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The ability to traverse the data structure is an essential component of almost any 
algorithm. You have to be able to get to the data in order to process it. 
 
Whereas in the case of arrays traversing the data structure is straight forward and it is 
achieved with one or several nested for loops, in the case of irregular data structures 
traversals have to follow the more complex topology of the data structure. 
 
Let’s first have a look at traversing a linked list. Once we’ll know how to traverse a 
linked list we’ll have an excellent start for devising algorithms that achieve more 
complex data processing. 
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Here is the basic linked list traversal algorithm. In this example the linked list nodes 
store a transaction value. The traversal algorithm prints out all transaction values. 
 
The input to the algorithm is the linked list, specified with the link to the first node. In 
addition to the payload, i.e. the transaction value, a node also stores a link to the 
next node. 
 
The output of the algorithm is the printout of all transaction values. 
 
The algorithm is called TraverseList. 
 
The variable curr is a link to the current node. Initially, curr is a link to the first node, 
i.e. L. 
 
Then the list is traversed with a while loop which keep going “while” the link curr is 
not null. The notation “!=“ means not equal. 
 
The body of the while loop prints out the value of the current node and moves to the 
next node. Moving to the next node is done by assigning to curr the link to the next 
node. 
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The notation “LINK”->”FIELD” gives access to the field called “FIELD” of the node 
pointed to by the link “LINK”. 
 
For the last element, the next link is NULL. This sets curr to NULL, the condition curr 
!= NULL is false, and the while loop stops. 
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Here is a trace of the algorithm on the linked list shown. 
 
Initially, curr is set to L. 
 
Curr is not NULL, thus the while loop is executed the first time. The value of curr, 
which is 13.40, is printed out, and curr is set to the link to the next element, i.e. the 
link to the second element. We reach the end of the body of the while loop, so we 
have to go check the condition to see if we need to execute the while loop one more 
time. 
 
Curr is not NULL, thus the while loop is executed for the second time. We print out 
12.50, set curr to the link to the next element, and check the while loop condition 
again. 
 
Curr is not NULL , thus the while loop is executed for the third time. We print out 
7.45, we set curr to the link to the next element, and check the while loop condition 
again. 
 
Curr is still not NULL, thus the while loop is executed for the fourth time. We print out 
2.50, we set curr to the link to the next element which is NULL, and check the while 
loop condition again. 
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Curr is NULL, thus curr != NULL is false, so the while loop is not executed anymore 
and we reach the end of the algorithm marked by endTraverseList. 
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Here is how the generic linked list traversal algorithm can be specialized to allow 
inserting a node in a sorted list. The traversal is needed in order to find the insertion 
point. 
 
The input to the algorithm is the linked list and the value to be inserted V. 
 
The output is the linked list with a new node that stores V. 
 
The first two instructions of the algorithm create the new node and set its value. 
Notice that at this point the new node is not linked into the list, i.e. it has not yet 
been inserted. In other words, its next field has not yet been specified, nor is there a 
list node that has its next field be a link to the new node. 
 
In order to find the insertion point, we need to find the two nodes in between which 
the new node has to be inserted. For this we need to keep track of the current pair of 
nodes, and not just of the current node. We do this using a second variable, called 
prev, which stores a link to the previous node. As before, curr is a variable that stores 
the link to the current node. 
 
Initially curr is a link to the first node, prev is NULL, since there is no node preceding 
the first node. 

5 



 
The while loop iterates “while” the end of the list hasn’t been reached. 
 
If the value stored at the current node is less than the value we need to insert, we 
have found the insertion point (i.e. after prev and before curr), and we stop the while 
loop iteration immediately with the “break” instruction. Once that break is executed, 
execution resumes after the while loop. 
 
If the value stored at the current node is greater or equal than V, we continue 
iterating over the linked list: previous node is advanced to current node, current node 
is advanced to next node. Now prev and curr point to the next pair of nodes. 
 
After the while loop we need to link in the new node. The next field of the new node 
has to be set (A), and the next field of an existing node has to link to the new node 
(B). 
 
(A) After the while loop, curr will store a link to the node following the new node. If 
the while loop was terminated by the break instruction, curr will link to a node with a 
transaction smaller than the new transaction. If the while loop was terminated 
because the end of the list was reached, curr will be NULL, which is also correct: the 
new transaction is the smallest in the list, therefore it has to be inserted at the end of 
the list, and there is no node after the new node, hence the next field of the new 
node has to be NULL. 
 
(B) If the new transaction is larger than any of the transactions in the list, the new 
node has to be first in list, and the prev variable is NULL. Consequently there are two 
cases: prev is not NULL, case in which the next field of prev has to be set to the new 
node, and prev is NULL, when there is no node with a next link to the new node, but 
the link L to the first node identifying the list has to be updated to a link to the new 
node N. 
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Let’s trace the insertion algorithm for V equals 9.00. 
 
The condition of the if statement curr->val < V is true when curr points to the last 
node, i.e. when curr is A2. Again, the break statement terminates the loop 
immediately and execution resumes after “endwhile”. 
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The next field of the new node is set to A2, which is correct. 
 
Prev is not NULL, thus the then branch is taken. The next field of the prev node is set 
to the new node, which is also correct, effectively linking in the new node. 
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Here is the trace for a case when the new transaction is largest than all transactions, 
meaning that it is larger than the first transaction in the list. 
 
The breaking condition is met right away, with curr being the first element and prev 
being NULL. 
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The next field of the new node is the first node, which is correct. 
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Prev is NULL thus there is no node whose next node should be the new node. In 
other words, the new node is the first node. However, the link to the new node, 
which identifies the list, has to be updated to be a link to the first node. 
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Let’s now devise an algorithm for traversing a binary tree. Unlike for the list, when 
traversing a binary tree, there are many forks in the road. At each internal node one 
could go left or right. Some bookkeeping is needed in order to traverse the entire 
binary tree. 
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Here is the binary tree traversal algorithm. The binary tree node has three fields: a 
value called val, which is the payload, and two links to children nodes, called left and 
right, which model the tree structure. 
 
The algorithm makes use of an auxiliary data structure: a linked list L that stores links 
to nodes that are yet to be visited. Whereas in the previous example the linked list 
stored transaction values, now the payload of the linked list node is a link, a link to 
tree nodes (not to be confused with the next link to list nodes). 
 
The traversal starts at the root. The link to the root is inserted into the linked list L. 
 
Then the traversal is achieved using a while loop that keeps iterating while L is not 
empty. 
 
Each loop iteration extracts the first link in L, and, if it is a valid link, the value stored 
is printed and the links to the left and right children are inserted in L. The insertion 
places the new element first in the list. If, on the other hand, the link extracted from L 
is NULL, nothing is done (i.e. there is no else branch). 
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Let’s trace the traversal algorithm on the binary tree given to the right. 
 
At first, T is the only link in L. Consequently ExtractFirstNode returns T, which is 
assigned to curr. 
 
L is not empty, so the while loop body is executed for the first time. 
- Curr is not null, it is an actual link to a node, so the value stored by the node, 13, is 

printed out 
- the left and right links are inserted into L. 
 
Now L stores two links, I1 and I0, in this order. L is not empty thus the while loop 
body is executed for a second time. The first link stored in L is extracted, which is I1.  
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it is a valid link, it’s value, 32, is printed out, and the children links I4 and NULL are 
inserted in L. 
 
L is not empty, another while loop iteration, the NULL link is extracted, nothing else is 
done. 
 
L is not empty, another while loop iteration, I4 is extracted, valid link, 19 is printed 
out, I8 and I9 are inserted into L, and so on. 
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Once L is empty, the algorithm terminates. All nodes were traversed, all their info was 
printed out. 
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Let’s modify the basic binary tree traversal algorithm seen earlier in order to count 
the nodes in the tree. 
 
The output of the algorithm is an integer n that will store the number of nodes in the 
tree. 
 
Initially, n is 0. As nodes are visited, instead of printing out the value stored by the 
node, we now increment n by 1, i.e. we add one more to the node count. 
 
At the end, after the while loop terminates, n is returned (e.g. returned to the main 
algorithm that used this node counting algorithm as a sub-algorithm, or printed out, 
etc.). The algorithm will count the nodes correctly because all nodes are traversed. 
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If you look at the binary tree data structure closer you notice that it is a recursive data 
structures. This means that a binary tree is a node with a binary tree as its left child 
and a binary tree as its right child. 
 
This fact enables a simple, intuitive approach for traversing a binary tree, and for 
binary tree algorithms in general. 
 
For example, in the case of counting nodes, one can find the number of nodes in the 
tree by adding the number of nodes in the left sub-tree to the number of nodes in 
the right sub-tree and by adding one for the root. This approach to counting nodes is 
called recursive. 
 
Notice how we define counting nodes, using counting nodes. 
 
“Counting nodes in tree is done by counting nodes in left sub-tree and by counting 
nodes in right sub-tree” 
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Here is the pseudocode of the recursive node counting algorithm. 
 
If the tree is empty, there are no nodes, thus return 0. 
 
If the tree is not empty, count how many nodes (a) there are in the tree rooted at the 
left child, count how many nodes there are in the tree rooted at the right child (b), 
and return a + 1 + b, where 1 stands for the root node. 
 
Notice how short and elegant the recursive variant of node count is. 
 
Also notice that there is no explicit loop. The loop is implicit. We keep calling 
CountBTR until we reach leafs. 
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The CountBTR is a recursive algorithm because it uses itself as a sub-algorithm. 
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Let’s trace the recursive node counting algorithm on the binary tree to the right. 
 
There are many “nested” sub-algorithm calls and the trace has to keep track of them. 
By nested sub-algorithm calls we mean making another sub-algorithm call before the 
previous sub-algorithm call completes its work and returns. 
 
The first call to CountBTR is done on the entire tree. T is not NULL, it is T0 thus we do 
not return 0 (“then” keyword omitted here). 
 
As the line “return CountBTR(T->left) + 1 + CountBTR(T->right)” is executed, 
CountBTR(T->left) is executed first and everything else is put on hold until 
CountBTR(T->left) returns a value (i.e. the number of nodes in the left sub-tree). 
 
Since T is T0, T->left is I0, so CountBTR(T->left) means CountBTR(I0). 
 
I0 is not NULL, the if condition is false, and another CountBTR(T->left) call is made, 
which now corresponds to CountBTR(I2). 
 
Similarly the CountBTR(I5) call is made, and then CountBTR(T->left) call is made, 
which now corresponds to CountBTR(NULL). Since now T is NULL, 0 is returned and  
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no other calls are made. 
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Similarly, CountBTR(T->right) for T equal to I5 returns a 0. At this point we are ready 
to complete the return statement 
 
return CountBTR(I5->left) + 1 + CountBTR(I5->right), since both CountBTR calls have 
returned. 
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We now essentially know that the number of nodes in the tree with root I5 is 1. The 
call CountBTR(I5) returns 1. 
 
Before CountBTR(I2) can return, we need to execute CountBTR(I6). 
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Like before, I6 is not null, thus we count the number of nodes in its left sub-tree + 1 + 
the number of nodes in its right subtree. 
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This amounts to 0+1+0, which is 1. 
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Now we know that CountBTR(I6) is 1, and we return that value to the CountBTR(I2) 
call. 
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CountBTR(I2) evaluates to 3, which is correct: the tree with root link I2 has 3 nodes. 

30 



31 



 
Before we can finalize CountBTR(I0) we need to evaluate CountBTR(I3). 
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This implies evaluating CountBTR(I7). 
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Which is a leaf node and evaluates to 1. 
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The node rooted at I3 doesn’t have a right child. 
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So there are 0 nodes in the right sub-tree, for an overall node count of 2. 
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Now we know how many nodes there are in the sub-tree with root link I0: 6. 
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Before we know how many nodes there are in the tree, we need to also know how 
many nodes are in the right sub-tree of I1. 
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This implies first knowing how many nodes there are in the left sub-tree of I1, which 
has root link I4. 
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This implies first knowing the number of nodes in the sub-tree with root link I8. 
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Which is 1 since it’s a leaf node (CountBTR on left and right children links are each 0 
because links are NULL). 
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To finalize the node count at I4 we need to count the number of nodes in the right 
sub-tree, with root link I9. 
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That’s also 1, for an overall number of nodes in the sub-tree with root link I4 of 3. 
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Now we know the number of nodes in sub-tree with root link of I1, 4 (this sub-tree 
doesn’t have a right child hence the 0 in 3+1+0). 
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Now we know the number of nodes in the left and right sub-trees of the original tree, 
thus we know the overall number of nodes: 11. 

46 



 
The essential component of this node counting algorithm is the recursive traversal of 
the binary tree. 
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Recursion is a very powerful paradigm for designing algorithms. 
 
Recursive algorithms have the following elements: 
 
There is always a recursive call, when the algorithm uses itself as a sub-algorithm. 
 
There is always a termination condition. Don’t make recursive calls forever, at some 
point stop making recursive calls. 
 
The actual work is interspersed with the recursive calls. What needs to get done 
before the recursive calls, between the recursive calls, after the recursive calls? 
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The beauty of recursion is that you don’t solve the problem directly. Instead, the 
problem is split into smaller/simpler sub-problems, until the sub-problems become 
trivial. Then the solution of the overall problem is obtained by combining the 
solutions of the sub-problems. 
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Here is the pseudocode algorithm for evaluating an arithmetic expression stored in a 
binary tree. 
 
A switch statement is used, which is a condensed way of writing multiple if 
statements. 
 
The algorithm works as follows:  
- if the current tree is a leaf, return the value stored by the leaf; this makes sense 

because the value of an operand, e.g. 3, is the actual operand; 
- if the current tree is not a leaf, find out what operation the node corresponds to, 

and return the value of the left sub-tree operated with the value of the right sub-
tree; the actual return can of course only be done once the left and right sub-tree 
recursive calls return; the various alternatives for the symbol (i.e. the operator) are 
tested using a switch statement; only one branch of the switch statement is taken. 
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The recursive traversal of binary trees can be specialized to achieve other tasks. 
 
In this example the recursive traversal is used to print out the arithmetic expression 
stored in a binary tree. 
 
At high level: 
- nothing is printed out on a NULL link,  
- for a valid link node, one prints out  

- an open parenthesis,  
- the left operand (which could be an expression in and by itself),  
- the operator,  
- the right operand (which also could be an expression in and by itself),  
- and finally a closed parenthesis. 

 
First, several open parentheses are printed out, as the algorithm digs deeper and 
deeper in the sub-expressions of the original expression. 
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Then a leaf is reached, with link I4. 
 
Nothing is printed for its left link, which is NULL. 
 
The string at the leaf is then printed out, i.e. 3. 
 
Nothing is printed for its right link, which is also NULL. 
 
A closed parenthesis is also printed. 
 
Now we go back and continue the printing of the node with root I2. 
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We are done with the left link I4 of I2, so we print the string at the current node 
which is the minus sign, and now we have to print the expression for the right link, I5. 
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Like before, this implies printing out the expressions for the sub-trees. 
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Since these links are NULL, nothing is printed out for the left and right links of I5. The 
printout for I5 is (1). 
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Now we are done with the print out for I2, it is ((3)-(1)). 
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To finalize the printout for I0 we need to finalize the printout for I3. 
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Like for I2, this amounts to a recursive printout for the tree with root link I3. 
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Before the entire printout is finalized, one has to print out the expression for the right 
tree of T0, which has root link I1. 
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This is a simple leaf, which once printed out,  
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allows us to print out the final right parenthesis. 
 
The printout is fine, but having parentheses around operands is unnecessary. 
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These redundant parentheses can be avoided by printing out an open or a closed 
parenthesis only if the current node is not a leaf. 
 
Here this is done by adding the condition that T->left should not be NULL, as a leaf 
node would. 
 
With these additional instructions in place, the printout does not have the extraneous 
parentheses. 
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