CS59300 COMPUTATION AND LEARNING ON GRAPHS

Pan Li
Computer Science Department
Purdue University

Course syllabus

- **Course title:** Computation and Learning on Graphs
- **Prerequisites:**
 (a) Knowledge of basic computer science principles, sufficient to write a reasonably non-trivial computer program (CS 15900, CS 18200, CS 25100); Confidence in learning and using the packages in tensorflow, pytorch, networkx.
 (b) Familiarity with the undergrad-level probability theory (MA 41600).
 (c) Familiarity with the undergrad-level linear algebra (MA 26200, MA 26500).
 (d) Suggested but not requested: Basic knowledge about machine learning (e.g. Understanding the phrases of training, testing, generalization) (CS 37300, CS 47100).
- **Learning outcomes:** Networks/Graphs are a nature tool for modeling structured data that represents complex social, technological and scientific systems. Coupled with the emergence of large-scale structured data, this course focuses on the computational and algorithmic approaches to analyze graphs and networks. Students are introduced to cutting-edge machine learning techniques apt to reveal insights on the social, technological, and scientific worlds, by means of studying their underlying network structure and interconnections.
- **Materials:** No required course materials. Relevant suggested materials include:
 (a) Stanford CS224W, http://web.stanford.edu/class/cs224w/
 (b) Yale CS561, spectral graph theory, https://www.cs.yale.edu/homes/spielman/561/
 (c) Statistical Mechanics of Complex Networks (Albert and Barabasi; 2001);
 (d) Mathematical results on scale-free random graphs (B. Bollobas; 2003);
 (e) Random Graphs and Complex Networks by van der Hofstad. Monograph-style lecture notes.
 (g) A Book on Graph Neural Networks https://graph-neural-networks.github.io/
- **Grading criteria:**
 (a) Homework: 10% * 2 = 20%;
 (b) One Midterm: 20%;
 (c) Course project: 60% including proposal 10% + project milestone 5% + final report 30% + presentation 15%
• Syllabus (tentative):
 1. Introduction & Basic Concepts of Graphs
 2. Random Graphs I & Probabilistic Analysis
 3. Random Graphs II & Real Network Properties
 4. Community Detection I & Spectral Clustering
 5. Community Detection II & Spectral Graph Theory
 6. Random Walks & PageRank
 7. Semi-supervised Learning & Graph Regularization
 8. Graph signal Processing & Convolution
 9. Graphical Modeling & Message Passing
 10. Large-scale Graph Training
 11. Network Embedding
 12. Link Prediction & Recommendation
 13. Group Equivariance & Invariance
 14. Graph Isomorphism & GNN Representation power
 15. Motifs & Graphlets, Node Structural Role
 16. Learning Graph Generative Models