CS17700

Hello world

© Popescu 2012

Instructors

- Voicu Popescu, instructor
 - popescu@purdue.edu
 - <u>http://www.cs.purdue.edu/homes/popescu/</u>
- Lorenzo Martino, instructional coordinator – Imartino@purdue.edu
- Teaching assistants

CS17700

- Two major goals
 - An introduction to Computer Science principles
 - An introduction to Computer Science practice using Python
- Targeted audience characteristics and needs
 - No Computer Science background
 - Collaboration with computer scientists
 - Use of complex computer science tools (i.e. software)
 - Development of custom computer science tools

Course organization

- Webpage
 - <u>http://wiki.cs.purdue.edu/177</u>
- Lecture
 - New concepts are introduced
- Recitation
 - Concepts are explained in more detail, reinforced
- Lab
 - Concepts are practiced

Communication

- Piazza ("marketplace" in Italian)
 - Online forum where students post questions and students and instructors post answers
 - Better scalability then direct, one to one email
 - Instructions posted on class webpage
 - Policies
 - Do not post lab or project solutions, partial solutions, incorrect solutions (cheating)
 - Use #private tag if not sure
 - Make questions general, clear, and concise

Communication

- Piazza
- Office hours
 - See webpage for details
 - Not a substitute for recitation or labs
- Instructor available after class for questions
 I'll stay as long as needed (hallway if need be)
- In class via iClicker

Syllabus overview

- Computer Science Principles: ~6 weeks
 - Data, data structures, introduction to algorithms, basic algorithms, recursion
- Computer Science Practice: ~6 weeks
 - Programming in Python (data structure implementation, control flow, functions, debugging, recursion, advanced data processing)
- Computing and society: ~3 weeks
 - Internet, cyber security, and societal impact of computing

Resources

- Slides
- Text book

 Python Programming: An Introduction to Computer Science. John Zelle. Second Edition.
 Franklin, Beedle & Associates Inc.

• Wiki Book (online book)

<u>http://en.wikibooks.org/wiki/Python_Programming</u>

Grading

- Attendance of lectures and recitations
 - 5% of course credit
 - No attendance taken the first week
 - After 4 lectures missed, 1% off for every additional lecture absence
 - After 2 recitations missed, 1% off for every additional recitation absence
 - This includes all absences (e.g. interviews, conferences, short term health issues, work, etc.)

Grading

- Attendance of lectures and recitations
 - 5% of course credit
- Weekly lab
 - 25% of course credit
- Projects
 - 5 x 5% = 25% of course credit
 - Late policy
 - <24h -20% of project credit
 - >24h & <48h -50% of project credit
 - >48h -100% (no credit)
- Midterm examinations
 - 2 x 12.5% = 25% of course credit
- Final examination
 - 20% of course credit

Policies

- All CS 17700 students have to
 - Familiarize themselves with CS policies
 - <u>http://spaf.cerias.purdue.edu/cpolicy.html</u>
 - Confirm knowledge of and adherence to CS policies
 - http://www.cs.purdue.edu/
 - Log into CS Portal using Purdue Career credentials
 - Click on "Academic Integrity Policy" on the left tab
 - Read policies carefully
 - Logging in is equivalent to e-signature

CoS Teaming Requirement

- SCI 210
 - Principles of working in teams
 - Blackboard module, first 6 weeks of the semester
- Two or three CS 17700 team projects
 - Practice of working in teams
 - Project questions will evaluate understanding of teaming

Computer Science

A 35,000 feet flyover

Computers

• Malleable tools for processing data

Data

- "Factual information used as a basis for reasoning, discussion, or calculation" M. Webster
- Can be stored, transformed, and transmitted
- Examples
 - Names of people in this class
 - A self-portrait by Van Gogh
 - Results of a molecular dynamics simulation

Why process data?

- To derive insight and knowledge
- For entertainment
- Examples
 - Searching for evidence of extraterrestrial life in radio signals coming from space
 - Playing Wii Tennis

Computers process data fast

- High clock frequency
 - 1GHz CPU clock means that one add takes 1 billionth of a second
 - Moore's Law
 - Transistor density doubles approximately every 2 years
 - Affects speed (denser means shorter distances thus faster)
 - Technological barriers will increase doubling period to 3 years at the end of 2013
- Parallel processing
 - Multiple processors, each with multiple cores
 - Parallel programming is a fundamental problem in CS

- Computer HW is accurate
 - No arithmetic errors
 - Almost none (Pentium FDIV bug caused division errors)
 - No memory or disk reading errors
 - Unless hardware failure

66MHz Intel Pentium with the FDIV bug

- Computer HW is accurate
- Not to be confused with SW accuracy
 - SW can be wrong due to incorrect programming, incorrect input, malicious attacks, etc.
 - Very difficult to prove SW correctness
 - Can be done for small programs
 - Would preclude most important and fun applications
 - SW licenses defer liability
 - Unlike engineering products (e.g. cars, bridges)
 - Like medical services (e.g. "infection can occur")

- Computer HW is accurate
- Not to be confused with SW accuracy
- However, we should
 - Follow good practices when writing programs
 - Test programs
 - Specify how programs are to be used
 - Address problems when reported by our users

- Computer HW is accurate
- Not to be confused with SW accuracy
- However, we should
 - Follow good practices when writing programs
 - Test programs
 - Specify how programs are to be used
 - Address problems when reported by our users
 - "Program correctness is not possible nor required, and Microsoft, Adobe, and Apple can't do it either" defense will not fly in CS 17700

Computers excel at *low-level* data processing

- Computers can easily
 - Search through billions of words to find a given word
 - Increase the brightness in billions of images
 - Sort billions of health records alphabetically
- Computers have a harder time
 - Understanding natural language (e.g. humor, irony, sarcasm)
 - Deciding which of two paintings is better
 - Reconstructing the 3-D geometry of a real world scene from photographs
 - Not impossible, subject of ongoing research

How do computers process data?

- Data processing is described in algorithms
- Algorithm
 - A set of step-by-step instructions
 - Takes input data and produces output data in a finite amount of time
- Algorithms are encoded into programs to be understood and executed by computers
- Programs are written in programming languages

Programming languages

- At first, they were low level: machine code
 - "000000 00001 00010 00110 00000 100000"
 stands for add registers 1 and 2 and place the result in register 6
- Then higher level: assembly language
 - Introduction of mnemonics, or letter groups suggesting instruction name

Motorola MC6800 Assembly Language

************************************* * FUNCTION: INCH - Input character * INPUT: none * OUTPUT: char in acc A * DESTROYS: acc A * CALLS: none * DESCRIPTION: Gets 1 character from terminal C010 B6 80 04 INCH LDA A ACIA GET STATUS C013 47 ASR A SHIFT RDRF FLAG INTO CARRY C014 24 FA BCC INCH RECIEVE NOT READY C016 B6 80 05 LDA A ACIA+1 GET CHAR C019 84 7F AND A #\$7F MASK PARITY C01B 7E C0 79 OUTCH ECHO & RTS JMP

Programming languages

- At first, they were low level: machine code
- Then higher level: assembly language
- Now: high-level programming languages
 - English like instructions
 - Easier to program, to debug, to extend
 - Hardware (CPU) still executes machine code, thus need for compiler
 - Compiler translates program written in high-level language to machine code

High-level programming language example

High-level programming language example

- // this program computes the sum of the
- // positive numbers in an array of 10 numbers
- sum = 0; // initialize the sum to 0
- - if (a[i] > 0) // if the current number is positive
 sum = sum + a[i]; // add it to the sum

Programming languages

- We will be using Python
 - High level
 - Lowest learning curve
 - It's a great time to start out in CS
 - No machine code or assembly

How do computers process data?

- Data processing is described in algorithms
- Algorithms are encoded into programs to be understood and executed by computers
- Programs are written in programming languages
- Programs are run on computers with the help of operating systems
 - Software that helps manage computer resources (memory, drives, mouse, display)
 - MacOS, Unix, Linux, Windows 7, Android, etc.

Remember first slide?

- Computers: malleable tools for processing data
 - We talked about data
 - About how computer process data
 - Malleable?
- Computer functionality is virtually infinite
 - New programs extend functionality
 - So far you have been using programs written by others
 - This course will teach you how to write you own programs