
Irregular Data Structures

Linked lists, trees, and graphs

1 © Popescu 2012

Motivation

• Irregular data structures needed to overcome
disadvantages of arrays

– Easy expansion and contraction to keep up with
dynamic data size

– Modeling of irregular data, with complex
“neighboring” relationship

2

Cost

• Irregular data structures

– Increased complexity

– Decreased efficiency
• Structure stored explicitly, not all storage used to store data

– No direct access to all data

3

Linked list

• A 1-D sequence data
structure

• Not an array

• Each data element is linked
to the next

• Link: memory address
pointing to a data element

• Link list node: data element
+ link

• Example

– credit card transaction
amounts in dollars, sorted

– Links stored explicitly
• E.g. 32 bit / link

– Actual address irrelevant here
• Link shown with arrow

– Link to first element has to be
known (shown in red)

– Link of last element is null

4

13.40 12.50 7.45 2.50

Linked list

• Add a new transaction in the amount of $8.12

– Start at first node (using known red arrow link)

– Is amount (13.40) smaller than $8.12?

– No, use node link to go to next node

– Is amount (12.50) smaller than $8.12?

– No, use node link to go to next node

– Is amount (7.45) smaller than $8.12?

5

13.40 12.50 7.45 2.50

Linked list

• Add a new transaction in the amount of $8.12

– Yes, insert new node

• Make new node

• Set new node amount to $8.12

6

13.40 12.50 7.45 2.50

8.12

Linked list

• Add a new transaction in the amount of $8.12

– Yes, insert new node

• Make new node

• Set new node amount to $8.12

• Set new node link to next node

7

13.40 12.50 7.45 2.50

8.12

Linked list

• Add a new transaction in the amount of $8.12

– Yes, insert new node

• Make new node

• Set new node amount to $8.12

• Set new node link to next node

• Set previous node link to new node

8

13.40 12.50 7.45 2.50

8.12

Linked list

• Add a new transaction in the amount of $8.12

9

13.40 12.50 7.45 2.50 8.12

Linked list

• Delete transaction $12.50

– Move to node storing $12.50 transaction

10

13.40 12.50 7.45 2.50 8.12

Linked list

• Delete transaction $12.50

– Move to node storing $12.50 transaction

– Set link of previous node to next node

11

13.40 12.50 7.45 2.50 8.12

Linked list

• Delete transaction $12.50

– Move to node storing $12.50 transaction

– Set link of previous node to next node

– Delete current node

12

13.40 7.45 2.50 8.12

Linked list

• Delete transaction $12.50

13

13.40 7.45 2.50 8.12

Linked list

• Delete transaction $13.40

– Special case

– Set red link equal to link of first node

– Delete first node

14

13.40 7.45 2.50 8.12

Linked list

• Delete transaction $13.40

– Special case

– Set red link equal to link of first node

– Delete first node

15

7.45 2.50 8.12

Linked list

• Advantages

– List grows and shrinks as needed, w/o having to
modify entire list

– Insertion & deletion imply local changes

• Disadvantages

– You cannot find third transaction directly

• Have to traverse list

– Storing link implies overhead

 16

13.40 7.45 2.50 8.12

iClicker question

When inserting a transaction with value 1.00 in
the linked list below, which of the following
statements is true:
A. The transaction cannot be inserted since there is no

transaction of smaller value.

B. The next node link of the new node will be NULL.

C. The insertion point is found when the next node link of
the current node is found to be NULL.

D. A, B, and C are true.

E. B and C are true.

17

7.45 2.50 8.12

Binary tree

• Definition

– A hierarchical data
structure

– A (parent) node links to 0,
1, or 2 (children) nodes

– The starting node is called
root; the root is not the
child of any node

– Nodes with 0 children are
called leafs

– Non-leaf nodes are called
internal

18

d

g h i j k

e f

b c

a

Arithmetic expression binary tree

• Operators at internal
nodes

• Operands at leafs

19

-

3 1 5

*

+ 10

/

3

(3-1)

Arithmetic expression binary tree

• Operators at internal
nodes

• Operands at leafs

20

-

3 1 5

*

+ 10

/

3

(3-1) (5*3)

Arithmetic expression binary tree

• Operators at internal
nodes

• Operands at leafs

21

-

3 1 5

*

+ 10

/

3

((3-1)+(5*3))

Arithmetic expression binary tree

• Operators at internal
nodes

• Operands at leafs

22

-

3 1 5

*

+ 10

/

3

(((3-1)+(5*3))/10)

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

23

-

3 1 5

*

+ 10

/

3

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

24

-

3 1 5

*

+ 10

/

3

(

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

25

-

3 1 5

*

+ 10

/

3

((

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

26

-

3 1 5

*

+ 10

/

3

(((

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

27

-

3 1 5

*

+ 10

/

3

(((3

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

28

-

3 1 5

*

+ 10

/

3

(((3-

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

29

-

3 1 5

*

+ 10

/

3

(((3-1

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

30

-

3 1 5

*

+ 10

/

3

(((3-1)

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

31

-

3 1 5

*

+ 10

/

3

(((3-1)+

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

32

-

3 1 5

*

+ 10

/

3

(((3-1)+(

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

33

-

3 1 5

*

+ 10

/

3

(((3-1)+(5

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

34

-

3 1 5

*

+ 10

/

3

(((3-1)+(5*

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

35

-

3 1 5

*

+ 10

/

3

(((3-1)+(5*3

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

36

-

3 1 5

*

+ 10

/

3

(((3-1)+(5*3)

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

37

-

3 1 5

*

+ 10

/

3

(((3-1)+(5*3))

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

38

-

3 1 5

*

+ 10

/

3

(((3-1)+(5*3))/

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

39

-

3 1 5

*

+ 10

/

3

(((3-1)+(5*3))/10

Arithmetic expression binary tree

• Arithmetic expression can be
recovered by traversing tree

• Traversal: visiting all nodes
• Traversal rules

– Start at root
– For every node

• go left until dead end
• then go right until dead end
• then go back up

• Printout rules
– Write “(“ before going left
– Write current node symbol

before going right
– Write “)” after having gone right

40

-

3 1 5

*

+ 10

/

3

(((3-1)+(5*3))/10)

Arithmetic expression binary tree

• Arithmetic expression can
be evaluated by traversing
tree

• Evaluation rules

– if leaf, return operand

– valLeft = Evaluate left

– valRight = Evaluate right

– return valLeft operator
valRight

41

-

3 1 5

*

+ 10

/

3

Arithmetic expression binary tree

• Arithmetic expression can
be evaluated by traversing
tree

• Evaluation rules

– if leaf, return operand

– valLeft = Evaluate left

– valRight = Evaluate right

– return valLeft operator
valRight

42

-

3 1 5

*

+ 10

/

3

2

Arithmetic expression binary tree

• Arithmetic expression can
be evaluated by traversing
tree

• Evaluation rules

– if leaf, return operand

– valLeft = Evaluate left

– valRight = Evaluate right

– return valLeft operator
valRight

43

-

3 1 5

*

+ 10

/

3

2 15

Arithmetic expression binary tree

• Arithmetic expression can
be evaluated by traversing
tree

• Evaluation rules

– if leaf, return operand

– valLeft = Evaluate left

– valRight = Evaluate right

– return valLeft operator
valRight

44

-

3 1 5

*

+ 10

/

3

2 15

17 10

1.7

iClicker question

45

• Which traversal called
COUNT counts the number
of leafs in a binary tree.

A. If leaf, return 1. If not leaf,
return COUNT(left child) +
COUNT(right child)

B. If leaf, return 1. If not leaf return
0. COUNT(left child).
COUNT(right child).

C. If leaf, return operand. If not
leaf, return COUNT(left child) +
COUNT(right child)

D. None of the above.
E. All of the above.

-

3 1 5

*

+ 10

/

3

Graphs

• Graphs

– Nodes (also called
vertices) connected by
links, called edges

– Nodes have a variable
number of incident
edges

– Great flexibility

• Example: airline routes

46

RDU

MIA

IND

ATL

DFW

ORD
JFK

Graph data structure encodings

• “List of edges”

– Array of nodes & array of
edges

– Edges pair of node
indices

– Origin node first

– Destination node second

47

RDU

MIA

IND

ATL

DFW

ORD
JFK

0 1 2 3 4 5 6

ORD IND JFK RDU DFW ATL MIA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,4 2,0 3,2 6,3 5,6 4,5 6,5 5,4 4,1 1,4 1,5 5,3 3,5 5,2 1,0 0,1

0,4
4,1 1,4

0,1

1,0

2,0

3,2
5,2

6,3

5,6

6,5 4,5

5,4

1,5

3,5
5,3

Graph data structure encodings

• “List of edges”
– Used only for sparse graphs

(i.e. a small number of edges)

– Difficult to find whether there
is an edge between two
nodes (requires traversal of
edge list)

48

RDU

MIA

IND

ATL

DFW

ORD
JFK

0 1 2 3 4 5 6

ORD IND JFK RDU DFW ATL MIA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0,4 2,0 3,2 6,3 5,6 4,5 6,5 5,4 4,1 1,4 1,5 5,3 3,5 5,2 1,0 0,1

0,4
4,1 1,4

0,1

1,0

2,0

3,2
5,2

6,3

5,6

6,5 4,5

5,4

1,5

3,5
5,3

Graph data structure encodings

• “Adjacency lists”

– One array for each node

– Array stores adjacent
nodes

49

RDU

MIA

IND

ATL

DFW

ORD
JFK

0 1 2 3 4 5 6

ORD IND JFK RDU DFW ATL MIA

0 1

1 4

0,4
4,1 1,4

0,1

1,0

2,0

3,2
5,2

6,3

5,6

6,5 4,5

5,4

1,5

3,5
5,3

0 1 2

0 4 5

Adjacency list
for node 0

Adjacency list
for node 1

0

0

Adjacency list
for node 2

0 1

2 5

Adjacency list
for node 3

Adjacency list
for node 4

0 1 2 3

2 3 4 6

Adjacency list
for node 5

0 1

1 5

Adjacency list
for node 6

0 1

3 5

Graph data structure encodings

50

RDU

MIA

IND

ATL

DFW

ORD
JFK

0 1 2 3 4 5 6

ORD IND JFK RDU DFW ATL MIA

0 1

1 4

0,4
4,1 1,4

0,1

1,0

2,0

3,2
5,2

6,3

5,6

6,5 4,5

5,4

1,5

3,5
5,3

0 1 2

0 4 5

Adjacency list
for node 0

Adjacency list
for node 1

0

0

Adjacency list
for node 2

0 1

2 5

Adjacency list
for node 3

Adjacency list
for node 4

0 1 2 3

2 3 4 6

Adjacency list
for node 5

0 1

1 5

Adjacency list
for node 6

0 1

3 5

• “Adjacency lists”
– Finding an edge only requires

traversing the starting node’s
adjacency list

Graph data structure encodings

• “Adjacency matrix”
– A 2-D matrix

– Row corresponds to start node

– Column corresponds to end node

– 0 if no edge, 1 if edge

51

0 1 2 3 4 5 6

O
R
D

I
N
D

J
F
K

R
D
U

D
F
W

A
T
L

M
I
A

RDU

MIA

IND

ATL

DFW

ORD
JFK

0,4
4,1 1,4

0,1

1,0

2,0

3,2
5,2

6,3

5,6

6,5 4,5

5,4

1,5

3,5
5,3

0 1 2 3 4 5 6

0 0 1 0 0 1 0 0

1 1 0 0 0 1 1 0

2 1 0 0 0 0 0 0

3 0 0 1 0 0 1 0

4 0 1 0 0 0 1 0

5 0 0 1 1 1 0 1

6 0 0 0 1 0 1 0

Graph data structure encodings

52

0 1 2 3 4 5 6

O
R
D

I
N
D

J
F
K

R
D
U

D
F
W

A
T
L

M
I
A

RDU

MIA

IND

ATL

DFW

ORD
JFK

0,4
4,1 1,4

0,1

1,0

2,0

3,2
5,2

6,3

5,6

6,5 4,5

5,4

1,5

3,5
5,3

0 1 2 3 4 5 6

0 0 1 0 0 1 0 0

1 1 0 0 0 1 1 0

2 1 0 0 0 0 0 0

3 0 0 1 0 0 1 0

4 0 1 0 0 0 1 0

5 0 0 1 1 1 0 1

6 0 0 0 1 0 1 0

• “Adjacency matrix”
– An edge is found in constant time

• Is there an edge between ATL and ORD?

• A[5][0] is 0 so the answer is no

– Storage quadratic in number of
nodes

• Inefficient for sparse graphs

Directed graphs

53

RDU

MIA

IND

ATL

DFW

ORD
JFK

0,4
4,1 1,4

0,1

1,0

2,0

3,2
5,2

6,3

5,6

6,5 4,5

5,4

1,5

3,5
5,3

• So far we talked about directed
graphs
– an edge started from one node and

ended at another

– the edge could only be traversed in
one direction

Undirected graphs

54

RDU

MIA

IND

ATL

DFW

ORD
JFK

• In an undirected graph edges can
be traversed in either direction.

