CS17700

© Popescu 2012



Instructors

* Voicu Popescu, instructor

— popescu@purdue.edu

— http://www.cs.purdue.edu/homes/popescu/

 Lorenzo Martino, instructional coordinator

— Imartino@purdue.edu

* Teaching assistants


mailto:popescu@purdue.edu
http://www.cs.purdue.edu/homes/popescu/
http://www.cs.purdue.edu/homes/popescu/
mailto:lmartino@purdue.edu

CS17700

 Two major goals
— An introduction to Computer Science principles

— An introduction to Computer Science practice using
Python

* Targeted audience characteristics and needs
— No Computer Science background
— Collaboration with computer scientists
— Use of complex computer science tools (i.e. software)
— Development of custom computer science tools



Course organization

Webpage
— http://wiki.cs.purdue.edu/177
Lecture

— New concepts are introduced

Recitation

— Concepts are explained in more detail, reinforced
Lab

— Concepts are practiced


http://wiki.cs.purdue.edu/177
http://wiki.cs.purdue.edu/177

Communication

* Piazza (“marketplace” in Italian)

— Online forum where students post questions and
students and instructors post answers

— Better scalability then direct, one to one email
— Instructions posted on class webpage
— Policies

* Do not post lab or project solutions, partial solutions,
incorrect solutions (cheating)

* Use #private tag if not sure
* Make questions general, clear, and concise



Communication

Piazza
Office hours

— See webpage for details
— Not a substitute for recitation or labs

Instructor available after class for questions
— I'll stay as long as needed (hallway if need be)

In class via iClicker




Syllabus overview

 Computer Science Principles: ~6 weeks

— Data, data structures, introduction to algorithmes,
basic algorithms, recursion

 Computer Science Practice: ~6 weeks

— Programming in Python (data structure
implementation, control flow, functions, debugging,
recursion, advanced data processing)

 Computing and society: ~3 weeks

— Internet, cyber security, and societal impact of
computing



Resources

e Slides
e Text book

— Python Programming: An Introduction to
Computer Science. John Zelle. Second Edition.
Franklin, Beedle & Associates Inc.

e Wiki Book (online book)
— http://en.wikibooks.org/wiki/Python Programming



http://en.wikibooks.org/wiki/Python_Programming
http://en.wikibooks.org/wiki/Python_Programming

Grading

e Attendance of lectures and recitations
— 5% of course credit
— No attendance taken the first week

— After 4 lectures missed, 1% off for every additional
lecture absence

— After 2 recitations missed, 1% off for every
additional recitation absence

— This includes all absences (e.g. interviews,
conferences, short term health issues, work, etc.)



Grading

Attendance of lectures and recitations
— 5% of course credit
Weekly lab
— 25% of course credit
Projects
— 5x5% =25% of course credit
— Late policy
e <24h -20% of project credit

e >24h & <48h -50% of project credit
* >48h -100% (no credit)

Midterm examinations

— 2x12.5% = 25% of course credit
Final examination

— 20% of course credit



Policies

All CS 17700 students have to

— Familiarize themselves with CS policies
* http://spaf.cerias.purdue.edu/cpolicy.html

— Confirm knowledge of and adherence to CS policies
* http://www.cs.purdue.edu/

* Log into CS Portal using Purdue Career credentials
* Click on “Academic Integrity Policy” on the left tab
* Read policies carefully

* Logging in is equivalent to e-signature


http://spaf.cerias.purdue.edu/cpolicy.html
http://spaf.cerias.purdue.edu/cpolicy.html
http://www.cs.purdue.edu/
http://www.cs.purdue.edu/

CoS Teaming Requirement

e SCI 210

— Principles of working in teams
— Blackboard module, first 6 weeks of the semester

* Two or three CS 17700 team projects

— Practice of working in teams

— Project questions will evaluate understanding of
teaming



Computer Science

© Popescu 2012



Computers

* Malleable tools for processing data



Data

“Factual information used as a basis for
reasoning, discussion, or calculation” M.
Webster

Can be stored, transformed, and transmitted
Examples
— Names of people in this class

— A self-portrait by Van Gogh
— Results of a molecular dynamics simulation



Why process data?

* To derive insight and knowledge
* For entertainment
 Examples

— Searching for evidence of extraterrestrial life in
radio signals coming from space

— Playing Wii Tennis



Computers process data fast

* High clock frequency

— 1GHz CPU clock means that one add takes 1 billionth
of a second

— Moore’s Law
* Transistor density doubles approximately every 2 years
» Affects speed (denser means shorter distances thus faster)

* Technological barriers will increase doubling period to 3
years at the end of 2013

* Parallel processing
— Multiple processors, each with multiple cores
— Parallel programming is a fundamental problem in CS



Computers process data accurately

* Computer HW is accurate
— No arithmetic errors
e Almost none (Pentium FDIV bug caused division errors)

— No memory or disk reading errors

* Unless hardware failure

AAAAAAAAA
SSSSS

sssssssss

IIIIIIII
99999999999

66MHz Intel Pentium with the FDIV bug



Computers process data accurately

* Computer HW is accurate

Not to be confused with SW accuracy

— SW can be wrong due to incorrect programming,
incorrect input, malicious attacks, etc.
— Very difficult to prove SW correctness
* Can be done for small programs
* Would preclude most important and fun applications
— SW licenses defer liability

* Unlike engineering products (e.g. cars, bridges)
 Like medical services (e.g. “infection can occur”)



Computers process data accurately

* Computer HW is accurate
* Not to be confused with SW accuracy

e However, we should
— Follow good practices when writing programs
— Test programs
— Specify how programs are to be used
— Address problems when reported by our users



Computers process data accurately

* Computer HW is accurate
* Not to be confused with SW accuracy

e However, we should
— Follow good practices when writing programs
— Test programs
— Specify how programs are to be used
— Address problems when reported by our users

— “Program correctness is not possible nor required,
and Microsoft, Adobe, and Apple can’t do it either”
defense will not fly in CS 17700



Computers excel at low-/level data
processing

 Computers can easily
— Search through billions of words to find a given word
— Increase the brightness in billions of images
— Sort billions of health records alphabetically

* Computers have a harder time

— Understanding natural language (e.g. humor, irony,
sarcasm)

— Deciding which of two paintings is better

— Reconstructing the 3-D geometry of a real world scene
from photographs

— Not impossible, subject of ongoing research



How do computers process data?

* Data processing is described in algorithms
e Algorithm
— A set of step-by-step instructions

— Takes input data and produces output data in a
finite amount of time

e Algorithms are encoded into programs to be
understood and executed by computers

* Programs are written in programming
languages



Programming languages

e At first, they were low level: machine code

— “000000 00001 00010 00110 00000 100000
stands for add registers 1 and 2 and place the
result in register 6

 Then higher level: assembly language

— Introduction of mnemonics, or letter groups
suggesting instruction name



Motorola MC6800 Assembly Language

Cc010
Cc013
C014
COle
co19
CO1B

B6
47
24
B6
84
TE

80

FA
80
TF
cO

04

05

79

AEAAKAAKA A A AR A AR A A A A A Ak dhhhhhhdi

INPUT:

CALLS:

* % * * ¥ *

INCH

none

none

OQUTPUT: char in acc A
DESTROYS: acc A

LDA A ACIA

ASR
BCC
LDA
AND
JMP

A

A
A

INCH
ACIA+1
#STF
OUTCH

FUNCTION: INCH - Input character

DESCRIPTION: Gets 1 character from terminal

GET STATUS

SHIFT RDRF FLAG INTO CARRY
RECIEVE NOT READY

GET CHAR

MASK PARITY

ECHO & RTS



Programming languages

e At first, they were low level: machine code

 Then higher level: assembly language

* Now: high-level programming languages
— English like instructions

— Easier to program, to debug, to extend

— Hardware (CPU) still executes machine code, thus
need for compiler

* Compiler translates program written in high-level
language to machine code



High-level programming language

example
sum = 0;
for(i=0;i<10; i++)
if (a[i] > 0)

sum = sum + alil;



High-level programming language
example

// this program computes the sum of the

// positive numbers in an array of 10 numbers

sum = 0; // initialize the sumto 0

for(i = 0; i < 10; i++) // traverse the array, starting from
// first number, until the last, one at
// the time

if (a[i] > 0) // if the current number is positive
sum = sum + ali]; // add it to the sum

28



Programming languages

 We will be using Python
— High level
— Lowest learning curve

— It’s a great time to start out in CS
* No machine code or assembly



How do computers process data?

Data processing is described in algorithms

Algorithms are encoded into programs to be
understood and executed by computers

Programs are written in programming languages

Programs are run on computers with the help of
operating systems

— Software that helps manage computer resources
(memory, drives, mouse, display)

— MacOS, Unix, Linux, Windows 7, Android, etc.



Remember first slide?

 Computers: malleable tools for processing data
— We talked about data
— About how computer process data
— Malleable?

 Computer functionality is virtually infinite
— New programs extend functionality

— So far you have been using programs written by
others

— This course will teach you how to write you own
programs



