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As mentioned at the end of the “regular data structures” lecture, arrays are not 
always suitable for a data processing application. As we saw, changes that imply 
changes to the array size are costly. Moreover, not all data that has to be processed is 
uniform in size and structure. For example, 1-D arrays allow an element to have two 
immediate neighbors, elements in 2-D arrays have 8 immediate neighbors and so on, 
which cannot accommodate scenarios where data elements have a varying number 
of neighbors. 
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To overcome these disadvantages, some data processing applications use irregular 
data structures. Of course, abandoning the regular structure of arrays comes at a 
cost:  
- irregular data structures are more complex to design, implement, use, maintain,  
- they are less efficient since some of the memory bytes go towards defining and 

storing structure, whereas in the case of arrays all bytes go towards the payload, 
- and it is also the case that one does not have direct access to all data, like in the 

case of arrays. 
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The linked list is a data structure that overcomes the costly size changing operations 
on 1-D arrays. Like 1-D arrays, a linked list is a 1-D sequence of elements. It is not an 
array, since the elements are not stored in a contiguous piece of memory, and 
therefore one cannot access the elements through indexing. 
 
There are explicit links between elements. A link is a memory address. A link says: 
“the data of interest is at address X”. The actual address X is chosen by the operating 
system during run time, and it is not important when designing the data structure or 
when writing the program. What is important is the semantic, the meaning: a pointer 
to a piece of memory where data “worth pointing to” is stored. In the case of the 
linked list, the link of one element points to where the next element is stored. 
 
The elements of the list are called “nodes”, since a node stores the data element and 
the link. Whereas in the case of the array indices were implicit, and were not stored, 
in the case of linked lists the links are explicit, they are actually stored in the data 
structure. 
 
In the example, the element might be stored as a floating point number on 32 bits, 
and the link, which is a memory address, could be stored using 32 bits as well. 
Consequently, there is a 100% overhead: the amount of memory used to store the 
link is the same as the amount of memory used to store the number. 
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Two more important points. Since there is no element preceding the first element, a 
link to the first element needs to be stored explicitly (red arrow). If the program loses 
track of this link to the first element, none of the nodes can be accessed, and the 
program loses access to the entire data. Link mismanagement is another frequent 
and serious software problem. 
 
The second point is that the last element has no succeeding element, thus its link is 
invalid. Invalid links are set to 0, or NULL. 
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Here is how to add a new transaction to the linked list, while keeping the list sorted. 
 
Starting from the first element, the insertion point is found as the “before the node 
whose transaction amount is less than the amount to be inserted”. 
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Once the insertion point is found, the actual insertion is done with the following 
steps: 
- Make a new node and set the amount to the amount to be inserted 
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- The new node link should point to the node following the insertion point. 
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- And finally the link of the node preceding the insertion point should be set to point 
to the new node. 
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Here is the resulting linked list. Note that we did not reallocate the entire linked list, 
nor did we copy the “old” data to a “new” location. 
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Deletion is similar. 
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It is important to delete the current node, which releases the memory to the pool of 
available memory such that it can be reused. As you remember from the rationale for 
deleting the old array, failing to release memory that is not needed anymore creates a 
memory leak, the program will consume substantially more memory than what is 
needed, eventually exhausting the amount of available memory, and crashing. 
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If we want to delete the first node, we have to remember to update our link to the 
first node in the linked list. 
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Again, here is a summary of the advantages and disadvantages of the linked list, 
compared to a 1-D array. 
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Here is a second example of irregular data structure, a binary tree. 
 
Notice that a node can link to more than one node. This tree is called binary because 
a parent node can have at most 2 children nodes. 
 
a is the root, a is the parent of children nodes b and c, b is the left child of a, c is the 
right child of a, a-f are internal nodes, g-k are leaf nodes. 
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And here is a classic application of binary trees—parsing and evaluating arithmetic 
expressions. 
 
Internal nodes store operators. The left and right subtrees (i.e. the trees with the left 
and right children as roots) are the expressions on which the operator is applied. 
 
Leaf nodes store operands (e.g. constants, variables). 
 
The subtree highlighted corresponds to the subtraction 3-1. 
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This other subtree corresponds to a multiplication: 5 times 3. 
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The + operator is applied to the two subtrees, resulting in the expression ((3-
1)*(5*3)). Notice that here, for simplicity, we ignore operator precedence and use 
parentheses “all the time”. 
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The entire binary tree is equivalent to an arithmetic expression. 
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Given an arithmetic expression binary tree, one can print out the expression to which 
the tree corresponds by traversing the entire tree. 
 
Traversing or the traversal of a data structure is a systematic approach to visiting all 
its data elements. In the case of arrays the traversal is straightforward—for example 
you start at element with index 0, then you increment the index by 1 until you reach 
the last element. For irregular data structures, such as binary trees, traversals are a 
little more complicated. 
 
Here are some simple rules for a successful traversal. Successful means visiting all 
nodes once. 
 
In order to print out the arithmetic expression, the traversal rules are enhanced with 
the following printout rules. 
 
Let’s see these rules at work. 
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We start at the root. We write ( before going left. 
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Then we go left. We are at +. We write ( again before going left. 

25 



 
One more time. 
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Now we are at the leaf node storing the operand 3. There is no way we can go left, 
since the current node doesn’t have a left child. A leaf node will have both children 
links invalid, i.e. set to NULL. 
 
So we will try to go right, but before that, we write the current node symbol, 
according to the second printout rule. 
 
We cannot go right either, since there is no right child. Then we have to go back up. 
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We are back at -. We have already gone left. Now we write the symbol – before trying 
to go right. We succeed going right. 
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Now we are at 1. No children. Like before, we write 1 and go back up. 
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Now were are at – again. We went right, so now we write ) and go back up. 
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We are at + now. We write + and go right. 
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We get to *. We can go left so we write ( and go left. 
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We write the leaf operand 5… 
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Then the operand * 
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And the operand 3. 
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We are back at *, we are done going right, thus we write ). 
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We are at +, done going right, write ). 
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We are at the root, we write the symbol, and then go right. 
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We write the operand at the leaf. 
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We are back to the root. We are done going right, we write ). We are done with the 
root, we want to go up, there is no more up, we are done. 
 
We printed out the entire expression. 
 
Evaluating the binary tree is even easier. 
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We are at root. 
 
Is it a leaf? No, evaluate left i.e. +. 
 
Is it a leaf? No, evaluate left, i.e. -. 
 
Is it a leaf? No, evalue left, i.e. 3. 
 
Is it a leaf? Yes, return 3. 
 
We are back at -. Evaluate right, i.e. 1. 
 
Is it a leaf? Yes, return 1. 
 
We are back at -. Return 3-1=2. 
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The subtree starting at * is evaluated similarly to 15. 
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And the final expression value is 1.7. 
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Here is a third example of irregular data structures, graphs. Trees are more flexible 
than linked lists and graphs are more flexible than trees. 
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One way of encoding a graph is by specifying an array of nodes and an array of edges. 
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The list of edges representation is compact but it is not easy to find whether there is 
a node between two given nodes, or to enumerate all the edges from a given node. 
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A more powerful encoding of the graph is by using adjacency lists. Adjacency lists 
could be encoded as linked lists or as 1-D arrays. Here we chose 1-D arrays. 
 
There is one adjacency list for each node. The adjacency list provides the nodes to 
which there is an edge from the current node. 
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Finding whether one can fly directly from IND and DFW only requires traversing the 
adjacency list of IND to search for DFW. 
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A third possible way of encoding graphs is to use what is called an adjacency matrix. 
The adjacency matrix is a square 2-D array A, where element A[i][j] is 1 if there is an 
edge from node i to node j. 
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The adjacency matrix allows answering the question “is there an edge from node i to 
node j” in constant time, by simply checking whether element A[i][j] is 1 or 0. 
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The adjacency matrix allows answering the question “is there an edge from node i to 
node j” in constant time, by simply checking whether element A[i][j] is 1 or 0. 
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Here an edge AB means that one can fly directly from airport A to airport B and from 
airport B to airport A. 
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