endEvalAEBTR
Example

- $T = [[/], [\'+', 3, 4], [10, -1, -1], [-', 5, 6], ['*', 7, 8], [3, -1, -1], [1, -1, -1], [5, -1, -1], [3, -1, -1]]$
Printing out arithmetic expression

Input:

T // link to root of arithmetic expression binary tree

Output:

// expression printed out with parentheses

PrintAEBTR(T)
 if T->left != NULL
 print "("
 PrintAEBTR(T->left)
 endif
 print T->string
 if T->left != NULL
 PrintAEBTR(T->right)
 print ")"
endPrintAEBTR

Example: (((3-1)+(5*3))/10) for tree on previous slide

def PrintAEBTR(T, currNode):
 if currNode == -1:
 return
 left = T[currNode][1]
 right = T[currNode][2]
 if left != -1:
 print(‘(‘, end=""
 PrintAEBTR(T, left)
 print(T[currNode][0], end="")
 if right != -1:
 PrintAEBTR(T, right)
 print(‘)', end="")
Drawing Binary Tree

• Needed ingredients
 – How to draw
 • a node—*as a circle*
 • an edge between parent and child—*as a line segment*
 • text data—*using text object*
 – Where to draw
 • Node vertical coordinate given by depth in tree
 • Node horizontal coordinate given by in-order traversal index
2 step approach

• Step 1: set coordinates of each node
 – Recursive
 – Coordinates appended to node triple, which is now defined by 5 numbers: [data, leftIndex, rightIndex, hCoord, vCoord]

• Step 2: actually draw the nodes (and edges)
 – Recursive
 – Uses coordinates stored during step 1
Setting node coordinates

- Vertical coordinate “vCoord”
 - Equals depth in tree
 - Same for all nodes on same level
Setting horizontal node coordinates

- Each node has a different coordinate
- Each node belongs to a different column
- If there are n nodes, we need n columns
- A node has a greater coordinate than any node in its left sub-tree
- Left-most node has coordinate 0
Setting horizontal node coordinates
Setting horizontal node coordinates

- Each node has a different coordinate
- Each node belongs to a different column
- If there are n nodes, we need n columns
- A node has a greater coordinate than any node in its left sub-tree
- Left-most node has coordinate 0
Example 2

\[
\frac{(3 - 1) \times (5 + 3)}{10} = \frac{8}{10} = 0.8
\]
Our tree drawing algorithm doesn’t place the root half way btw. its children

A. The implementation is not correct.
B. The implementation is correct.
C. We could enhance the algorithm to avoid this.
D. B and C
E. A and C
Computing factorial

Input:
 n // factorial function argument

Output:
 // n!
Factorial(n)
 if n == 1
 return 1
 endif
 return n*Factorial(n-1)
endMinimum

def Fact(n):
 if n == 1:
 return 1
 return n * Fact(n-1)
Finding minimum in array

Input:
A // array of integers
n // number of elements in array (array size)
i₀ // consider elements from i₀ onwards

Output:
Min // value of element with smallest value

MinR(A, n, i₀) // recursive version
if i₀ == n-1 // last element
 return A[i₀]
endif
tmp = MinR(A, n, i₀+1)
if A[i₀] < tmp
 return A[i₀]
else
 return tmp
endMinR

def MinR(A, i₀):
 if i₀ == len(A)-1:
 return A[i₀]
tmp = MinR(A, i₀+1)
if A[i₀] < tmp:
 return A[i₀]
else:
 return tmp
Binary search

• Finds whether a number appears in a sorted array in logarithmic time
 – \(\log n \), where \(n \) is the number of elements in the array

```python
def BinSearchR(A, l, r, a):
    if l == r:
        return A[l] == a
    m = (int) ((l+r)/2)
    if A[m] >= a:
        return BinSearchR(A, l, m, a)
    else:
        return BinSearchR(A, m+1, r, a)
```