Regular Data Structures

1, 2, 3, 4, N-D Arrays

© Popescu 2012

In this lecture we will begin exploring how data is actually organized (i.e. structured)
to be stored, accessed, and processed on the computer.

Data Structures

Store and organize data on computers
Facilitate data processing

— Fast retrieval of data and of related data
Similar to furniture with shelves and drawers
— Quick access

— Quick selection

Data structure is designed according to data
and data processing characteristics

— A big part of the data processing solution

The data structure has great influence on the performance of data processing.

The data structures used for a particular data processing application have to let the
application easily (i.e. quickly) retrieve the data currently being processed, as well as
all the related data needed for the processing. For example in the case of blurring a
digital image, the application needs to have easy access to the current pixel as well as
to the neighbors of the current pixel.

The data structures to be used for a particular data processing application have to be
designed in conjunction with the actual data processing step-by-step instructions, or
algorithm.

Regular data structures: arrays

* |dentical data elements tightly packed
* Direct access through indexing

— Index must be within array bounds
* Structure is implicit

— Neighbors are found through indexing
— No need to waste storage space for structure

In this lecture we will look at regular, uniform data structures called arrays. Arrays are
used very frequently in data processing.

An array is a regularly arranged collection of identical data elements. Each data
element takes up the same amount of (memory) space. There is no space between
adjacent elements. This allows direct access to any element in the array through
indexing.

Arrays have implicit structure. In other words there is no special data to encode the
structure. All memory used by the array goes towards storing the payload, i.e. the
data that one wants to process.

Regular data structures: arrays

* 1-D array
— A row

The simplest array is one dimensional. Think of a 1-D array as of a row of elements.

Example: houses on street

The houses form a 1-D array

House number serves as index

You can refer to a house directly using its
number

An urban modeling SW application could store
the houses on a street in a 1-D array

The houses on one side of a street can be thought of as an 1-D array.

Example: today’s hourly temperatures
at given location

* There are 24 hours
* 1 temperature reading for every hour

Example: today’s hourly temperatures
at given location

There are 24 hours

1 temperature reading for every hour

A 1-D array with 24 elements

Each element is a number

|55|54,53|50‘d9|49|55|60|65|68‘70[72|75|77|80|83‘85‘85|82|79|77|70‘60‘57|

Another example: the temperatures recorded every hour at a given location. An
element is a number: the temperature at that hour. The index of the array
corresponds to time (a 1-hour digitization of continuous time). There are 24 elements
since there are 24 hours in a day.

Example: hourly temperatures in West
Lafayette on given day

* There are 24 hours

* 1 temperature reading for every hour

* A 1-D array with 24 elements

* Each element is a number

* We usually show indices in diagrams, but
indices are NOT stored in the array

0 1 2 S 4 5 6 7 8 c 10 11 12 13 14 15 16 17 18 19 20 21 22 23

|55|54|53|50|49|49|55|60|65|68‘70l72|75|77|80|83‘85|85|82|79|77|70|60|57|

Indices are shown in this and other diagrams for explanation purposes, but they are
not actually stored in the array.

Example: hourly temperatures in West
Lafayette on given day

* Let’s call the array T, from temperature
* To find the temperature at 8am

— Index the 9t element of the array T[8] (i.e. index 8
in 0-based indexing)

— Read the value at T[8] to obtain 65

0 1 2 S 4 5 6 7 8 g 10 11 12 13 14 15 16 17 18 19 20 21 22 23

|55|54|S3|50‘49|49|55|60|65|68‘70|72|75|77|80|83‘BSISS|82|79|77|70|60|57|

Assuming the array is called T and that the first element corresponds to midnight, the
temperature at 8am is found as T[8] and it is 60 degrees.

Note that we use 0-based indices. This means that the k-th element in the array has
index k-1. The first index is 0, and the last index is n-1, if the array has n elements.

Example: hourly temperatures in West
Lafayette on given day
* Change the temperature value at 7pm to 80

— Assign 80 to T[19]

— We will denote assignment w/ equal sign
T[19] =80

0 1 2 3 4 5 6 7 B9, 10 11 12 13 14 15 16 17 18 19 20 21 22 23

FEEFEFEFE P EE R

0 1 2 S 4 5 6 7 8 c 10011120 13 IS S 1617 188 N9 S 2021822 23

|55|54|53|50‘49|49|55|60|65|68‘70|72|75|77|80|83‘BSISS|82|80|77|70|60’57|

For those of you familiar with the 24-h format of time, you’ll know right away that
7pmis 19:00.

Let’s say we want to change the temperature for 7pm. That means we need to assign
to element T[19] a different value. We write that using the equal sign.

T[19] = 80 means overwrite whatever value was stored at element 19 with the new
value 80. In other words, the value 80 is assigned to T[19].

Programs have to be very careful as to not write “left” of the first or “right” of the last
element of the array. This means that one cannot have indices that are negative or
greater than or equal to n, where n is the size of the array (i.e. the number of
elements in the array). In this example, valid indices i have to satisfy the condition 0
<=i<24.Thevalid index values are 0, 1, 2, ..., 23.

A large percentage of all SW crashes are due to writing outside the array limits. What
happens when you write outside the array limits? You overwrite some other data that
happens to be stored before or after the array. That data becomes corrupt and when
the SW attempts to use it a crash occurs.

10

Example: text in a paragraph

* Consider the following paragraph

— “In the midday breeze, where the willow is
swaying, flowers are blooming.”

 Stored in 1-D array of 72 bytes (1 byte / char)
0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
i e [lefe oL [0 B L
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
BE ot e
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

s P [l el fr o L ol fef fofrfo o] e]

n e a e e 4 e

e r e e o S w a n

y‘i

e

Here is a 1-D array that stores text. One element takes up one byte and stores one
character. Note that spaces, commas, and other special characters have their own
array elements.

Regular data structures: arrays

* 1-D array
— A row
e 2-D array

— Rows and columns, rows of rows

Arrays do not have to be one dimensional, they can be of any dimension.

Let’s talk about two dimensional or 2-D arrays. Whereas a 1-D array was equivalent to

a single row, a 2-D array has multiple rows. One can also think of a 2-D array as
multiple columns.

A 2-D array is a 1-D array of 1-D arrays.

12

2-D array example: an ocean surface
water temperature map

* Data structure to store
— Water temperatures in the Pacific

— Between 135° and 120° long W and between 30° and
20°lat N

— For every 1° long x 1°lat ocean patch
* Solution
— Regularly spaced data
— Two dimensions: latitude and longitude
— 2-D array would work great
— Row: corresponds to same latitude
— Column: corresponds to same longitude

Here is an example. You are asked to design a data structure to store ocean surface
water temperatures. You have to cover a certain longitude and latitude range. You are
also told that the spatial resolution of your data has to be 1 degree of longitude by 1
degree of latitude. Spatial resolution means the number of data points per unit of
surface area. (Temporal resolution means how many data points are collected per
unit of time.)

Since the pieces of data are identical, i.e. they are all one number measuring
temperature, and since the data covers a 2-D domain, the obvious choice is to use a
2-D array.

A row in the 2-D array corresponds to water temperatures measured at the same
latitude. A column means same longitude.

13

2-D array example: an ocean surface
water temperature map

$
190 =
B 65 150 135 120 105 90 75 {:a 45 30 5 0 15 30 45 40 75 S0 105 120 15 150 165 180 \‘ N !
Ml I O 4~ | [“d sl S e | |
L] | Y BREREZHE {0»1 L] *
% NSS! B S | 2l H1 b 7
|

| o [T T T TR T AL
LR 93] 7 IS pr []
SR T i
1 1 | | r fo 2 i 5%
TN T T RIE
e I | Bel A0 s ‘ | AL E
| J | A -
s ! N{e D 06! g L %
Hil o P .\ S [l i AN
G 0 — ! \%‘H \“"\ | 74‘ ¥ S 1id S |
£ 5 % =]
30 T = - _//U I E‘ 1 20
g NENNNEE 4NN N EENENL A= ATk
T i - ;
¢ | N F & [
el s i | | | |
8 [AlBlciole [FlaIHIJTKILIMINIP QRIS |TIU|VIWX|¥|Z|®
75190165 150 135 120 105 90 7S 60 45)0 15 O IS 10 45 60 TS % W05 20 US 10 %S 180 s
; =
Leo
GEOREF system of 15 quadrangle identification letters.
14

Here is a visualization of the ocean patch covered by our data (blue rectangle).

14

2-D array example: an ocean surface
water temperature map

725|575 " 75 [F75: | (75218762 | 75 [FZ52 N 75 | 7253 [FZ5N S 75 | F 254 750 |75
75 |75 725 [F 75| (752 8750 75 | 253 75 [258 [F 750 R 25 |F 25 || 750 |75

75| E75| S753 S75 A K750 R75 3 (75 Al Z50R 75 25 [\ Z 62876 3| - 75:{| S 758|875

75|75 75|75 |75|75|75|75|76 (75|76 (76|76 (75|75
76 |76 |76 |75 |76 |76 | 75|76 | 75|76 |77 |76 |76 75|75
76|76 |76 |76 |76 | 77 (75|76 (75|76 77|77 |78 |75 |75
76|76 |76 |77 |76 |78 (75|76 75|76 (79|76 |79 |78 |77
78 179 82|83 |82|80|82|(80)|80|82|80(82|80(79]80
80 (81|80 (80|82 (81|82 |82|83|82|81|82|82|81]|83
80|81 (82|82(82|82(82|82(83|82(83|82|83|83]|83

© o N O UL A W N R O

And here is the 2-D array. There are 15 columns and 10 rows. 15 columns because
our ocean patch spans 15 degrees of longitude, and because we want one element
per degree of longitude. 10 rows because our ocean patch spans 10 degrees of
latitude, and because we want one element per degree of latitude.

15

2-D array example: an ocean surface
water temperature map

* Let’s call the 2-D array M, from map

* Find ocean temperature at 128° W and 27° N

— Map covers 135° to 120° W and 30° to 20° N

— Row index: 30-27=3 o 1 2 g 4 5 Kl s
—'COLindeX:135'128=7 25175 75 (P25 1 25 | 16 (75 75 | 45
— M[3][7] is 76

— “Row major” order
— M([3] is a 1-D array
storing the temperatures at 27° N

7575757575 (7575|7575

75|75 75|75 |75|75|75|76 |75
76 |76 |76 | 75|76 | 76 | 75 | 76 | 75

0
1
2 |75 |75|75|75|75|75|75 (75|75
3
4

Whereas in the temperatures over 24 h 1-D array example one could quickly convert
from time of day in hours to array index, in the present example conversion form
longitude/latitude coordinates to array element is a bit more involved.

In order to find the ocean temperature at 128° W and 27°N we need to find the row
index and the column index where to read the array.

The row is found by computing how far we are from the first row. The first row
corresponds to 30°N. Consequently the row for 27°N has index 30-27=3.

The column is found by computing how far we are from the first column: 135-128=7.

The element we want is M[3][7]. The array is stored in row major order, meaning that
the first index after M selects the row, and the second index selects the column.

16

2-D array example: a digital image

* Animage is a 2-D array of pixels
— Color is constant within pixel

* A pixel is a triplet of numbers
— Ared, a green, and a blue intensity value (R, G, B)
— Red, green, and blue are called channels

— Usually 8 bit or 1 byte per channel
* White (255, 255, 255), or, in hex (FF, FF, FF)
* Red (255, 0, 0), or (FF, 0, 0)
* Blue (0, 0, 255), or (0, O, FF)
* Black (0, 0, 0), or (0, 0, 0)

Another example of a 2-D array is a digital image.

The array element is a pixel. For black and white image, a pixel stores a single
intensity value.

For color images, the pixel stores 3 intensity values: one for red, one for blue and one
for green. Many (but not all) colors seen by the human eye can be created using
these 3 RGB values.

Since there is one byte or 8 bits per channel (i.e. per intensity value), a channel value
can be represented with 2 hexadecimal digits (each covering 4 bits).

17

2-D array example: a digital image

EETEEEREEREE
BruEEESNES
ERGHRER

Digital image with
176x288 pixels

Pixel row 59, column 125
- Red intensity is 73

- Green intensity is 130

- Blue intensity is 198

| image 2-D array Ceh_mE | HH

I[59][125] is (73, 130, 198) Magnified fragment with pixel grid visualization 18

The selected pixel is blue, thus the blue channel dominates. The other channels are
not 0, as the pixel is not “pure” blue.

2-D array example: a floor plan

* Adining room 0 1 7 8 9
— Walls (grey) 0 NN
— Dining table (brown) 1 [1]° 010 B
— 4 chairs (blue) j i Z Z Z 1
* 2-Darray F R STo 1
— 10x10 elements s I o 1o B
— 0if empty ¢ I o olol1
— 1if occupied 2 B o olola
— (colors just forillustr. s [1o o001
purposes, not storedin 9|1 |1 |||

2-D array)

Here is another example where a 2-D array is used to model the floor plan of a room.

Here there is only 1 bit per array element.

19

2-D array example: a floor plan

* Robot navigation g e
[ab || R]t

— Move to F[Z][Z]? 1l1]o0 0(0]1
— Yes, F[2][2] is O 2 . 0 00
3 | O 0|01

— Robot at F[8][3], A o I
can exit at next step? s |1 |o ofof1
— Yes, F[9][3] is ° O °ojojt
i . . 7 Ik O o|0]|1
immediate neighbor ;[T o 1ol 1
is empty, and is exit 9 1|1 i

A robot navigation application might use the 2-D array to check for collisions, to find
exists, etc.

2-D array example: a floor plan

* Rearrange room et 7189
of1f1 | e

— Move chair 1 ol
from F[2][4] to F[3][4] | 2[%]|° 0|01
: 3|10 ofo]1

— Assign 0 to old loc. D T
Fl2][4] =0 1 K 5
— Assign 1tonew loc. |6 [11° 0|01
7110 ofo|1

F3][4] = 1 Tl oo
911 S S

When the chair moves, it needs to be assigned to the new location and erased from
the old location.

21

iClicker question

* How many immediate neighbors does an
internal element of a 2-D array have?

* A[i][j] is an immediate neighbor of B[k][I] if i and k, and
j and | differ by at most 1.

* Aninternal element of a 2-D array is an element that is
not in the first row, the first column, the last row, or the
last column.

A.4 B.8 C.9 D. 16
E. None of the above

22

Regular data structures: arrays

* 1-D array

—Arow
e 2-D array

— Rows and columns, rows of rows
* 3-D array

— Stack of 2-D arrays

Let’s now look at 3-D arrays. A 3-D array can be seen as a 1-D array of 2-D arrays.

23

3-D array example: temperatures in
volume of water

* Temperatures in every 1m3 of 1km?3 of ocean
water
— 3-D array with 1,000 x 1,000 x 1,000 elements

— Each element is a number (i.e. a temperature
reading)

— 1 billion numbers

The previous example can be extended to store water temperatures at multiple
depths for every surface location.

24

3-D array example: temperatures in
volume of water

* Temperatures in every 1m3 of 1km?3 of ocean
water

* Let T be the 3-D array
— T[0][500][500] is the temperature at the surface,
at the center of the patch
—T[0] is a 1,000 x 1,000 2-D array storing the
temperatures at the surface
—T[100] is a 1,000 x 1,000 2-D array storing the
temperatures at depth 100m

The 3-D array is accessed using 3 indices. The first index tells you the depth. The

second one tells you the latitude, the third one the longitude.

25

3-D array example: stack of CT scans

* Engine block scanned to search for defects
— A stack of 100 CT scans (images)
— 256x256 resolution each
— Volume size 50cm x 30cm x 30cm

* LetV be the array
— 100x256x256 elements
— Element stores 8 bit opacity value
* 255: completely opaque (e.g. steel)
* 0: not opaque (e.g. air)
— Element corresponds to 50/100cm x

30/256cm x 30/256¢cm volume Volume rendering of
block engine CT scan

26

Here is another example of a 3-D array: a stack of CT scans.

One element is stored with one byte. The element corresponds to a box of size
50/100cm x 30/256cm x 30/256cm. Whereas an image element is called a pixel, a
volume element is called a voxel.

Specialized algorithms called volume rendering algorithms can visualize the 3-D array
of opacities, see image.

iClicker question

* A 3-D array stores a CT scan in 1GB. The slices
are 2mm apart, and each slice has Immx1mm
pixels. What is the new array size in GB if the
CT scan resolution is changed to slices 1Imm
apart and 0.5mmx0.5mm pix.?

A. The same size, 1GB

B. 2/1*1/0.5*1/0.5*1GB = 8GB
C. 1/2*0.5/1*0.5/1*1GB = 1/8GB
D. 1*0.5*0.5*1GB = 0.25GB

27

Regular data structures: arrays

1-D array
— A row

2-D array
— Rows and columns, rows of rows

3-D array
— Stack of 2-D arrays

4-D arrays?

How about arrays with dimensionality higher than 3? Such arrays exist, space has 3
dimensions, but arrays can have any number of dimensions.

28

Regular data structures: arrays

* 4-D arrays
— Rows of cuboids
— D[1] means second cuboid
— D[1][0] bottom 2-D array in second cuboid

— D[3][3][1][2] means element in cuboid 3, slice 3,
row 1, column 2

Here is a 4-D array: a 1-D array of cuboids.

29

Regular data structures: arrays

* 4-D arrays alternative visualization
— A 2x2x2x3 4-D array with 24 elements
— Let’s call the array C
— C[1][0][1][2] is 7

* N-D arrays are possible

i

0 1 ‘ 0 1
\
|

0 1 2 0 |1 2|0 1 2 0 1 2|0 1 2 0 1 2 ||N 0 1 2 0 1 2

23|3‘3’2234|5|4|2345‘6|5|374356|4S

Here is another way of thinking about 4-D arrays. Each index adds another
subdivision.

For example one can store the number of injured players in a football league with a 4-
D array. The league has two conferences A and B. Each conference has two divisions,
north and south. Each division has two teams. Each team has 3 sub-teams, offense,
defense, and special.

C[1][0][1][2] gives the number of injured players on the special team of the second
team in the northern division of the B conference of the league.

30

Regular data structures

* Advantages
— Direct access to elements
— Implicit structure, no storage wasted for structure
— Simplicity

As mentioned before, arrays are used very frequently. They are simple, do not waste
memory, and provide direct access to any element.

31

Regular data structures

* Disadvantages
— Data size needs to be known a priori
* Increasing array size is possible but expensive
— Inserting / deleting elements is expensive
— Does not model well irregular, non-uniform data
* Huge room with mostly empty floor plan?

* Airline route map?
* Genealogical tree?

However, arrays also have limitations.

One limitation is that you need to know how much data you have as you design the
application. For some applications the amount of data changes dynamically and the
high water mark cannot be predicted.

Another limitation is that changes like inserting or removing an element are
expensive.

A third limitation is that not all data is regular and using arrays to store it is wasteful.
For example let’s say we have a room with a 10m x 10m floor plan. Let’s say we want
to be able to position a robot with a 1mm accuracy. That mean we need a 2-D array
with 10%x10* elements, most of which are empty.

32

Array disadvantages

e Given the text

0 1 2 3 4 L 6 Zi B/ G 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Pl el f el e el I 0 A EEE
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
[l e b e e e e g] |
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

[0 i o]]

n e a e e z e

e £ e e S n

yli

o r S a r e (o] o n

m|i

Here is an illustration of how some simple operations are expensive with arrays.

33

Array disadvantages

* Change the text “where the willow is swaying”
to “where the willows are swaying”

— (1) Reallocate array of larger size (74)

0 1 2 5 4 5 6 7 8 2 10 11 12 13 14 15 16 17 18 19 20 21 22 23

HNEEEEEEEEEEEEEEEEEEEEE

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

HEEEEEEEEEEEEEEEEEEEEE

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

The new array has to store more elements than the previous array, consequently we
need to allocate a new array of larger size. Note that it is not possible to request that
the old array be extended, as the memory following the array might be used for
something else. It is also the case that the array needs to occupy a contiguous region
of memory, for the indexing to work, consequently we can’t find some other space
somewhere else where to store the two extra elements.

34

Then we need to copy all the text before the change, from the old array to the new

array.

Array disadvantages

* Change the text “where the willow is swaying”
to “where the willows are swaying”

— (2) Copy from old array up to (including) “willow”

0 1 2 3 4 L 6 Zi B/ G 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Pl el f el e el I 0 A EEE
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Pl e el PP

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

n e a

e e z

e

e £ e e

35

Array disadvantages

* Change the text “where the willow is swaying”
to “where the willows are swaying”

$ " ”

— (3) Write new text “s are
0 1 2 5 4 5 6 7 8 9: 10" 11 12 13 14 15 16 17 18 19 20 210 22° 23
I Bk HEEERANNE I
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Bk L HEE

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

n e a

e e z

e

e £ e e

S

a r e

Then we need to put in the new text.

36

Array disadvantages

* Change the text “where the willow is swaying”
to “where the willows are swaying”

o" 13 ”
— (4) Copy from old array from “ swaying” to end.
0 1 2 5 4 5 6 7 8 9: 10" 11 12 13 14 15 16 17 18 19 20 210 22° 23
I Bk HEEERANNE I
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Bk L
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

T[T FTTT " T

n e a e e z e

e £ e e S a r e S w a

y

i n o w |e a r e o o n

m‘i

72 73

I

And finally we need to copy the old text following the change from the old array to
the new array.

Array modification

* Allocate array of new length

* Copy data from old array as needed
* Copy new data as needed

* Release old array

* Example: given an array A with 50 elements, insert 10
elements after element with index 15
— Allocate array B with 60 elements
— Copy elements 0-14 from A to B at 0-14
— Copy new elements 0-9 to B at 15-24
— Copy elements 15-49 from A to B at 25-59
— Release old array A

Here is a summary of the steps that need to be taken to perform an array
modification that implies changing the array size.

Note the last step of releasing the old array—this ensures that that memory goes
back to the pool of unused memory and can be used in the future. Not doing that
implies a memory leak. A memory leak is the software error when new memory
blocks are allocated repeatedly without releasing the old blocks that are not needed

anymore. Memory leaks are a frequent and serious problem that causes SW to crash.

38

