
CREATE OBJECT CONTEXT patient_privacy_pref (

recipient varchar(30),

purpose varchar(30),

pid integer, pid_pref boolean, name_pref boolean,

age_pref boolean, address_pref boolean, phone_pref boolean,

BINDING KEY(pid) REFERENCES patient(pid)

);

CREATE OBJECT CONTEXT policy_signature (

pid integer,

sign_date date,

BINDING KEY(pid) REFERENCES patient(pid)

);

CREATE POSITIVE CONTEXT identity_activity (

job varchar(30),

activity varchar(30),

BINDING KEY(job, activity)

REFERENCES patient_privacy_pref(recipient, purpose)

SUBSTITUTE patient(pid)

WITH (CASE WHEN patient_privacy_pref.pid_pref AND today() <= policy_signature.sign_date + 90

THEN patient.pid ELSE NULL),

SUBSTITUTE patient(name)

WITH (CASE WHEN patient_privacy_pref.name pref AND today() <= policy_signature.sign date + 90

THEN patient.name ELSE NULL)

...

) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

Chameleon: Context-Awareness inside DBMSs
Hicham G. Elmongui and Walid G. Aref (Purdue University)
Mohamed F. Mokbel (University of Minnesota)

Introduction
Context is any information that can be used to characterize the situation of an entity. Examples of contexts include, but are not

limited to, time, location, identity, and activity of a user. This paper proposes a general context-aware DBMS, named

Chameleon, that will eliminate the need for having specialized database engines, e.g., spatial DBMS, temporal DBMS, and

Hippocratic DBMS, since space, time, and identity can be treated as contexts in the general context-aware DBMS. Moreover, in

Chameleon, we will be able to combine multiple contexts into more complex ones using the proposed context composition, e.g., a

Hippocratic DBMS that also provides spatio-temporal and location contextual services. As a proof of concept, we construct two

case studies using the same context-aware DBMS platform within Chameleon. One case study treats identity as a context to

realize a privacy-aware (Hippocratic) database server while the other case study treats space as context to realize a spatial

database server using the same proposed constructs and interfaces of Chameleon.

Classification of Contexts
Context

Object Context

(context of queried data

User Context

(context of query issuer)

User Context Sign

Positive [S]

(what context is)

Negative [G]

(what context is not)

Contextual Relation

(how different contextual values are related)

Equivalence [Q] Total order [T] Par tial order [P]

Listing of Data

Unlisted Excluded [X]

(out-of-context data are not listed)

Unlisted Included [N]

(out-of-context data have lower priority)

Context-Awareness SQL Constructs
CREATE OBJECT CONTEXT context_name (

{col_spec | table_constraint} [, . . .]

, table_binding

);

table_binding: BINDING KEY ([col_name [, . . .]])

REFERENCES ref_table [(ref_col [, . . .])] WITH bool_expr

CREATE [context_sign] CONTEXT context_name (

{col_spec | table_constraint} [, . . .]

, table_binding [, . . .]

[, substituting_key [, . . .]]

) [AS contextual_relation clause]

[WITH UNLISTED unlisted_status];

context_sign: POSITIVE | NEGATIVE

contextual_relation: EQUIVALENCE

| TOTAL ORDER [USING ordering_func]

| PARTIAL ORDER

unlisted_status: EXCLUDED

| INCLUDED

substituting_key: SUBSTITUTE table name(col name) BY expression;

SET ACTIVE CONTEXT [FOR USER user_name] AS context_name [, . . .]

{ [WITH RANKING ORDER context_name [, . . .]]

| [WITH RANKING EXPRESSION expression

| [WITH SKYLINE OF expression {MAX|MIN} [, . . .]]

};

Instantiating Hippocratic Databases
Using Chameleon, we limit both disclosure and retention of patients data in a healthcare facility as what happens in Hippocratic

Databases. Whenever a patient is admitted to the facility, he/she has to sign a privacy policy. The privacy policy specified which

information is to be released to which recipient. Moreover, the policy also specifies for which purposes the information is to be

released. On an opt-in basis, the healthcare facility also allows patients to choose if they want any of their personal information

to be released to other recipients. By the end of the retention period, the patient data should have fulfilled the purposes for

which the data has been collected. After this period, different recipients cannot retrieve the data.

pid name age address phone

1 Alice Adams 10 1 April Ave. 111-1111

2 Bob Blaney 20 2 Brooks Blvd. 222-2222

3 Carl Carson 30 3 Cricket Ct. 333-3333

4 David Daniels 40 4 Dogwood Dr. 444-4444

recipient purpose pid pid_pref name_pref age_pref address_pref phone_pref

Charity Solicitation 1

Nurse Treatment 1 X

Account clerk Billing 1 X X

Charity Solicitation 2 X X X X

Nurse Treatment 2 X

Account clerk Billing 2 X

Charity Solicitation 3 X X

Nurse Treatment 3 X

Account clerk Billing 3 X

Charity Solicitation 4 X X X

Nurse Treatment 4 X

Account clerk Billing 4 X

(job, activity) pid name age address phone

(Charity, Solicitation)

1 Alice Adams 10 1 April Ave. 111-1111

3 3 Cricket Ct. 333-3333

4 David Daniels

(Nurse, Treatment)

1 Alice Adams 10 111-1111

2 Bob Blaney 20 222-2222

3 Carl Carson 30 333-3333

4 David Daniels 40 444-4444

(Account clerk, Billing)

1 Alice Adams 1 April Ave. 111-1111

2 Bob Blaney 2 Brooks Blvd. 222-2222

3 Carl Carson 3 Cricket Ct. 333-3333

4 David Daniels 4 Dogwood Dr. 444-4444

Instantiating Spatial Databases
In Chameleon, we show how to model Spatial Databases. With the help of the context-awareness, we answer both range and

nearest-neighbor queries. We can answer skyline queries as well. Consider a real-estate database containing information about

houses. The houses table has the following schema: houses(id, bedrooms, price, city). An application developer is interested in

providing some spatial queries to this database, but has no privileges to add the location of the house to this table. An object

context is created to add the location of houses.

Object Context: Range Query:
CREATE OBJECT CONTEXT house_loc (CREATE POSITIVE CONTEXT houses_in_region (

id integer, x integer, y integer, x1 integer, y1 integer,

PRIMARY KEY(id), x2 integer, y2 integer,

BINDING KEY id REFERENCES houses(id) BINDING KEY() REFERENCES house loc

); WITH contained(house_loc.x, house_loc.y,

x1, y1, x2, y2)

) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

kNN Query: Skyline Query:
CREATE POSITIVE CONTEXT nearby_houses (SET ACTIVE CONTEXT FOR user2

x integer, y integer, AS houses in region, nearby houses

BINDING KEY() REFERENCES house_loc WITH SKYLINE OF nearby_houses.rank MIN,

WITH true houses.price MIN;

)

AS TOTAL ORDER

USING dist(x, y, house_loc.x, house_loc.y)

WITH UNLISTED EXCLUDED;

Context composition
A complex context may be composed from basic ones. Such composition may involve compiling more than one context whose

contextual relation is an ordering relation. We provide three mechanisms to resolve the conflict among the different orders of

object imposed by these contexts.

•Using the ORDER BY clause

•Using ranking algorithms

•Using skyline algorithms

Conceptual Evaluation
We use a simplistic preference-based system to demonstrate Chameleon’s proposed syntax and semantics. Consider a table

“books” that contains information about books in a cer tain bookstore. This table has the schema books(id, title, year, category,

cover, in_stock). Each user specifies her preference as her active context. Upon submitting “SELECT * FROM

books;”. The user gets the relevant books only.

Context 1: The user has a preference for only books of a cer tain category (e.g., Science fiction).
CREATE POSITIVE CONTEXT ctxt_category_SQX (

category varchar(20),

BINDING KEY (category) REFERENCES books(category)

) AS EQUIVALENCE WITH UNLISTED EXCLUDED;

SET ACTIVE CONTEXT AS ctxt_category_SQX;

Context 2: The user’s preference is for books published in 2005, and then those published in 2006 before all other books.
CREATE POSITIVE CONTEXT ctxt_year_STI (

year integer,

BINDING KEY (year) REFERENCES books(year)

) AS TOTAL ORDER WITH UNLISTED INCLUDED;

SET ACTIVE CONTEXT AS ctxt_year_STI;

Context 3: The user prefers hardcover books over paperback ones.
CREATE POSITIVE CONTEXT ctxt_cover_STX (

cover integer,

BINDING KEY (cover) REFERENCES books(cover)

) AS TOTAL ORDER WITH UNLISTED EXCLUDED;

SET ACTIVE CONTEXT AS ctxt_cover_STX;

Context 4: The user does not prefer (wants to avoid) any science fiction books.
CREATE NEGATIVE CONTEXT ctxt category GQI (

category integer,

BINDING KEY (category) REFERENCES books(category)

) AS EQUIVALENCE WITH UNLISTED INCLUDED;

SET ACTIVE CONTEXT AS ctxt_category_GQI;

Context 5: The user prefers books published in 2005, and then those published in 2006 before all other books. For the books

that are similarly ranked, the user prefers hardcover books over books with paperback cover.
SET ACTIVE CONTEXT FOR user1

AS ctxt_year_STI, ctxt_cover_STX

WITH RANKING ORDER ctxt_year_STI, ctxt_cover_STX;

Effect of Contexts in Queries

Context Class ORDER BY Clause Join Operation

GQN X NOT IN

SQN X LEFT OUTER JOIN

SQX X INNER JOIN

STN LEFT OUTER JOIN

STX INNER JOIN

SPN LEFT OUTER JOIN

SPX INNER JOIN

