
CS17700

Hello world

1 © Popescu 2012

Instructors

• Voicu Popescu, instructor

– popescu@purdue.edu

– http://www.cs.purdue.edu/homes/popescu/

• Lorenzo Martino, instructional coordinator

– lmartino@purdue.edu

• Teaching assistants

2

mailto:popescu@purdue.edu
http://www.cs.purdue.edu/homes/popescu/
http://www.cs.purdue.edu/homes/popescu/
mailto:lmartino@purdue.edu

CS17700

• Two major goals

– An introduction to Computer Science principles

– An introduction to Computer Science practice using
Python

• Targeted audience characteristics and needs

– No Computer Science background

– Collaboration with computer scientists

– Use of complex computer science tools (i.e. software)

– Development of custom computer science tools

3

Course organization

• Webpage

– http://wiki.cs.purdue.edu/177

• Lecture

– New concepts are introduced

• Recitation

– Concepts are explained in more detail, reinforced

• Lab

– Concepts are practiced

4

http://wiki.cs.purdue.edu/177
http://wiki.cs.purdue.edu/177

Communication

• Piazza (“marketplace” in Italian)
– Online forum where students post questions and

students and instructors post answers

– Better scalability then direct, one to one email

– Instructions posted on class webpage

– Policies
• Do not post lab or project solutions, partial solutions,

incorrect solutions (cheating)

• Use #private tag if not sure

• Make questions general, clear, and concise

5

Communication

• Piazza

• Office hours

– See webpage for details

– Not a substitute for recitation or labs

• Instructor available after class for questions

– I’ll stay as long as needed (hallway if need be)

• In class via iClicker

6

Syllabus overview

• Computer Science Principles: ~6 weeks
– Data, data structures, introduction to algorithms,

basic algorithms, recursion

• Computer Science Practice: ~6 weeks
– Programming in Python (data structure

implementation, control flow, functions, debugging,
recursion, advanced data processing)

• Computing and society: ~3 weeks
– Internet, cyber security, and societal impact of

computing

7

Resources

• Slides

• Text book

– Python Programming: An Introduction to
Computer Science. John Zelle. Second Edition.
Franklin, Beedle & Associates Inc.

• Wiki Book (online book)
– http://en.wikibooks.org/wiki/Python_Programming

8

http://en.wikibooks.org/wiki/Python_Programming
http://en.wikibooks.org/wiki/Python_Programming

Grading

• Attendance of lectures and recitations

– 5% of course credit

– No attendance taken the first week

– After 4 lectures missed, 1% off for every additional
lecture absence

– After 2 recitations missed, 1% off for every
additional recitation absence

– This includes all absences (e.g. interviews,
conferences, short term health issues, work, etc.)

9

Grading

• Attendance of lectures and recitations
– 5% of course credit

• Weekly lab
– 25% of course credit

• Projects
– 5 x 5% = 25% of course credit
– Late policy

• <24h -20% of project credit
• >24h & <48h -50% of project credit
• >48h -100% (no credit)

• Midterm examinations
– 2 x 12.5% = 25% of course credit

• Final examination
– 20% of course credit

10

Policies

• All CS 17700 students have to

– Familiarize themselves with CS policies

• http://spaf.cerias.purdue.edu/cpolicy.html

– Confirm knowledge of and adherence to CS policies

• http://www.cs.purdue.edu/

• Log into CS Portal using Purdue Career credentials

• Click on “Academic Integrity Policy” on the left tab

• Read policies carefully

• Logging in is equivalent to e-signature

11

http://spaf.cerias.purdue.edu/cpolicy.html
http://spaf.cerias.purdue.edu/cpolicy.html
http://www.cs.purdue.edu/
http://www.cs.purdue.edu/

CoS Teaming Requirement

• SCI 210

– Principles of working in teams

– Blackboard module, first 6 weeks of the semester

• Two or three CS 17700 team projects

– Practice of working in teams

– Project questions will evaluate understanding of
teaming

12

Computer Science

A 35,000 feet flyover

13 © Popescu 2012

Computers

• Malleable tools for processing data

14

Data

• “Factual information used as a basis for
reasoning, discussion, or calculation” M.
Webster

• Can be stored, transformed, and transmitted

• Examples

– Names of people in this class

– A self-portrait by Van Gogh

– Results of a molecular dynamics simulation

15

Why process data?

• To derive insight and knowledge

• For entertainment

• Examples

– Searching for evidence of extraterrestrial life in
radio signals coming from space

– Playing Wii Tennis

16

Computers process data fast

• High clock frequency
– 1GHz CPU clock means that one add takes 1 billionth

of a second

– Moore’s Law
• Transistor density doubles approximately every 2 years

• Affects speed (denser means shorter distances thus faster)

• Technological barriers will increase doubling period to 3
years at the end of 2013

• Parallel processing
– Multiple processors, each with multiple cores

– Parallel programming is a fundamental problem in CS

17

Computers process data accurately

• Computer HW is accurate

– No arithmetic errors

• Almost none (Pentium FDIV bug caused division errors)

– No memory or disk reading errors

• Unless hardware failure

18

66MHz Intel Pentium with the FDIV bug

Computers process data accurately

• Computer HW is accurate

• Not to be confused with SW accuracy
– SW can be wrong due to incorrect programming,

incorrect input, malicious attacks, etc.

– Very difficult to prove SW correctness
• Can be done for small programs

• Would preclude most important and fun applications

– SW licenses defer liability
• Unlike engineering products (e.g. cars, bridges)

• Like medical services (e.g. “infection can occur”)

19

Computers process data accurately

• Computer HW is accurate

• Not to be confused with SW accuracy

• However, we should

– Follow good practices when writing programs

– Test programs

– Specify how programs are to be used

– Address problems when reported by our users

20

Computers process data accurately

• Computer HW is accurate

• Not to be confused with SW accuracy

• However, we should
– Follow good practices when writing programs

– Test programs

– Specify how programs are to be used

– Address problems when reported by our users

– “Program correctness is not possible nor required,
and Microsoft, Adobe, and Apple can’t do it either”
defense will not fly in CS 17700

21

Computers excel at low-level data
processing

• Computers can easily
– Search through billions of words to find a given word
– Increase the brightness in billions of images
– Sort billions of health records alphabetically

• Computers have a harder time
– Understanding natural language (e.g. humor, irony,

sarcasm)
– Deciding which of two paintings is better
– Reconstructing the 3-D geometry of a real world scene

from photographs
– Not impossible, subject of ongoing research

22

How do computers process data?

• Data processing is described in algorithms

• Algorithm
– A set of step-by-step instructions

– Takes input data and produces output data in a
finite amount of time

• Algorithms are encoded into programs to be
understood and executed by computers

• Programs are written in programming
languages

23

Programming languages

• At first, they were low level: machine code

– “000000 00001 00010 00110 00000 100000”
stands for add registers 1 and 2 and place the
result in register 6

• Then higher level: assembly language

– Introduction of mnemonics, or letter groups
suggesting instruction name

24

Motorola MC6800 Assembly Language

25

Programming languages

• At first, they were low level: machine code

• Then higher level: assembly language

• Now: high-level programming languages

– English like instructions

– Easier to program, to debug, to extend

– Hardware (CPU) still executes machine code, thus
need for compiler

• Compiler translates program written in high-level
language to machine code

26

High-level programming language
example

sum = 0;

for(i = 0; i < 10; i++)

 if (a[i] > 0)

 sum = sum + a[i];

27

High-level programming language
example

// this program computes the sum of the

// positive numbers in an array of 10 numbers

sum = 0; // initialize the sum to 0

for(i = 0; i < 10; i++) // traverse the array, starting from

 // first number, until the last, one at

 // the time

 if (a[i] > 0) // if the current number is positive

 sum = sum + a[i]; // add it to the sum

28

Programming languages

• We will be using Python

– High level

– Lowest learning curve

– It’s a great time to start out in CS

• No machine code or assembly

29

How do computers process data?

• Data processing is described in algorithms

• Algorithms are encoded into programs to be
understood and executed by computers

• Programs are written in programming languages

• Programs are run on computers with the help of
operating systems

– Software that helps manage computer resources
(memory, drives, mouse, display)

– MacOS, Unix, Linux, Windows 7, Android, etc.

30

Remember first slide?

• Computers: malleable tools for processing data
– We talked about data

– About how computer process data

– Malleable?

• Computer functionality is virtually infinite
– New programs extend functionality

– So far you have been using programs written by
others

– This course will teach you how to write you own
programs

31

