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Here is a simple algorithm written in pseudocode. 
 
Remember, pseudocode is a “language” that allows designing and analyzing 
algorithms, but that is short of a “programming language”. Computers cannot execute 
pseudocode directly. Pseudocode is the first of the 2 step approach for designing and 
implementing algorithms. 
 
Notice the main parts of the pseudocode specification of the algorithm: input, 
output, and actual algorithm consisting of step-by-step instructions. The name of the 
algorithm is Minimum, and it has two (input) parameters: an array of integers called 
A, and the length of the array (i.e. the number of elements) called n. 
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In order to improve algorithm (and code) readability, the algorithm designer (i.e. you) 
adds comments. Comments are intended to clarify, explain, and are not part of the 
algorithm instructions. Comments are not executed, they are not instructions. 

3 



 
As discussed in the previous lecture, the algorithms are written to be as general as 
possible, in order to be useful in as many circumstances as possible. The algorithm 
parameters stand for an infinite number of input combinations: arrays with 10, 1000, 
10000 elements, with elements with large or small values, etc. 

4 



 
This particular algorithm finds the minimum in an array of numbers (integer 
numbers). 
 
The output is the minimum over all elements of A, which is called Min, and it is 
“returned” to the caller of the minimum algorithm. The caller stands here generically 
for whomever wanted to know the minimum of the array A of length n. This could be 
a user, and the minimum value is returned through a printout on the screen, or some 
other algorithm, case in which the minimum algorithm is used as a sub-algorithm. 
 
The strategy is to initialize the minimum (stored in variable Min) to be the first 
element in the array, and then to traverse the remaining part of the array (i.e. 
elements index 1 to n-1) to see if there is a smaller element than the current 
minimum. If such an element is found, Min is updated. Min stores the current 
minimum, and has the true or final minimum only at the end, because it could be 
that the last element in the array is the actual minimum. 
 
Notice how the array is traversed with a for loop. The for loop iterates over the array 
index i. The first value for i is 1, since we do not need to test against the first element 
of the array. 
 
The decision whether to update Min is done with an if statement. The assignment  
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Min = A[i] is only executed when A[i] is less than the current minimum. There is no 
else branch for the if. In other words, if the condition A[i] < Min is not true (i.e. it is 
false, or A[i] >= Min), nothing happens, no instruction needs to be executed. 
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Notice that indentation and the endif and endfor statements help structure the 
pseudocode. The if-endif statement is “inside the for loop”, meaning that the if 
statement is executed at every iteration. 
 
Indentation is achieved using multiple tabs. 
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One can also use this vertical lines, but they are hard to type and format. 
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Notice how the body of the for loop is indented with respect to the for statement. 
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The instructions to be executed on the then branch of the if are also indented. 
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The return statement has to return the algorithm output. Notice that Min is listed as 
the algorithm output and it is returned. 
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The return statement has to return the algorithm output. Notice that Min is listed as 
the algorithm output and it is returned. 
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Although pseudocode cannot be run on a computer, we can still test the algorithm by 
tracing its execution. 
 
Tracing an algorithm implies choosing an input (actual values, not just variable 
names) and executing the step by step instructions of the algorithm while keeping 
track of all variables involved in the algorithm. 
 
Here we chose an array with 5 elements and we keep track of variable values in a 
table. The table is filled out from top to bottom. Time advances from top to bottom. 
 
The first instruction of the algorithm is Min = A[0], which assigns 3 to variable Min. 
 
Then we enter the for loop. Since n is 5, n-1 is 4, so we have to execute the for loop 
for i = 1, 2, 3, and 4. The for loop will be executed 4 times. 
 
The first time around i is 1. We evaluate the if condition: is A[1] less than Min? Is 7 
less than 3? No, so we do not enter the then branch, we get to endfor, which signals 
the end of the current iteration. i was 1 now it is 2, and 2 is still less than or equal to 
n-1, so on to another iteration of the loop. Is A[2] < Min? Yes, so update Min, which is 
now 1. Another iteration, no update this time since 2 is not less than 1. Final 
iteration, i is 4, A[i] is -1 which is less than Min, so Min is set to -1. 
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The for loop is done, the algorithm returns Min, which is -1. 
 
Tracing the algorithm is of course not a proof that the algorithm is correct. We now 
know that the algorithm works correctly for this particular input, but we cannot 
extrapolate to “knowing for sure” that the algorithm works correctly for all input. 
Tracing however increases the our confidence in the correctness of the algorithm. 
Additional traces would increase our confidence even more. 

12 



 
In addition to correctness, another concern is to estimate the running time. 
 
One option is to start a timer when the algorithm starts executing and to stop the 
timer as soon as the output is available. That could be done and is done. However, 
this absolute or actual running time of the algorithm is not very informative.  
 
First, one has to run the algorithm on a computer. We only have pseudocode, so that 
won’t work. Getting really good at tracing and measuring the time it takes us to trace 
the algorithm is also a bad idea. 
 
Second, the absolute running time depends on the actual input. Finding the minimum 
on a long array will take longer than on a short array. Even when the arrays have the 
same length, an array sorted from large to small values will take longer to process 
than an array sorted from small to large, because the then branch of the if is taken all 
the time in one case, and never in the other. 
 
Third, the absolute running time depends on the computer where the algorithm is 
run, and on the context (i.e. how busy the computer is doing other things). 
 
What is needed is a way of estimating running time directly from the pseudocode, 
that is independent of the actual input, and of the actual computer where it is run. 
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The idea is to count the number of operations, as a function of the algorithm 
parameters. The parameter that dictates the running time is n, the number of 
elements in the array. 
 
Although there are many types of instructions (e.g. evaluation of logical expression, 
assignment), and although different instructions take different times to execute, how 
long exactly each instruction takes depends on the computer where it is run. To 
simplify, we count all instructions as 1. 
 
Another approximation is to ignore constants in our running time tally. For example 
Min = A[0] is done exactly once, and 1 is a constant that can be ignored since the for 
loop body, which is executed once for every array element, will dominate. Another 
example of ignoring constants is to always count the body of the for loop as 1. 
Depending on whether Min is updated or not, the for loop body could cost 1 (for the 
if) and 1 + 1 (for the if and the assignment), but 2 is only a constant times greater 
than 1. 
 
Consequently, the approximate running time of the algorithm is n, or linear running 
time, or proportional to n. This means that if the array size doubles in length, the 
running time will double. 
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In conclusion, instead of measuring running time in seconds, we prefer specifying 
how the running time of the algorithm changes when the size of the input changes. 
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Here is another example of algorithm written in pseudocode. 
 
The input is a digital image, encoded as a two dimensional array. The image size is w x 
h. The image is black and white meaning that there is a single intensity channel per 
pixel. 
 
The strategy is similar to finding the 1-D minimum. One change is that we now search 
for the maximum, so the temporary (i.e. current) maximum is updated when the 
current element is greater than the maximum. A second change is that traversing the 
entire image (one has to look at the entire image since the brightest pixel can be 
anywhere) is done with two nested for loops. 
 
The first for loop says: look at all rows. The second for loops says: for the current row, 
look at all columns (i.e. elements). 
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Let’s trace the algorithm for the given image. Notice how, for each value of i, there 
are 4 values for j. That is because there are 4 elements in each row. 
 
Max is initialized to the first pixel. Notice that the algorithm tests against the first 
pixel, which is unnecessary, since we know that’s not going to provide a larger value. 
Although the test is redundant, the algorithm is correct. Avoiding that test would 
require unnecessary work to single that case out. 
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Once we are done traversing the entire image, Max will store the brightest pixel. The 
last update to Max happened “a while ago”, but there was no way to know that there 
will not be a brighter pixel, so we have to look at the entire image. 
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The running time is linear with the image area (i.e. the number of pixels) and 
quadratic with the image width (or height). Since the for loops are nested, the 
amount of work gets multiplied and not added. “For each value of i, consider all 
values of j”. 
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Let us now modify the algorithm for finding the minimum in an array by adding a 
parameter that tells the algorithm where to begin looking for the minimum. A second 
modification is to return the index of the minimum as opposed to the actual 
minimum. As we will see shortly, this will be useful to achieve more complicated 
algorithms. 
 
We introduce a parameter i0 that tells the algorithm the index of the first element to 
be considered when finding the minimum. The modified algorithm finds minimum on 
the sub-array i0 to n-1. The second modification is to keep track of the index of the 
minimum imin as opposed to the minimum value. 
 
The modified algorithm is more powerful, more general than the earlier algorithm: 
one can call the modified algorithm with i0 set to 0 and then all array elements are 
examined, as before, and, the caller knows the array thus the index returned by the 
modified algorithm can be used to find the minimum value by indexing in the array. 
 
imin is initalized to i0, since we start at i0 and since we do not want to find the 
minimum value but rather the index of the minimum value. 
 
The for loop starts at i0+1, since i0 does not need to be compared (the same way A[0] 
could be skipped in the original algorithm). 
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When a smaller element is found, imin is update to its index. 
 
After the for loop completes, the algorithm returns imin. 
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Here is a trace of the algorithm on the same input as the one used to trace the 
original algorithm. Same results. 
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Here is a trace where i0 is 2, indicating that one wants the minimum of elements with 
indices 2, 3, and 4. The imin returned is 3, since A[3] is the smallest of A[2], A[3], and 
A[4]. 
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Using the modified minimum finding algorithm one can easily sort an array. 
 
The algorithm is based on the following idea: the first element in the sorted array is 
the minimum element in the original array, the second element in the sorted array is 
the minimum among the original elements other than the overall minimum. In other 
words, the array is sorted by repeatedly extracting the minimum from the original 
array and setting the sorted array elements, in order. 
 
The algorithm uses two sub-algorithms. The first one, MinIndex, is the modified 
minimum algorithm discussed earlier. The second one swaps the value of two 
variables. 
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Given two variables as input, their values are modified such that the first variable has 
the original value of the second variable, and the second variable has the original 
value of the first variable. This is achieved using a temporary variable called C. 
Temporary or auxiliary variables are variables other than input and output variables. 
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Notice that this sorting algorithm leaves the original array unchanged. For this the 
original array is first copied into a different, output, array B, which is then sorted. 
Other sorting algorithms might decide to shuffle the elements of the input array. The 
decision is based on whether the original array is still needed in its initial form or not. 
 
The algorithm proceeds by repeatedly finding the minimum in the part that has not 
yet been sorted, to build the sorted array. The array B has a part that’s already been 
sorted (left) and a part that’s yet to be sorted (right). At the beginning the left part is 
0 in length and the right part is n in length. At the end, the sorted part is n in length 
and the unsorted part is 0 in length, meaning that we are done sorting the array. 
 
Here is a trace. For the first iteration of the for loop, find the index of the minimum 
element in B, from 0 to 4. That is 4. Then swap element 0 with element 4. Now the 
minimum is in its place, index 0. The sorted part (red) has one element. 4 elements 
remain to be sorted (green). 
 
Second iteration, i is 1. Find the index of minimum element in B starting from index 1 
to index 4. That is 2. Swap B[1] and B[2]. 
 
Third iteration, i is 2. Find the index of minimum element in B from 2 to 4. That is 3.  
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Swap B[3] and B[3]. 
 
Fourth iteration, i is 3. Find the index of minimum element in B from 3 to 4. That is 4. 
Swap B[3] and B[4]. 
 
No more iteration. The array is sorted. 

24 



25 



 
When analyzing the running time, we look at the algorithm from the beginning to the 
end.  
 
We notice the first for loop, which has a cost of n (since the body of the for loop 
implies a constant number of operations and since there are n for loop iterations. 
 
We notice the second for loop. The index goes from 0 to n-2, which also means linear 
in n since we ignore constants. Then we have to analyze the body of the for loop, 
which includes two sub-algorithms, so we have to analyze the running time of each of 
those sub-algorithms. The Swap sub-algorithm takes constant time, which is less than 
the MinIndex algorithm, thus Swap can be ignored. 
 
MinIndex’s running time is proportional to n-i. As the main for loop is executed, i 
starts at 0 an goes to n-2. Consequently the total amount of work is proportional to 
the sum of the first n integers, which is proportional to n squared. The running time 
of this algorithm is quadratic (as opposed to linear). If n doubles, the running time 
quadruples, i.e. it grows by a factor of four. For large n values, this algorithm is very 
slow. For example if n is one billion, this algorithm never finishes, whereas a linear 
algorithm can easily run on one billion elements. 
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Fortunately there are sorting algorithms with an nlogn running time, which are 
practical for input of any size. 
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Here is another algorithm, which inserts an element into a sorted array. For this 
example it is assumed that the original array has been preallocated to a large size, 
and one does not need to allocate a new array. 
 
The strategy is to first find where to insert the element, then to move the following 
elements one step to the right, and finally to insert the new element in the empty 
space created. 
 
The place where the element needs to be inserted is found by starting from the first 
element and looking for an element that is greater than the element we want to 
insert. There are two scenarios: we find such an element, and, we don’t find such an 
element (i.e. all original elements are smaller than the element we want to insert).  
 
Let’s first discuss the first scenario. Once we find an element that is greater than B, 
we stop looking, not only because we want to avoid redundant work, but also 
because we want to find the first element greater than B. The early termination of 
the for loop is achieved with the instruction break, which breaks out of the current 
loop immediately, regardless of whether we are at the last iteration or not. iins is the 
index where B has to be inserted. 
 
Let’s now discuss the second scenario: B is greater than all elements of A. In this case,  
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B should be inserted after all elements of A, i.e. index n (since n-1 is the index of the 
last element of A). To take care of this case, we initialize iins to n. If the then branch 
of the if statement is never taken, iins stays to its initial value n. 
 
Now we have to move the elements following the insertion points one step to the 
right. We start from the last element and go left by subtracting the index i, until iins + 
1. 
 
Finally, we insert B and we return the modified array. 
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Here is a trace. B is 6, which means that it has to be inserted between 3 and 7. This 
really means at index 2 (old position of 7), which also means that elements 7 and 10 
need to be moved one step to the right. 
 
The insertion point is found correctly since B < A[i] is true for the first time when i is 
2, thus iins is 2. 
 
Now we move elements 10 and 7, in this order, one step to the right. 10 is moved to 
index 4, 7 is moved to index 3. Note that it is important to move elements starting 
from the right. Starting from the left would overwrite data that we need. For 
example, if we first move 7 right one element, we lose, i.e. overwrite, the old A[3] 
(10). 
 
Finally B is written at A[2]. 
 

29 



 
In order to increase our confidence in the correctness of the algorithm, let’s try 
additional input values. When choosing the input values to try, one aims for 
potentially challenging input values.  
 
What if there is already an element equal to the number we want to insert? There 
seems to be no problem. 
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What if the value we want to insert is greater than all elements in the original array? 
We considered this “special” case when we designed the algorithm, now let’s see if 
the algorithm is handling the special case correctly. 
 
For B equals to 11, B is never less than A[i], thus iins remains 4, which is the value to 
which it was initialized. 
 
Then the second for loop is asked to iterate i from n, which is 4, down to iins+1, 
which is 5. Since 4 is less than 5, no iteration is performed. 
 
Finally B is inserted at index 4, and the result is correct. 
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What if the number we want to insert is smaller than all elements of A, which means 
that it is smaller than the first element of A, since A is sorted in ascending order. 
 
This case is also handled correctly. iins is 0, all elements are moved one step right, 
and the new minimum is inserted on the first position (i.e. index 0). 
 

32 



 
The running time is clearly linear. There are 2 for loops, but they are not nested. 
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Here is another example of a pseudocode algorithm. 
 
The algorithm achieves 2-D convolution, which means processing a 2-D array by 
replacing its elements with a weighted average of neighboring elements. Convolution 
is not necessarily restricted to immediate neighbors. The size of the neighborhood is 
determined by the size of the kernel. 
 
The algorithm has to do the following: 
- Traverse the original array 
- For each array element, compute the new value as the weighted average by 

centering the kernel at the current element 
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Here is the algorithm in pseudocode. The algorithm computes C = A convolved with 
B. 
 
There are 4 nested loops.  
 
The outer two loops traverse the original array. Notice that a margin of size m is 
ignored. This is because elements too close to the edge of the original array do not 
have enough neighbors. In other words they only have a partial neighborhood, and 
this algorithm has decided to ignore these elements close to the edge. 
 
The new element value is computed as a sum that starts out at 0 and is then 
incremented by the product between the neighborhood element and the 
corresponding weight. The sum is computed by the inner two loops, which iterate 
over the neighborhood (and implicitly the kernel). Notice that the inner loop indices k 
and l start at 0 and end at 2m, so they can be used directly to index in the 2-D kernel. 
However, the indices for the neighborhood element have to be computed relative to 
the top left corner of the neighborhood, which is at [i-m][j-m]. 
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It is impractical to trace the entire algorithm. We would get a good sense of how the 
algorithm works even if we focus only on one pair of values i and j, here 7 and 2, 
respectively. This means that we are tracing the inner two loops for the given i and j 
values. 
 
k and l start at 0, 0, and end at 2, 2, which means that they correctly traverse the 
kernel; in other words the weights are read correctly from the kernel. 
 
The indices determining the neighborhood element start our at 6, 1 and end at 8, 3, 
which means that the neighbors to be blended are found correctly. 
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Element 7, 2 is computed correctly. 
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In terms of running time, we notice that there are 4 nested loops, that the inner loop 
body implies a constant amount of work, thus the running time is the product of 
number of iterations of the 4 loops. This clearly shows that convolution becomes 
expensive as the kernel size increases. 
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The kernel can be specialized according to the desired operation.  
 
For a kernel of a given size, the actual values in the kernel determine the amount of 
blurring. A kernel with a 1 in the center and 0’s anywhere else does not blur at all (the 
output 2-D array is the same as the input 2-D array). A kernel with all weights equal 
blurs the most. 
 
It is important that the weights add up to 1, or else the overall average of the 2-D 
array changes. For example, in the case of 2-D images, kernel weights with a sum 
greater than 1 would brighten the image.  
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An edge extraction kernel has weights designed to produce a 0 where the image does 
not change (i.e. where color is constant) and a large value where the image changes. 
In this example if the input image is constant, i.e. all pixels in the neighborhood have 
the same value V, the output value will be V times the sum of the weights in the 
kernel, which is 0. 
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