
Chameleon: Context-Awareness inside DBMSs∗

Hicham G. Elmongui #1, Walid G. Aref #2, Mohamed F. Mokbel ‡3

#Department of Computer Science, Purdue University
305 N. University St., West Lafayette, IN 47907, USA

1elmongui@cs.purdue.edu
2aref@cs.purdue.edu

‡Department of Computer Science and Engineering, University of Minnesota
200 Union Street SE, Minneapolis, MN 55455, USA

3mokbel@cs.umn.edu

Abstract— Context is any information used to characterize the
situation of an entity. Examples of contexts include time, location,
identity, and activity of a user. This paper proposes a general
context-aware DBMS, named Chameleon, that will eliminate the
need for having specialized database engines, e.g., spatial DBMS,
temporal DBMS, and Hippocratic DBMS, since space, time, and
identity can be treated as contexts in the general context-aware
DBMS. In Chameleon, we can combine multiple contexts into
more complex ones using the proposed context composition, e.g.,
a Hippocratic DBMS that also provides spatio-temporal and
location contextual services. As a proof of concept, we construct
two case studies using the same context-aware DBMS platform
within Chameleon. One treats identity as a context to realize
a privacy-aware (Hippocratic) database server, while the other
treats space as a context to realize a spatial database server using
the same proposed constructs and interfaces of Chameleon.

I. INTRODUCTION

According to the Merriam-Webster Online Dictionary, the
term “context” is defined as the interrelated conditions in
which something exists or occurs [1]. Many researchers have
tried to define context. However, often definitions use ex-
amples of context (e.g. [2]) or synonyms [3], [4]. In the
Ubiquitous Computing community, context is defined as “any
information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application,
including the user and applications themselves” [5]. Examples
of contexts include, but are not limited to, time, location,
identity, and activity of a user.

Context-aware computing (introduced in [2]) describes a
system to be context-aware if “it uses context to provide rele-
vant information and/or services to the user, where relevancy
depends on the users task” [5]. Context-aware personalization
is about tailoring services to better adapt to user preferences
with knowledge about the user and his/her environment.

In this paper, we introduce context-awareness inside
DBMSs. In contrast to all existing work about context aware
systems that are built on top of an infrastructure that provides
just the data (e.g., database or data stream), we propose
to incorporate context awareness inside the DBMS. Several

∗This work is supported in part by the National Science Foundation under
Grant Numbers IIS-0811954, IIS-0811998, IIS-0811935, and CNS-0708604.
Elmongui is also affiliated with Alexandria University, Alexandria, Egypt.

specialized DBMSs, which manage data and answer queries
related to one context type, already exist. For instance, a
spatial DBMS is optimized to manage and query objects
in space. A temporal DBMS has a built-in temporal data
model. Tailoring such database engines is not an easy task.
Moreover, supporting and combining multiple contexts in one
tailored database engine is not within reach. By including the
concept of contexts inside the DBMS, we will not need to
tailor specialized engines towards a certain context (let alone
multiple contexts), but rather we will be able to have systems
that support user-defined complex and composite contexts.

We present the design and implementation of Chameleon,
a Context-Aware DBMS. Chameleon1 supports multiple con-
texts as well as user preferences and has a generic inter-
face to define and process context information. Contexts in
Chameleon are classified according to their properties. As a
proof of concept, Chameleon is used to support basic contexts,
such as location and identity and show how to compose
complex contexts from basic ones.

II. CLASSIFICATION OF CONTEXTS

Context type
{

object context
user context Contextual relation

 [Q] equivalence relation
[T] total ordering relation
[P] partial ordering relation

Context sign
{

[S] positive
[G] negative Listing of Data

{
[X] unlisted excluded
[N] unlisted included

Two main entities are involved in a context-aware database
system: the query issuer and the data being queried. Both of
these entities may have their own contexts.

A. Object Context

Object context is the context of the data being queried. Ob-
ject context might be one or more object attributes. Otherwise,
the object context might need to be defined, and instantiated
apart from the object data.

B. User Context

User context refers to the context of the query issuer. It can
be location, identity, preferences, or any information relevant
to the user. When an object context conforms with the user

1The real Chameleons also change their color and appearance based on the
context they are in.

context, the object is returned when its table is queried. We
classify user contexts according to three dimensions: context
sign, contextual relation, and listing of data.

Dimension 1: Context Sign: A user context can be “posi-
tive” or “negative”. A positive context defines what the context
is, while a negative context defines what the context is not.

Dimension 2: Contextual Relation: Contextual relation is
the relation among contextual data. It shows the order of
relevance of contextual data. Contextual relation can be an
equivalence, a total ordering or a partial ordering relation.

Dimension 3: Listing of Data: Listing of data refers to how
the data should be listed; whether out of context data should
be excluded from the listing or come last. This is termed as
“unlisted excluded” or “unlisted included” respectively.

C. User Context as a 3D Point

Each user context is looked upon as a point in the 3D space
defined above. For instance, a user might be equally interested
in seeing a horror or a humor movie. This is an example of a
positive user context having an equivalence contextual relation
with the unlisted contextual values excluded.

All points in this 3D space are valid when the user context
is positive. However, when the user context is negative, only
contextual values with the unlisted included and equivalence
contextual relation are valid.

III. CONTEXT-AWARENESS SQL CONSTRUCTS

In this section, we describe the different constructs that
are needed to enable context awareness inside a DBMS.
Chameleon provides support for all these constructs.

Creating Object Contexts: Chameleon uses the CREATE

OBJECT CONTEXT statement to define an object context when
the object context is not part of the object relation.

CREATE OBJECT CONTEXT contextname (
{col spec | table constraint} [, . . .]
, table binding

);

Similar to the CREATE TABLE statement, col spec refers to
the specification of an attribute of the object context such as
name, data type, and so on. On a similar vein, table constraint
refers to any constraints on the whole context such as check
constraints. The construct table binding is the construct that
connects the object with its context. It has the format below.

BINDING KEY ([col name [, . . .]])
REFERENCES ref table [(ref col [, . . .])] WITH bool expr

The first part of the BINDING KEY is similar to the FOREIGN

KEY. However, the binding key does not have to reference a
primary key. Moreover, the decision to bind a contextual value
with an object does not have to be an equality with a column
value in the referenced table. The WITH construct defines a
Boolean expression that serves as the binder. Furthermore, the
binding key might not contain any context attribute, but rather
only the Boolean expression that might also contain attributes
from any object context to the referenced table.

Creating User Contexts: Similar to object contexts, each
user context will materialize to a relation. Chameleon uses
the following syntax to define a user context. For each table
affected by a user context, a binding key is used to show how
the context reflects on the table. Therefore, there might be
more than one binding key in a user context.

CREATE [context sign] CONTEXT contextname (
{col spec | table constraint} [, . . .]
, table binding [, . . .]
[, substituting key [, . . .]]

)
[AS contextual relation clause]
[WITH UNLISTED unlisted status];

context sign: positive | negative
contextual relation: equivalence | partial order

| total order [USING ordering func]
unlisted status: excluded | included

Upon creation of a user context, an implicit column is
created to hold the user name of the current user. Therefore,
each contextual value is associated with a certain user. Also,
if an ordering relation is used for the contextual relation,
then another implicit column is created to hold the rank
of that contextual value. This rank can be either input by
the application while acquiring contextual data, or it can be
computed using an ordering function ordering func. In the
latter case, the rank column does not need to exist.

The substituting key will be discussed in details in the next
construct. Populating the contextual relations is made using
standard SQL INSERT statements. Also, other data manipula-
tion statements will still work on the contextual relations.

Global Substitution Construct: Some attributes need to
be modified for presentation purposes if we want to enable
context awareness. For instance, if the context is the location
of a user, and the user is currently in France, then we might
want all prices, in all tables, to be converted to Euro. This
conversion is called global substitution, since the substitution
occurs for all tables according to the current context. The
substituting key defines such conversion, and is defined while
defining the user context as follows.

SUBSTITUTE table name(col name) BY expression;

The expression that substitutes the attribute can be any
expression in which attributes from table name, its object
contexts, as well as the user context may appear.

Setting Active Contexts: The application user may have
many contexts, not all of them need to be current all the time.
Therefore, we introduce the construct SET ACTIVE CONTEXT to
define the current contexts to be taken into account for that
user. The user name has the CURRENT USER as a default.

SET ACTIVE CONTEXT [FOR USER user name]
AS context name [, . . .];
{ [WITH RANKING ORDER context name [, . . .]]
| [WITH RANKING EXPRESSION expression
| [WITH SKYLINE OF expression {MAX|MIN} [, . . .]] };

The SET ACTIVE CONTEXT context provides for composing
complex contexts from basic ones. If more than one context
imposes an ordering on the data, we provide for three mecha-
nisms for the composed ordering: (1) by specifying a context
order upon which the data is to be sorted, (2) by specifying a
ranking expression to be used if a ranking algorithm is to be
used (e.g., [6]), and (3) by requesting the skyline of the data
when the ranks of different contexts are inversely correlated.

Chameleon provides for a SkylineJoin query operator, which
not only provides the skyline of the data but also seizes
the opportunity that the ranks come from different tables to
produce the results fast. The details of this operator are out
of the scope of this paper and may be found in our technical
report [7].

IV. CONCEPTUAL EVALUATION

We use a preference-based system to show why the above
constructs enable context-aware query processing. Consider a
table books(id, title, year, category, cover, stock) that contains
information about books in a certain bookstore.

Example contexts are given and defined using the above
constructs. We start by simple contexts then combine them into
more complex ones. In the scenarios below, the user executes
the following query (Qu), and the relevant tuples are returned.

SELECT * FROM books WHERE books.stock;

Context 1: The user has a preference for only books of a
certain category (e.g., Science fiction).
This context may be defined as:

CREATE POSITIVE CONTEXT ctxt category SQX (
category varchar(20),
BINDING KEY (category) REFERENCES books(category)

) AS EQUIVALENCE WITH UNLISTED EXCLUDED;
SET ACTIVE CONTEXT AS ctxt category SQX;

We give the suffix SQX to the context name above to
emphasize that it is a positive [S] context with an equivalence
[Q] contextual relation and that the unlisted categories in the
context are to be excluded [X] . For the above example, when
the user issues Qu, the binding key is used to join the books
table with the context table, and only the books whose category
exists in the context are to be returned.

Context 2: The user’s preference is for books published in
2005, and then those published in 2006 before all other books.
This context may be defined as:

CREATE POSITIVE CONTEXT ctxt year STI (
year integer,
BINDING KEY (year) REFERENCES books(year)

) AS TOTAL ORDER WITH UNLISTED INCLUDED;
SET ACTIVE CONTEXT AS ctxt year STI;

For the above example, in response to Qu, the binding key
is used to join the books table with the context table. In this
case, the type of join is a left outer join, and therefore, all
books will be returned at the end. The output rows are to be
sorted based on the year rank, which is specified implicitly
in the context as it is an ordering context. Rows with NULL
context rank appear later in the list.

Context 3: User prefers hardcover to paperback books.
This context may be defined as:

CREATE POSITIVE CONTEXT ctxt cover STX (
cover integer,
BINDING KEY (cover) REFERENCES books(cover)

) AS TOTAL ORDER WITH UNLISTED EXCLUDED;
SET ACTIVE CONTEXT AS ctxt cover STX;

For the above example, in response to Qu, the binding key
is used to join the books table with the context table. The
output rows are to be sorted based on the cover rank, which
is specified implicitly in the context as it is an ordering context.

Context 4: User does not prefer science fiction books.
This context may be defined as:

CREATE NEGATIVE CONTEXT ctxt category GQI (
category integer,
BINDING KEY (category) REFERENCES books(category)

) AS EQUIVALENCE WITH UNLISTED INCLUDED;
SET ACTIVE CONTEXT AS ctxt category GQI;

In response to Qu, rows in books, whose category exists
as any of the contextual values of this context, are eliminated
from the answer set.

Next, we compose complex contexts from the above basic
contexts. We start with the following context.

Context 5: User prefers books published in 2005, and then
those published in 2006 before all other books. For the books
that are similarly ranked, the user prefers hardcover books over
books with paperback cover.
This context may be viewed as the composition of
ctxt year STI and ctxt cover STX. We just need to set the
active context appropriately to reflect to the desired context.

SET ACTIVE CONTEXT FOR user1
AS ctxt year STI, ctxt cover STX
WITH RANKING ORDER ctxt year STI, ctxt cover STX;

As a result of this combined context, queries to select tuples
from books will work as follows. First, the books in stock will
be sorted based on the rank of the years, and then in case of
ties, the cover type will be taken into consideration.

V. INSTANTIATING HIPPOCRATIC DATABASES

We show how to limit disclosure, as in Hippocratic
Databases, using context awareness in Chameleon. Table I
shows the same patient table used in the limiting disclosure
work in [8]. This table contains patient personal information.

pid name age address phone
1 Alice Adams 10 1 April Ave. 111-1111
2 Bob Blaney 20 2 Brooks Blvd. 222-2222
3 Carl Carson 30 3 Cricket Ct. 333-3333
4 David Daniels 40 4 Dogwood Dr. 444-4444

TABLE I
THE PATIENT TABLE

Consider a healthcare facility where admitted patients sign
a privacy policy that specifies which information can be
disclosed to which recipient and for what purposes. On an
opt-in basis, the healthcare facility also allows patients to
choose if they want any of their personal information to be
released to other recipients. For instance, patient’s name, age
and phone number is disclosed to the treating nurse; while
patient’s address is not. The patient may opt-in and choose
that only her age is to be released to charity for solicitation.

Beside limited disclosure, limited retention is also modeled
using context awareness. For simplicity, and without loss of
generality, we assume that patient data is retained for 90 days.

Note that objects are patients in this context. Object contexts
are the contexts of the patients, and users are those who re-
trieve patients’ data at the facility. To model the above example
of limiting the disclosure and retention of patients’ data in
Chameleon, we define the object contexts patient privacy pref
and patient policy signature as in Table II.

Let the object context patient privacy pref contain the con-
textual data in Table III. The user context below enforces
limited disclosure and limited retention of patients’ data.
Table IV shows the data retrieved upon executing the query

CREATE OBJECT CONTEXT patient privacy pref (
recipient varchar(30), purpose varchar(30), pid integer,
pid pref boolean, name pref boolean, age pref boolean,
address pref boolean, phone pref boolean,
BINDING KEY(pid) REFERENCES patient(pid)

);
CREATE OBJECT CONTEXT policy signature (

pid integer, sign date date,
BINDING KEY(pid) REFERENCES patient(pid)

);
CREATE POSITIVE CONTEXT identity activity (

job varchar(30), activity varchar(30),
BINDING KEY(job, activity) REFERENCES

patient privacy pref(recipient, purpose)
SUBSTITUTE patient(pid)

WITH (CASE WHEN patient privacy pref.pid pref
AND today() <= policy signature.sign date + 90
THEN patient.pid ELSE NULL)

SUBSTITUTE patient(name)
WITH (CASE WHEN patient privacy pref.name pref

AND today() <= policy signature.sign date + 90
THEN patient.name ELSE NULL)

...
) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

TABLE II
INSTANTIATING HIPPOCRATIC DATABASES

recipient purpose pid pi
d

pr
ef

na
m

e
pr

ef

ag
e

pr
ef

ad
dr

es
s

pr
ef

ph
on

e
pr

ef

charity solicitation 1
√ √ √ √ √

nurse treatment 1
√ √ √

×
√

charity solicitation 2 × × × × ×
nurse treatment 2

√ √ √
×

√

charity solicitation 3
√

× ×
√ √

nurse treatment 3
√ √ √

×
√

charity solicitation 4
√ √

× × ×
nurse treatment 4

√ √ √
×

√

TABLE III
THE PATIENT PRIVACY PREF OBJECT CONTEXT

(job, activity) pid name age address phone
1 Alice Adams 10 1 April Ave. 111-1111

(charity, solicitation) 3 3 Cricket Ct. 333-3333
4 David Daniels
1 Alice Adams 10 111-1111
2 Bob Blaney 20 222-2222

(nurse, treatment) 3 Carl Carson 30 333-3333
4 David Daniels 40 444-4444

TABLE IV
RESULT OF “SELECT * FROM PATIENT;”

“SELECT * FROM patient;” by different (job, activity) pairs
when the context identity_activity is active.

VI. INSTANTIATING SPATIAL DATABASES

Spatial databases are optimized to store and query data
about objects in space. This type of databases has more com-
plex geometrical data types, e.g., points, lines, and rectangles.

Consider a real-estate database containing information about
houses. The houses table has the following schema: houses(id,
bedrooms, price, city). An application developer is interested
in providing some spatial queries to this database, but has no
privileges to add the location of the house to this table. An
object context is created to add the location of houses.

Range Queries: Let the user context be the willingness to
buy a house in certain regions. As a result, a user context is
created in Chameleon to declare that only houses contained in
relevant regions are to be returned. These contexts are defined
as house_loc and houses_in_region (see Table V).

CREATE OBJECT CONTEXT house loc (
id integer, x integer, y integer,
PRIMARY KEY(id),
BINDING KEY id REFERENCES houses(id)

);
CREATE POSITIVE CONTEXT houses in region (

x1 integer, y1 integer, x2 integer, y2 integer,
BINDING KEY() REFERENCES house loc

WITH contained(house loc.x, house loc.y, x1, y1, x2, y2)
) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

CREATE POSITIVE CONTEXT nearby houses (
x integer, y integer,
BINDING KEY() REFERENCES house loc WITH true

) AS TOTAL ORDER USING dist(x, y, house loc.x, house loc.y)
WITH UNLISTED EXCLUDED;

SET ACTIVE CONTEXT FOR user2
AS houses in region, nearby houses
WITH SKYLINE OF nearby houses.rank MIN, houses.price MIN;

TABLE V
INSTANTIATING SPATIAL DATABASES

Nearest Neighbor Queries: Another class of spatial queries
is the nearest neighbor query, where a user wants to retrieve
the object that is nearest to a pivot location. In the real estate
database, a user willing to retrieve the houses listed by prox-
imity to a point may declare her context as nearby_houses.

Skyline Queries: Skyline queries emerge in spatial
databases. Assume user2 wants to buy a house that is both
near his work and cheap. Since it is not easy to combine such
preferences in a ranking expression, user2 decides to select
from the skyline houses. Such context can be defined as the
composition of houses_in_region, nearby_houses, and the
context price already incorporated in the houses table.

VII. CONCLUSIONS

We propose incorporating context awareness inside DBMSs.
Not only does this avoid the need to tailor specialized systems
for a certain context, but it also allows for combining several
contexts to form a complex one. We introduce Chameleon,
a prototype context-aware DBMS built by extending Post-
greSQL. We provide SQL constructs to enable context aware-
ness, and we present the conceptual evaluation to show how to
use the system to define contexts. We include two case studies:
Hippocratic databases and Spatial databases as a proof of
concept in using Chameleon to instantiate specialized systems.

REFERENCES

[1] “Merriam-Webster Online Dictionary,” http://www.m-w.com/.
[2] B. N. Schilit and M. M. Theimer, “Disseminating Active Map Information

to Mobile Hosts,” IEEE Network, vol. 8, no. 5, 1994.
[3] P. Brown, “The Stick-e document: a framework for creating context-aware

applications,” Electronic Publishing, vol. 8, no. 2&3, 1996.
[4] T. Rodden, K. Chervest, N. Davies, and A. Dix, “Exploiting Context in

HCI design for Mobile Systems,” in HCI, 1998.
[5] A. K. Dey and G. D. Abowd, “Towards a better understanding of context

and context-awareness,” in Workshop on the What, Who, Where, When,
and How of Context-Awareness, CHI, 2000.

[6] I. F. Ilyas, W. G. Aref, A. K. Elmagarmid, H. G. Elmongui, R. Shah,
and J. S. Vitter, “Adaptive Rank-Aware Query Optimization in Relational
Databases,” TODS, vol. 31, no. 4, 2006.

[7] H. G. Elmongui, W. G. Aref, and M. F. Mokbel, “Chameleon: Context-
Awareness inside DBMSs,” Purdue University, Tech. Rep. CSD TR 08-
028, 2008.

[8] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and
D. DeWitt, “Limiting disclosure in Hippocratic databases,” in VLDB,
2004.

