© Popescu 2012

Data

Definition

* (1) Factual information used as a basis for
reasoning, discussion, or calculation

* (2) Information output [acquired] by a sensing
device or organ that includes both useful and
irrelevant or redundant information and must be
processed to be meaningful

* (3) Information in numerical form that can be
digitally transmitted or processed

— Merriam Webster

Here are additional dictionary definitions of data.

Notice the third definition, it restricts data to digital data.

Analog Data

* Data represented in continuous form

In a broad sense, data doesn’t have to be digital.
Analog data is data represented in continuous form.
We are not trying to get into an argument whether matter is continuous or discrete.

Quantum physics, Heisenberg’s uncertainty principle, and the dual wave/particle
aspect of light—you learn about them in a different class.

Analog Data

* Data represented in continuous form

Gorskii, photographer to the tsar.

Here is an example of continuous data. These color photographs were taken 100
years ago by Russia’s photographer to the tsar. Are they data? Of course, they provide
a lot of and important information about those times. Are they digital? No. No pixels
yet. It’s even before Kodak.

Notice that they are color photographs. How were they taken? Prokudin took three
slides, one with a red filter in front of the lens, one with a green, and one with a blue
filter. Then put the three slides on top of each other, place a bright (white) light
behind them, and you project in color. RGB existed before color TVs and pixels.

Why does the river look like it is covered with a film of oil? Pollution? No, of course
not. Think of how the slides were taken.

Analog Data

* Data represented in continuous form

OO0
e

Gramophone and records

Here are additional examples. Music has of course been recorded with analog
devices.

Analog Data

* Data represented in continuous form

Analog oscilloscope

Electronics was also analog at the beginning.

Analog Data

* Data represented in continuous form

* Challenges: difficult to
— Store
— Modify level of detail
— Transmit
— Replicate

What are the shortcomings of analog data?
Storage is inefficient—big volume, small amount of data.

Modifying the level of detail is not easy. Consider Prokudin’s photos. How could he
have obtained a smaller photo from a large photo? He probably would have needed
to project the large photo, then take a picture of the projection using smaller film,
etc. Modifying data level of detail is essential, because not all applications need the
data at the highest level of detail all the time.

Transmitting analog data is also inefficient—a little bit of analog data consumes a lot
of bandwidth. A few years ago, TV broadcasts switched from analog to digital. Why?
In order to be able to have more channels.

Replication is another huge challenge. Every time you copy analog data quality goes
down. For example recording from a VCR tape to another VCR tape lower quality.
That’s why you need to always use the master tape as source. This slows down
replication. Instead of being able to replicate from the ever increasing number of
copies, you have to always go back to the master tape.

Digital data

* Data represented in discrete form, using
numbers
* World is not discrete

— digital data is created through analog to digital
conversion (i.e. digitization)

To overcome these disadvantages, the world moved to digital data.

Digital data is data represented in discrete form, using numbers. For example, for
digital music, | encode with a number what the music sounds like every millisecond.
Since a millisecond is a very short time interval, all these values are a good
approximation of the overall music.

Of course, one immediate challenge is that the real world is not discrete. So in order
to acquire digital data, one needs to digitize the input signal. Analog to digital
conversion or digitization is essential for obtaining digital data.

Digitization example

* Goal: acquire digital data to record brightness
variation at given outdoor location

Analog to

Photodiode digital Timer,/
recorder
converter
000000
134577
TG

Let’s say we want to capture digital data that records how bright it is somewhere
outdoors.

The first thing we need is a sensor that can measure the amount of light at given
moment in time. A photodiode would do just that, as it converts light into electrical
current. The more light the more current. The less light, the less current. The output
of the photodiode is analog. The current intensity goes up and down continuously
according to the amount of light. There are no jumps.

Then we use an analog to digital converter that converts the intensity value into one
of several possible discrete values.

Finally we use a timer to record the discrete value say every hour.

Digitization example

* Goal: acquire digital data to record brightness
variation at given outdoor location

O 0N KON O KON LN B3| B4 E5 8 W5 6T & 78 78 |78 878 78 |6 E6N RO S 4 AN B23 1 0

OARONROR O EORRONROREONEINRA N E4Y RS RCE ESHESE RAN S BN RON EOR EONRONHOH FO)
S SH R3H RSl SN R4S RS/ | 68 78 W70 78| 78 78 W74 B78 (N7 74l B8 W7 78 K28 B3 S £ S
O4EON RO RO KON RON ROS KON FON RO KON RON RO Y ROHEON RON EOHRON RON KOS FONNOR O FO

Here is the resulting digital data over 24h. Each row represents 24h worth of data.
Since we digitize every hour, there are 24 columns.

There are 8 possible brightness levels: 0 through 7.

10

Digitization example

* Goal: acquire digital data to record brightness
variation at given outdoor location

FEEEDEEEEEEEEEREEEEEEEEE
5 7

O FON ROREOH KON SN B3 E43 F5 [76 | 7 | 74| 61| FON REA ES 4 F4N B2 B15 1O
OARONROR O EORRONROREONEINRA N E4Y RS RCE ESHESE RAN S BN RON EOR EONRONHOH FO)
S SH R3H RSl SN R4S RS/ | 68 78 W70 78| 78 78 W74 B78 (N7 74l B8 W7 78 K28 B3 S £ S
OF FONROR O KON RONROY O FON ROF KON EORRONEOH EOR NOR EOH RONRONHOAEON RON HOH KO

Row 1: summer day in IN; Row 2: winter day in IN;
Row 3: summer day in AK; Row 4: winter day in AK

The first row could be a summer day in Indiana, the second row a winter day in
Indiana, the third row a summer day in Alaska, and finally a winter day at the North
Pole.

Digitization examples

* Music encoded digitally
— Microphone transforms sound into current (signal)

— Analog to Digital Converter transforms continuous
signal into discrete signal

— Discrete signal is recorded as sequence of
numbers

* Digital (video) camera
* Scanner

Here are additional digitization examples.

The CD and the CD player popularized digital music. The mic is the photodiode from
the previous example. Then everything else is the same.

A digital camera measures light intensity over discrete rectangular regions, called
pixels. The result is a digital image, or a matrix of numbers, one number for each
pixel.

Scanners work similarly, they are digital cameras specialized for flat (paper)
documents.

12

Advantages of digital data

* Easy to replicate without loss
— No need for “master copy”
— Any copy is as good as original
— (Napster)

An incredible advantage of digital data is that it can be replicated endlessly without
loss of quality. Any copy is as good as the original and can be used to make additional
copies.

As you know, this created huge problems for the recording industry.

13

Advantages of digital data

* Good control of level of detail
— If brightness is desired only every 4 hours

O 0N KON QO KON LN B3| B4 E5 8 W5 6T & 78 78 |76 878 78 |6 E6N RO ES 4 AN B23 1 10
0 2 6 i 6 2

Another advantage is that one can easily control the level of detail.

Let’s say we only want to know the brightness every four hours. That can be easily
done by averaging four consecutive numbers from the original data.

14

Advantages of digital data

* Good control of level of detail
— If only three levels of brightness are needed

HEEEREEEE IR EEEEEEEEEEEEE

O 0N KON O KON LN B3| B4 E5 8 W5 6T & 78 78 |78 878 78 |6 E6N RO S 4 AN B23 1 0
Ol KON RON (S0 KON RO 19 (1 B8 RD1 S0 28 (82§ £ O5 28 9 (20 R9 8 27 8 220 RS BAQ O RO

Let’s say we only want 3 levels of brightness. Simple, divide every value by 3, and

round.

15

Challenges of digital data

* Limited precision
— Digital data provides an approximation

* Multiple discrete levels are difficult to
implement in computing hardware

— Base 10 requires implementing 10 digits in
hardware: 0, 1, 2, 3,4,5,6,7,8,and 9

— Solution: base 2, “binary”

Digital data has challenges of its own.

A fundamental limitation is that digital data has limited precision. Digital data
provides an approximation. No matter how densely one samples (i.e. digitizes) and
how many discrete levels are used, the digital data will not capture the full

complexity of what it records.

A second challenge is that computing hardware becomes very expensive for digital
data with many discrete levels.

For example in base 10, the computer needs to distinguish between 10 digits.

The solution to this problem is to use the simples base possible, base 2.

16

Base 2—binary

* Only 2 digits: 0 and 1
* Any number can be represented in base 2
— More binary digits are needed
* Not human friendly
— We prefer base 10, and higher bases in general
* Hardware friendly

— It is easier to distinguish quickly and robustly between two
digits (e.g. 0 Volts and 5 Volts)

— One binary digit is stored in one bit of memory
* Advantages overweigh disadvantages
— All computers use base 2

In base 2, there are only 2 levels or two digits, 0 and 1.

Any number, no matter how large can be represented in base 2, the same way any
number, no matter how large can be represented in base 10. As you will see, more
base 2 digits are needed than base 10 digits to represent the same number.

Base 2 however is not human friendly. We are very used to base 10. Base 2 is cryptic
and tedious.

However, base 2 is hardware friendly. Hardware can easily distinguish between 0 and
1, between on and off, between no volts and 5 volts. One binary digit is stored in one

bit of memory. The bit is the smallest piece of memory, and it can be either 0 or 1.

In terms of computing hardware, the advantages overweigh disadvantages. By far.

17

Base 2

* Boxes of size that are powers of 2
-1,2,4,8, 16, 32, etc.
— In base 10 boxes are of size 1, 10, 100, 1000, etc.

* Always use biggest box to pack the elements

you want to count
4-box 2-box 1-box

® ® O

AL LI (@]
%4 oo (@

@ 1 1

Tio —_— 111,

When one counts in base 2, one uses boxes of size power of 2. In base 10 the boxes
are of size power of 10: 1, 10, 100, 1000. In base 2, the boxes are of size 1, 2, 4, 8, 16,
etc.

Counting is done with a “greedy approach”: always use the biggest box that you can
fill.

So if we want to count these 7 dots in base 2, we first find the largest box we can fill.
Can we use an 8 box? No, because it wouldn’t be full. A 4-box? Yes. So 1 4-box. That’s

the 1 from the left.

We are left with counting the remaining 3 dots: 1 box of size 2, and then 1 box of size
1, which gives us the other two ones.

The subindex indicates the base. 7 in base 10is 111 in base 2.

Again: 111 in base 2 means 1 box of 4 + 1 box of 2 + 1 box of 1, total 7.

18

Base 2

* Boxes of size that are powers of 2
-1,2,4,8, 16, 32, etc.

8-box 4-box 2-box 1-box
©9%e e/e T [e
00%,° el®e = . 1
@ e 0 0
L JK
il
S —— 1001,

Here is another example. Counting 9 dots in base 2.
The boxes are of size 1, 2, 4, 8, 16, 32, ...

16 wouldn’t be full. So 1 8-box. 1 dots is left over. Can we fill a 4-box? No, so 0 4-
boxes. A 2-box? No, so 0 2-boxes. Finally we have 1 1-box. So that 1, 0, 0, 1.

It’s just like in base 100. Let’s say there were one three hundred and one dots. How
many boxes of 100? 3. Of 10? 0. Of 1? 1. So that’s 301.

THERE ARE 10 TYPES
OF PEOPLE IN THIS WORLD:
THOSE WHO UNDERSTAND BINARY

AND THOSE WHO DON’T

20

iClicker question

e Convert 1010, from binary to base 10
610

1249

101,

m o 0O @ >

21

Base 8

* Boxes of size that are powers of 8
-1, 8, 64, 512, etc.
— 8digits: 0,1, 2,3,4,5,6, 7

8-box 1-box
©00qg (00 [0][0]
®o0°,° 0|0 [@]
® (@]
L JK)

13,y ——— 15,

OK, let’s try base 8 now. 8 digits, from 0 to 7. The boxes are of size 1, 8, 64, etc.—the
powers of 8.

Let’s count 13 dots. No 64-box, obviously. 1 8-box. 5 1-boxes. So that’s 1, 5 in base 8.

Base 16

* Boxes of size that are powers of 16
— 1, 16, 256, 4096, etc.
—16digits: 0,1, 2,3,4,5,6,7,8,9,A,B,C,D,E, F
1-box
(@] [@] [®] @]
o....: :o — (o] [@] [@]
Fyphghe @] [@] [@]
(@] [®] (@]
D

1By — Dyg

Base 16 is very frequently used in computing, because it is very easy to convert from
base 16 to base 2 and back, and because it is much more human friendly than base 2.

In base 16 there are 16 digits. This creates a problem. We don’t have symbols for
digits ten, eleven, twelve, thirteen, fourteen, and fifteen. Instead of creating new

symbols, base 16 uses the first 6 letters of the alphabet.

Now we can proceed to count in base 16 according to the boxes method described

earlier. The boxes have size 1, 16, 256, etc.

Let’s say we want to count 13 dots. A 16-box would not be full, so we need thirteen

or D 1-boxes.

23

Base 2 to base 16 conversions

* Base 16 is used to make base 2 manageable by
humans

* 1 base 16 (i.e. hexadecimal) digit corresponds
to 4 base 2 digits

Basess 0 | 1 1 2 | 3 | 4 | s | 6 | 7
10 11 100 101 110 111

Base 2 0 1

Base6) 8 | 9 | A | B | ¢ | b | E | F_ |

Base 2 1000 1001 1010 1011 1100 1101 1110 1111
Base 2 10100 11101 1010 1010 1111 1111 1010 1011 1000 1001

24

We said base 16’s raison d’etre is to make base 2 (which is used by computing HW
and cannot be avoided) more human friendly, while providing a simple conversion
back and forth (i.e. from base 2 to base 16 and back).

The golden rule when converting base 2 into base 16 and back is to know that 4
binary digits correspond to one hexadecimal (i.e. base 16) digit. Then, if you know the
binary representation of each hexadecimal digit, you can convert any number of any
size very quickly.

The top two tables provide the base 2 representation of each of the 16 base 16 digits.

24

iClicker question

e Convert DEED,, from base 16 to base 2
1010 1011 1011 1010,
11101101 1101 1110,
1101 1110 1110 1101,
11101111 1111 1110,
11011111 1111 1101,

m o 0O @ >

25

Data types

* Characters, to encode textual data

— Lowercase: a, b, c, ...

— Upper case: A, B, C, ...

— Digits: 0, 1, 2, ...

— Special characters: space (), column (:), question
mark (?), ...

— There are fewer than 256 characters, so 8 bits are
enough to encode a character

* 8 bits are called a byte

All data is encoded in binary, but there are many types of data.

Characters are used to encode textual data. A character corresponds to a letter, to a
symbol (e.g. S, %, *, &), to a digit, etc. There are fewer than 256 characters, so 8 bits
are sufficient to encode a character.

In other words, one can count from 0 to 255 using 8 bits. 255 corresponds to eight 1s
or 1111 1111. This means that there are 256 unique binary numbers with 8 bits. Each

character can be assigned a unique 8 bit code.

A group of 8 bits are called a byte.

26

Bits and bytes

1 kilobit (1kb) is 1,024 bits

— And not 1,000 bits

* 1 megabit (1Mb) is 1,024 kilobits
1 kilobyte (1kB) is 1,024 bytes

— or 8 kilobits

— or 8x1,024 bits

* b stands for bit, B stands for byte

— bits are typically used for networking bandwidths or
memory address sizes
* 100kbps (kilobits per second), 32 bit addresses
— Bytes are typically used for memory capacity
* 1GB (1,024 MB; 1,024x1,024KB; 1,024x1,024x1,024B)

Let’s take a moment to clarify bits and bytes, kilo, Mega and Giga.

The first thing to remember is that in computer science, 1 Mega is 1,024 kilo, 1 Giga is
1,024 Mega, as opposed to 1,000.

The second thing to remember is that a byte is abbreviated with an upper case B and

a bit is abbreviated with a lower case b. A byte is 8 bits. A byte is not the same as a
bit. Consequently when you mean byte, write an upper case B.

27

iClicker question

* A 3-minute song is stored in a 1MB file. Can
the song be streamed over a 256kbps
network?

A yes
B no
C wrong answer
D wrong answer

E wrong answer

28

Memory addresses

* Smallest addressable memory location 1B
— You cannot read or write less than 1 byte
 Sufficient binary digits needed to uniquely name all
bytes
— 1KB total memory size requires 10 bit memory addresses
(210 = 1,024)
* For a long time, computers used 32bit (4byte)
addresses
— Maximum memory size that can be addressed: 232 = 4GB
* Switch to 64bit to allow for larger memories
— Memories larger than 2%4—never
— Number of particles in the universe: 108’

Now is also good time to talk about memory addresses.

Although the bit is the smallest piece of memory, one cannot address a single bit. The
smallest addressable memory location is one byte. One can read or write from/in
memory only in multiples of bytes.

Consequently addresses have to uniquely identify bytes—i.e. where to write in
memory, from where to read. For a street with 300 houses, one cannot have single
digit house numbers, because that would lead to confusion, to ambiguity. Two or
more houses would have the same address.

Let’s say we have a computer with 300 bytes of memory. How many bits are needed
to address these 300 bytes? We need 300 unique addresses. 8 bits would provide
256. 9 would provide 512 addresses, which is enough.

If the computer has 1KB of memory, 10 bits are enough.

We are now transitioning to 64-bit computers, which probably means that we’ll never
run out of address space.

29

Data types

* Characters, to encode textual data

* Integer numbers

— Minimum and maximum representable number
depends on number of bits used and on whether
you allow for negative numbers or not

— Unsigned byte: from 0 to 255
— Signed byte: from -127 to 127
— Unsigned 4 bytes: from 0 to over 4 billion

Back to data types.

In addition to characters for encoding textual data, there is also the need to encode
numbers.

Integers are used to encode numbers w/o a fractional component. If we encode
unsigned integers with 4 bytes, the largest number that can be represented is 232-1,
which is over 4 billion. Let’s write it in base 16. One byte corresponds to 8 bits, or 2
hexadecimal digits. Consequently 4 bytes correspond to 8 hexadecimal digits. The
largest 4-byte unsigned integer in hexadecimal is FF FF FF FF (i.e. 32 ones in base 2, or
1111112221 111122221 111111121122212 1111).

30

Data types

* Characters, to encode textual data
* Integer numbers
* Real numbers

— Fixed point

* Example: 8 bits for the integer part, 8 bits for the
fractional part

* Cannot encode very small or very large numbers

To encode real numbers, one has to allow for a fractional component. When a “fixed
point” encoding is used, there is no exponent.

Data types

* Characters, to encode textual data
* Integer numbers

* Real numbers
— Fixed point
— Floating point

* Example: 1 bit for the sign, 8 bits for the exponent, 23
bits for the mantissa

* The decimal point is “floating”

A more flexible representation of real numbers allows for an exponent.

32

Data types

* Characters, to encode textual data
* Integer numbers

* Real numbers
— Fixed point
— Floating point
— Precision is limited
* Numbers are approximate to begin with

» After arithmetic operations, approximation error increases

* Understanding and controlling numerical error is a
fundamental problem in computer science

No matter how many bits are allocated to numbers, after long chains of arithmetic
operations, the precision of the result will be less than that of the input operands.

33

Data types

Characters, to encode textual data

Integer numbers

Real numbers

Compound data types
— Strings: an array of characters
— Vectors: an array of floating point numbers

— Medical records: a combination of strings, vectors,
etc.

So far we have discussed simple data types: characters, integer numbers, real
numbers.

These basic types can be combined to form compound data types. Multiple
characters form a string which allows text processing. Multiple floating point numbers
form vectors which are used for example in physics simulations. Strings, vectors,
dates, and so on can be combined to form a complete medical record of a patient.

34

* Car

CAD data of a car

Here is an example of a compound data type used for a computer aided design (CAD)

application.

At the top level, the data type is called Car.

35

CAD data of a car

* Car
— Chassis
— Power train
— Body

The car has three components.

36

Car

— Chassis
¢ Wheels

CAD data of a car

* Undercarriage

— Power train
* Engine
* Gear box
* Exhaust
* Breaks
— Body
* Doors
* Windows
* Hood
* Trunk lid

Components have sub-components.

37

CAD data of a car

* Car

— Chassis
* Wheels
* Undercarriage
— Power train
* Engine
— Cylinders
— Pistons
— Spark plugs
» Body
» Ceramic insulator
» Electrodes
— Valves
* Gear box
* Exhaust
* Breaks
— Body
* Doors
¢ Windows
* Hood
* Trunk lid

Sub-components have sub-sub-components and so on.

Modeling and abstraction

* Compound data types allow modeling complex entities
hierarchically, through abstraction

— Hide details irrelevant in given context

* Hierarchical modeling and abstraction supports

— Creativity: avoids unnecessary cognitive burden,
improves focus

— Repair: enables systematic approach to tracking down
problem

— Interoperability: enables developing part that works
with system without knowledge of system details

Compound data types make complexity tractable by abstracting away (i.e. hiding)
details.

Hierarchical modeling is a fundamental paradigm in computer science.

Creativity: “l want to develop a more aerodynamic shape. | don’t need and shouldn’t
see the engine”.

Repair: “The engine won’t start. Is the fuel system OK? Yes it is, check, | am not going
to worry about it anymore. Is the ignition system OK? No. Is the battery OK? Etc.”

Interoperability: “l want to put this modern engine in this old car. What does the new
engine need to run? (How does fuel, electrical power, and outside air get to it?) What
does the old car expect from the engine? (How is power transmitted? What is the
maximum engine size?)

39

Examples of data processing

* Blurring

* Sorting

* Down-sampling

* Feature extraction

* Encryption/decryption

* Compression/decompression
 Statistical analysis

Let’s look at a few examples of data processing. We will simply see what the input
and the output of such processing looks like—we will worry about the actual
processing mechanism later.

40

Blurring

— Filtering out high frequencies or abrupt changes

— Data sample replaced with average of neighboring
samples

Original image Blurred image

41

The first example is blurring. A data sample, here a pixel, is replaced with the average
of its neighbors. This eliminates (i.e. filters out, blurs) the abrupt changes in color
(high frequencies)

Why is blurring ever needed? It seems to ruin the image? Blurring is a preliminary
stage for many types of image processing: it eliminates noise and facilitates
subsequent processing of the image.

41

Sorting

* Permute data according to a total order
relation
— Example: sorting credit card transactions based on

amount (decreasing) and then on transaction date
(from recent to old)

Date Amount Date Amount
02.07.11 $4.60 02.02.11 $100.00
01.12.11 $100.00 01.12.11 $100.00
02.05.11 $34.35 02.05.11 $34.35
02.02.11 $100.00 02.07.11 $4.60

Original data Sorted data

Sorting is obviously a very important operation that reshuffles data to achieve a
certain ordering.

Down sampling

* Reducing data

— Fewer measurements in unit of time (i.e. reducing
temporal resolution)

iz o e e o o e

04 KON RON NOH IEON W1 B3 [F47 KON RE (671 B78 W7 [F721 78 748 164 EON RO 4 54 E4N F24 % 10
0 2 6 7 6 2

Middle row: original data.
Bottom row: data down sampled in time

Down sampling adapts the level of detail. We have seen the reduction in temporal
resolution for the brightness data.

Down sampling

* Reducing data
— Fewer measured levels

O} FON RO B0 (KON WA 8371 145 ESH WS 6T K78 W78 |S74) B8 578 163 EON RO 1 K5 FAN B2.8 BTN O
O FON RO [0 RON RO R TN 828 824 F28 B8 (828 28 F28 B2.8 (107 B8 $24 SD4 I8RO0 RO 1O

Middle row: original data.
Bottom row: data down sampled by reducing number of levels

Down sampling can also reduce brightness resolution. Here there are three levels
after down sampling. One could also down samples to a single bit per hour, namely is
it dark or is it light (0 or 1).

44

Down sampling

* Reducing data

— Fewer measurements in unit of length, area, or
volume (i.e. reducing spatial resolution)

Original image Image down sampled 4x4

Here is another example of down sampling. The down sampled image is 4 times
smaller in each direction. There are 4 times fewer pixels in each direction. Since the
down sampled image is displayed with pixels of the same size as the original image,
the image appears smaller. However, the smaller image shows the same thing as the

original image. It still captures the same solid angle of the Purdue Clock Tower scene.

45

Feature extraction

* Edge extraction

Original image Edge image

Another very important type of data processing is feature extraction. The data might
have some important patterns and one has to find them. A classic example is edge
extraction: find all pixels where color varies a lot. In other words, find all pixels that
are quite different from their neighbors.

Here the edge image or edge map shows with black pixels that are similar to their
neighbors and in white pixels that are very different than their neighbors.

46

Encryption/decryption

* Encryption

— Transform original data to hide its content
* Decryption

— Revert data to original form
* Example

— Original data: CS17700

— Encryption scheme: replace letter with following letter in
alphabet and digit with following digit
* Encrypted data: DT28811
— Decryption scheme: replace letter with preceding letter in
alphabet and digit with preceding digit
* Decrypted data: CS17700

Another application is to “scramble” data such that no one other than the intended
recipient can find it. This means that one has to be able to encrypt, or translate the
original data to an intermediate, cryptic, form, and then also to decrypt, or to

translate the encrypted data back to the original data.

Here is a simple encryption/decryption scheme. Replace a character with the

following character to encrypt, and with the preceding character to decrypt.

Is it a good encryption / decryption scheme? Not great, foes might guess it.

47

Encryption/decryption

Encryption

— Transform original data to hide its content
Decryption

— Revert data to original form

Example CS17700 -> DT28811

A good encryption scheme

— Cannot be decrypted by anyone other than intended
recipient

— Does not increase data size
— Is fast

The desirable qualities of an encryption / decryption scheme are:
- Hard to break

- Lean

- Quick

48

“The enigma is a machine that
is used to cipher and decipher
messages. The result was a
polyalphabetic substitution
cipher that is nearly impossible
to break”

“However, the machine did have some
weaknesses which were found through the efforts
at Bletchley Park. The use and breaking of the
enigma machine had great impacts on WWIL.”

49

Some of you might know that encrypting decrypting data was an important aspect of
WWII. The Enigma was a machine used by the German military to encode messages.
Code breaking efforts (in Poland, Britain, etc.) aided by hardware and codebook
capture are credited for shortening the war in Europe by 2 years.

Compression/decompression

Data compression

— Exploiting data redundancy to derive a more compact
data representation

Data decompression

— Reverting compressed data to a form similar to the
original data

NOH-lOSSV compression

— Decompressed data identical to original data
* Lossy compression

— Decompressed data similar to original data

Another important type of data processing is compression/decompression.

Data size is a big concern in computing. Data transfer speed has not increased at the
same speed as data processing speed. To facilitate data transfer it is advantageous to
reduce data size.

Data redundancy can be “squeezed out” to achieve a more compact representation.
The process is called compression. Decompression is the reverse process of restoring
the original data from a compressed representation.

There are 2 types of compression. Non-lossy, when the decompressed data has the
exact same bits as the original data. And lossy, when some data is lost during
compression. The decompressed data is similar but not identical to the original data.
The reason one might resort to a lossy compression scheme is to increase the
compression efficiency, defined as the ratio between the size of the original data and
that of the compressed data (e.g. “a 10:1 (ten to one) compression ratio”).

50

Compression / decompress. example

* Original data
— 0000 00000011 110011111111 0000 0000 0000
* Data compressed by run length encoding
— 1010001001 0010010001 11000
—100s41's20s81s120’s
— Non-lossy

Here is a simple compression / decompression scheme

Consider the input data given as a sequence of bits. The compression scheme
replaces the original data by an encoding of sub-sequences of identical bits (i.e. either

1or0).
10 zeros followed by 4 ones followed by 2 zeros etc

This scheme is non lossy. One can recover the exact original data by decompression.

51

Compression / decompress. example

* Original data
— 0000 00000011 110011111111 0000 0000 0000

* Lossy compression: ignore sequences shorter
than 3

— 1010011101 11000
—1005s141's120’s

* Decompressed data, not identical to original
— 000000000011 111111111111 0000 0000 0000

A modified scheme will be more efficient, i.e. the compressed data will be more
compact, but at the cost of small differences between the original and the
decompressed data. Notice here that the sequence of two zeros was discarded and
replaced by a sequence of two ones.

52

iClicker question

— A book has 22°words out of which only 28 are
unique.

— The average length of a unique word is 4 characters.

A character is stored in one byte.

— You compress the book by storing the unique words
once and then storing indices of the unique words
as they appear in the text.

— What is the size in bytes of the compressed book?
. 28%4 + 220%] B. 28%4*8 + 220%8
. 28%4 4 220%g D24

53

Statistical analysis

* Examples

— Min, max, average, standard deviation, regression,
ANOVA, ANCOVA etc.

— Histogram

0 200 255

Blue channel histogram

Another example of data processing is statistical analysis.

For example here the histogram counts how many pixels have the blue channel of a
certain value. Since there are 8 bits per channel, there are 8 bits for the blue channel,
so the min / max values for the blue channel are 0 and 255, respectively. The
histogram shows that there are a lot of pixels with a blue value around 200, most
likely corresponding to the sky pixels.

54

