
 
We have introduced the recursion paradigm for the binary tree data structure. 
Recursion is a general algorithm design approach, and here are additional examples. 
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Factorial of n is the product of the first n numbers. Factorial of n can be computed 
recursively as factorial of n-1 times n. 
 
The termination condition is if n==1 then return 1. (Note that the == sign is used to 
emphasize that we test for equality between the left and the right quantities, and we 
do not assign 1 to n.) This is a termination condition because when it is true there is 
no more recursive call made. The chain of recursive calls is interrupted. 
 
The recursive call is the call to Factorial(n-1). The algorithm uses itself as a sub-
algorithm. 
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Left: conventional (non-recursive) minimum algorithm. 
Right: recursive algorithm for finding minimum. 
 
The recursive algorithm is based on the idea that the minimum in an array is the 
smaller of: 
- The first element 
- The minimum of remaining elements 
 
MinR is first called as MinR(A, n, 0), since we want the minimum beginning from the 
first element, which has index 0. 
Then the minimum of elements 2 to n-1 is found by calling MinR recursively with 
arguments (A, n, 1) and saved into variable tmp. 
Finally, the overall minimum being returned is the smaller of the first element or tmp. 
 
MinR(A, n, 2) makes another recursive call, MinR(A, n, 3) and so on. 
 
When i0 becomes n-1, no more recursive call is made. “If i0 == n-1 then return A[i0]” 
is the termination condition. 
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Here is a recursive sorting algorithm. The idea is to sort the array by splitting the array 
in half, sorting each half independently, and then merging the two sorted halves in 
the overall sorted algorithm. 
 
The recursion keeps splitting the array until the array has a single element. When l 
equals r, there is a single element. That is the termination condition. When an array 
has a single element, there is no sorting to be done. An array with a single element is 
sorted by default. 
 
Once the left and right sub-arrays are sorted, the two sorted sub-arrays are merged 
with a sub-algorithm called MergeSorted. (Note the difference in name between 
MergeSortR and MergeSorted.) For now let’s ignore the details of MergeSorted. In 
other words, let’s just assume that we have that algorithm and it can merge two 
sorted arrays, and let’s not worry about how MergeSorted actually works. 
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Here is a trace of the algorithm on the given array A. 
 
What makes the difference between the various recursive calls of MergeSortR is the 
pair of indices l and r, which delimit the sub-array on which we currently work on. 
 
At first (0, 5) means we work on the entire array. We are not yet down to a single 
element array, so let’s sort the first half (0, 2). Note that the result of the division 
(l+r)/2 is truncated. 
 
To sort (0, 2) we have to first sort (0, 1). 
 
To sort (0, 1) we have to first sort (0, 0). 
 
Sorting (0, 0) is trivial, it’s a single element array, it’s already sorted, no more 
recursive calls (i.e. the termination condition is met). 
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Now we have sorted the left half of (0, 1). Let’s sort the right half (1, 1). That’s also 
trivial. 
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Now we are at the recursive call (0, 1) and we have Bl = {9} and Br = {1}. MergeSorted 
will create a B of {1, 9}. 
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To sort (0, 2), we first sorted (0, 1), which is now done, we have it as {1, 9}. Next we 
need to sort the right half, (2, 2), which is straightforward since a single element. 

8 



 
Now we are ready to finalize the sorted sequence (0, 2), by merging the sorted (0, 1) 
and (2, 2), using MergeSorted, and we get {0, 1, 9}. Remember, for now, we do not 
worry about how MergeSorted works, it just does. 
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We are done sorting the left half of (0, 5). Now we need to sort the right half of (0, 5), 
(3, 5), which is done similarly. 
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The final sorted array is obtained by merging the sorted halves (0, 2) and (3, 5). 
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It is now time to worry about how MergeSorted works, see the pseudocode 
algorithm on the right. 
 
MergeSorted works by traversing the two arrays A and B simultaneously. At each 
iteration of the while loop one element is selected from either A or B to be inserted 
into C. Indices i, j, and k keep track of the current element in A, B, and C, respectively. 
 
If we have not yet reached the end of A, and we have reached the end of B or the 
current element in A is smaller than the current element in B, the current element 
from A is selected and copied into C. Otherwise, it is the current element of B that is 
copied into C. Since we want C to be sorted in ascending order, of course that we 
have to select the smaller of the two current elements. If one array has reached the 
end, the remaining array is copied. 
 
The while loop condition is met when all elements have been copied into C, which 
implies a k of m+n. 

20 



 
Here is a trace of MergeSorted. 
 
At the beginning we have not yet reached the end of A or of B. Since 0 is less than 2, 
0 is copied. The index in A and C are advanced—not the index in B, since we have not 
yet copied element with index 0, i.e. 2. 
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Second iteration, between 8 and 2, it is 2 that gets copied into C. 
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Then 4. 
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And then 7. At this point we have reached the end of B. 
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From now on the condition i < n and (j == m or A[i] < B[j]) will always be true until i 
reaches n. This is because i is less than n and j is m. Since j is m, A[i] < B[j] isn’t even 
evaluated anymore: true or whatever is true. 
 
The remaining of the array A is copied into C.  
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When n+m elements are copied into C (i.e. k is m+n), we are done. 
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The running time is m+n since k is advanced in every iteration (note that k = k+1 is 
not part of a conditional instruction, it is always executed). K starts at 0 and ends at 
n+m, thus the while loop is executed n+m times. The body of the while loop takes 
constant time, thus the overall running time of MergeSorted is n+m. 
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To compute the running time of MergeSort we need to add up all the work done in 
MergeSorted. 
 
MergeSorted is executed for the first time when we split the original array into single 
element sub-arrays.  
 
MergeSorted is executed once for every single element. One execution of 
MergeSorted on a single element sub-array costs 1. There are n of them. 
 
Then it is executed once for every sub-array of two elements. One execution of 
MergeSorted on a sub-array with two elements costs 2. There are n/2 of them. 
 
And so on. 
 
Finally MergeSorted is executed once on two sub-arrays of length n/2. One such 
execution costs n/2+n/2, and there is only one such execution. 
 
There are log2n lines, each totals n, for a running time of nlog2n. This is the fastest 
running time possible for sorting. nlog2n is a lot faster than quadratic, i.e. n2. 
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