
Connectivity-Based Garbage Collection ∗

Martin Hirzel
University of Colorado

Boulder, CO 80309

hirzel@cs.colorado.edu

Amer Diwan
University of Colorado

Boulder, CO 80309

diwan@cs.colorado.edu

Matthew Hertz
University of Massachusetts

Amherst, MA 01003

hertz@cs.umass.edu

ABSTRACT
We introduce a new family of connectivity-based garbage
collectors (Cbgc) that are based on potential object-
connectivity properties. The key feature of these collectors
is that the placement of objects into partitions is determined
by performing one of several forms of connectivity analyses
on the program. This enables partial garbage collections,
as in generational collectors, but without the need for any
write barrier.

The contributions of this paper are 1) a novel family of
garbage collection algorithms based on object connectiv-
ity; 2) a detailed description of an instance of this family;
and 3) an empirical evaluation of Cbgc using simulations.
Simulations help explore a broad range of possibilities for
Cbgc, ranging from simplistic ones that determine connec-
tivity based on type information to oracular ones that use
run-time information to determine connectivity. Our ex-
periments with the oracular Cbgc configurations give an
indication of the potential for Cbgc and also identify weak-
nesses in the realistic configurations. We found that even
the simplistic implementations beat state-of-the-art genera-
tional collectors with respect to some metrics (pause times
and memory footprint).

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors–memory
management (garbage collection)

General Terms
Experimentation, Languages, Measurement, Performance

∗This work is supported by NSF ITR grant CCR-0085792,
an NSF Career Award CCR-0133457, an IBM Ph.D. Fellow-
ship, an IBM faculty partnership award, and an equipment
grant from Intel. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors’
and do not necessarily reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’03,October 26–30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/0010 ...$5.00.

Keywords
Connectivity based garbage collection

1. INTRODUCTION
One of the most useful features of modern object-oriented

programming languages is garbage collection.1 GC reduces
debugging time because it eliminates certain kinds of mem-
ory related bugs. In addition, GC leads to cleaner code
since code does not need to be cluttered with memory man-
agement concerns (e.g., who will free up the object pointed
to by an argument?). This paper proposes and evaluates
connectivity-based garbage collection (Cbgc), a new family
of garbage collection algorithms. Like prior garbage col-
lectors Cbgc uses object connectivity to determine which
objects may be reclaimed. Unlike prior garbage collectors,
Cbgc also uses connectivity information to partition objects
and to decide which objects to collect.

Most modern garbage collectors improve performance by
first partitioning the objects and then only collecting a sub-
set of the partitions at any one time. For example, gener-
ational garbage collectors partition the heap according to
an object’s age [44] and focus their efforts on the parti-
tions containing the youngest objects. Since most objects
tend to die young, generational collectors often perform well.
If, however, an application creates many long-lived objects,
they may perform poorly [21]. Thus, it is worthwhile to
explore other partitionings that may be more stable across
diverse object lifetime distributions. Since garbage collec-
tors already use connectivity to determine which objects are
garbage, partitioning objects by their connectivity seems a
natural choice. Indeed, our prior work indicates that con-
nectivity information is effective in predicting when objects
die [24].

Exploiting this insight, we propose the Cbgc family of
garbage collectors. To determine the connectivity of objects,
Cbgc uses compiler analyses. These analyses are conserva-
tive, i.e., they determine the absence of a pointer between
two partitions only if they can prove that such a pointer
cannot exist in any run of the program. These analyses en-
able Cbgc to collect only certain subsets of the partitions at
any given collection (much like generational collectors, but
without the need for write barriers).

Broadly speaking there are three aspects of garbage col-
lector performance: (i) cost in time, (ii) cost in space, and
(iii) pause time. Cost in time includes time spent on mem-

1Hereafter, we will often use the abbreviation “GC” for
“garbage collection”.

1

ory management tasks (whether in the garbage collector or
the application) as well as memory system costs [42]. Cost
in space refers to the amount of space required by an ap-
plication when running with a particular garbage collector.
Finally, pause time refers to the delays the application expe-
riences when it must wait for GC. Cbgc can improve upon
existing GC algorithms in each of the above performance
aspects. First, using connectivity information, Cbgc can
focus its collection efforts on the partitions where the least
amount of work will yield the most benefit (i.e., free the
most memory). Thus, Cbgc can have a low cost in time.
Second, and unlike many other collectors, Cbgc does not
perform full heap collections (except in pathological cases),
and thus it can have a smaller memory footprint than other
copying collectors. Third, since Cbgc opportunistically per-
forms partial collections (i.e., picks those partitions that will
free the most memory with the least amount of work), it can
have short pause times.

For this work, we evaluated Cbgc using a trace-
driven simulator with a variety of traces drawn from the
SPECjvm98 [36] and Java Olden [10] benchmark suites, as
well as SPECjbb2000, the Ipsixql XML document query sys-
tem, and the Xalan XSLT tree transformation language pro-
cessor. We obtained traces from Jikes RVM [2] and our im-
plementation of the Merlin trace generator [22].

The key contributions of this paper are as follows:

• A novel family of GC algorithms based on object con-
nectivity;

• A detailed description of an instance of this family;

• An empirical evaluation of a range of configurations
for Cbgc using a GC simulator. Using a simulator for
evaluation allows us to easily experiment with a wide
range of configurations, ranging from simple and real-
istic ones to ones that use oracles. Our experiments
with configurations that use oracles determines the po-
tential of Cbgc and also pinpoints weaknesses in our
realistic configurations. Our results show that even
the simplistic non-oracle-based configurations outper-
form state-of-the-art generational garbage collectors
with respect to pause times and footprint.

The remainder of the paper is organized as follows: Sec-
tion 2 describes a framework for our family of connectivity-
based garbage collectors. Section 3 describes an instance
of this framework in detail, providing a concrete example
of a connectivity-based garbage collector. Section 4 reveals
other algorithms in the Cbgc family. Section 5 describes
the infrastructure we use to evaluate the efficacy of Cbgc
and Section 6 presents the results of our evaluation. Sec-
tion 7 distinguishes our contributions from prior work and
Section 8 concludes.

2. THE CBGC ALGORITHM FAMILY
This section introduces our Cbgc family of garbage collec-

tion algorithms. To provide a better understanding of how
Cbgc exploits the connectivity of heap objects, this section
primarily focuses on an abstract Cbgc algorithm leaving
explicit details to the next section.

2.1 Partitioning
Based upon conservative information about object con-

nectivity, Cbgc divides the set of heap objects, O, into a

set of disjoint partitions, P . A partitioning (m, P, E) of the
objects consists of a partition map m : O → P and partition
dag (P, E) (a dag is a directed acyclic graph). The parti-
tion map m associates each object o ∈ O with its partition
m(o) ∈ P . The edges E of the partition dag represent the
may-point-to relations.

A partitioning (m, P, E) for Cbgc must be conservative
and stable. In a conservative partitioning, if a pointer may
exist between two heap objects, then either the objects must
be in the same partition or there must exist an edge between
their partitions in the partition dag. Equation (1) formalizes
this definition of conservatism.

(o1 → o2)⇒
(

m(o1) = m(o2) ∨
(m(o1), m(o2)) ∈ E

)
(1)

In a stable partitioning, two objects that belong to the
same partition at one point in time must belong to the same
partition ever afterward. Thus Cbgc cannot split partitions.
More specifically, when (as is common in Java) a class is dy-
namically loaded, a connectivity analysis of the class may
cause Cbgc to add new partitions or merge existing parti-
tions, but never to divide existing partitions.

Figure 1 gives an example partitioning. Solid boxes are
objects, solid arrows are pointers, dashed ovals are parti-
tions, and dashed arrows are partition edges. Thus m, the
partition map, is implicitly defined by graphic inclusion, e.g.
m(o1) = m(o2) = p1. Because there are no cycles of parti-
tion edges, the partitions form a dag. This partitioning is
conservative because there exists an edge between the corre-
sponding partitions wherever a pointer crosses the partition
boundaries. Because of possible weaknesses in the program
analysis, the reverse does not have to hold. For example
there is an edge (p2, p3) even though no object in p2 points
to an object in p3.

o1

o2

o4

o3

o5

o6

o7

o8

p1

p2

p3

Figure 1: Example partitioning. Solid boxes are
objects, solid arrows are pointers, dashed ovals are
partitions, and dashed arrows are partition edges.

2.2 Partial GC
A partial garbage collection is a GC of only a portion

of the heap, such as when one or more young generations
are collected in a generational collector.2 Because they do
not examine the entire heap, partial GCs usually take less

2A related, but different, term is incremental GC. Partial

2

time than full GCs, improving responsiveness. A partial
GC typically focuses on the parts of the heap where a lot
of garbage can be reclaimed at low cost, thereby improving
program throughput. Cbgc is normally able to perform
only partial GCs and performs full GCs only in pathological
cases.

To understand how Cbgc performs partial GCs we first
review the tricolor abstraction [15]. In this abstraction, the
GC is presented as performing a reachability traversal with
the colors encoding where the traversal has visited. Each
object has one of three colors: black, meaning the traversal
has visited the object and its immediate successors; white,
meaning the traversal has not visited the object; and gray,
meaning the traversal has visited the object, but may not
have visited some of its immediate successors yet. In the
end, there are no gray objects anymore. Black objects are
reachable and survive, white objects are unreachable and
can be reclaimed.

A collector in the Cbgc family performs a partial GC in
the following steps:

1. Choose a set C of partitions.
Cbgc chooses a set C ⊆ P of partitions that is
closed under the predecessor relation, i.e. for each cho-
sen partition, all its predecessors are chosen as well
(q ∈ C ∧ (p, q) ∈ E ⇒ p ∈ C).

2. Color all objects in C white.
Nothing has been visited yet. The reachability traver-
sal will only be concerned with objects in C, hence,
we do not care about the color of objects in the rest of
the heap.

3. Scan the program roots.
For each pointer in a stack or global variable that
points to a white object o with m(o) ∈ C, color that
object gray.

4. For each chosen partition q ∈ C in topological order:

(a) While q contains a gray object,

i. Pick a gray object o with m(o) = q.

ii. For each pointer in a field of o that points to
a white object in C, color that object gray.

iii. Blacken o.

(b) Reclaim all white objects in q.

The outer loop of Step 4 visits each partition q ∈ C in
topological order. Since Step 1 ensures that C is closed
under the predecessor relation, the topological order guar-
antees that at the loop iteration for a partition q, all prede-
cessor partitions p ∈ P have already been visited.

Lemma 1. Step 4b reclaims exactly the unreachable ob-
jects in partition q.

Proof.

i. After Step 4a, if an object on in partition q is reach-
able from the roots via objects in q or any predecessor
partitions of q, then it is black, otherwise white. To see

GC is the opposite of full-heap GC, whereas incremental GC
is the opposite of stop-the-world GC. Some partial collectors
stop the world (e.g. [44]), and some incremental collectors
process the full heap in every collection cycle (e.g. [6]).

this, suppose root r reaches object on via the pointer
chain r → o1 → . . . → on. Per induction hypothesis,
the prefix r → o1 → . . . → oi residing in predecessor
partitions of q is black. Because of the tricolor abstrac-
tion, oi+1 is gray, and Step 4a makes oi+1 . . . on black
since they reside in q.

ii. If an object on in partition q = m(on) is reachable,
then it is reachable via objects in q or in predecessor
partitions of q. Suppose on is reachable via the pointer
chain r → o1 → . . . → on. Let r → p1 → . . . → pn

be the corresponding partitions, where pn = q.
Then conservatism (Equation (1)) guarantees that
p1 . . . pn−1 are predecessors of q or the same as q.

Parts i. and ii. together show that after Step 4a, exactly
the unreachable objects in partition q are white. Step 4b
reclaims them. 2

A corollary of Lemma 1 is that a partial GC reclaims
exactly the unreachable objects in the chosen set of parti-
tions C ⊆ P .

2.3 Opportunism
In earlier work [24], we found that connected objects

die together and that lifetime and connectivity are related.
Cbgc exploits these properties by making some connectivity
information explicit, allowing an opportunistic choice about
where to collect. This is similar to how generational GC tries
to exploit the hypothesis that young objects die quickly by
making some age information explicit.

When Cbgc performs a partial GC, it first chooses a set
of partitions to collect. Cbgc uses two functions in making
this choice: the estimator estimates how many objects are
dead and live in each partition, and the chooser chooses a
set of partitions where, based on the estimates, it expects
to collect a sufficient amount of garbage at low cost.

The task of the estimator is to annotate each partition
p ∈ P with two integers dead(p) and live(p) as shown in
Figure 2.

p1

p2

p3

p4

p5

dead(p) : live(p) 1:12

6:3

10:3

2:2

4:3

Figure 2: Example partition dag annotated by the
estimator.

After this annotation, the chooser opportunistically
chooses a set C of partitions that is closed under the pre-
decessor relation. In Figure 2 it might choose C = {p2, p5}
because they have the best ratio of total dead to live objects∑

dead/
∑

live = (4+10)/(3+3) = 7/3. The ratio 10/3 for
the individual partition p5 would be better, but the set {p5}
is not closed and thus cannot be independently collected.

3

2.4 Discussion
Cbgc has some inherent advantages over other collectors

that perform partial GC. In Cbgc’s partial GC, the uncol-
lected partitions, U , do not affect the reachability of objects
in the portion of the heap chosen for GC, C. Therefore,
Cbgc need not track pointers from U to C, eliminating the
need for a write barrier. Cbgc also does not suffer from
nepotism (nepotism is when a dead object in U falsely keeps
an object in C live). Furthermore, Cbgc allows early recla-
mation in that some objects in C can be reclaimed even
before all of C is collected (Harris used a similar approach
for early reclamation during full GC [20]). Early reclama-
tion means that when collecting partition q, the memory re-
claimed earlier during the collection of q’s predecessors can
already be reused. Finally, except for the degenerate case
where one of the partitions is reachable from all other par-
titions, Cbgc can collect all heap objects without ever per-
forming a full GC. This substantially improves upon most
other garbage collectors that require occasional full GCs for
completeness (the MOS collector is an exception [25]).

In addition to the above, Cbgc may make better oppor-
tunistic choices and deliver better locality than existing col-
lectors.

3. A CBGC ALGORITHM
This section describes the CbgcHCG algorithm, which

makes specific choices for each of the ingredients of Cbgc
described in Section 2. We will explain what the name
CbgcHCG means as we go.

3.1 Partitioning
CbgcHCG uses the Harris Analysis [20] to find the par-

titioning (m, P, E) (the ‘H’ in ‘HCG’ stands for “Harris”).
Harris demonstrated that his analysis is efficient and prac-
tical enough for use in the context of dynamic class load-
ing and just-in-time compilation. The Harris Analysis in-
spects declared field types to find a may-point-to type
graph (NT , ET) where the nodes NT are types, and an
edge (t1, t2) ∈ ET signifies that objects of type t1 may
point to objects of type t2. It then constructs the parti-
tion dag (P, E) where the partitions P are strongly con-
nected components (SCCs) of the type graph, and there is
an edge (p1, p2) ∈ E if there is an edge (t1, t2) ∈ ET in
the type graph with SCC(t1) = p1 and SCC(t2) = p2. The
partition map m : O → P from objects to partitions is
m(o) = SCC(type(o)).

At runtime, CbgcHCG represents each partition by a list
of blocks of a fixed power of 2 size, e.g. 210 = 1024 bytes.
CbgcHCG allocates new objects at the end of the last block
in the list and appends more blocks as needed. After alloca-
tion, the partition map m is implicit in the object address.

3.2 Partial GC
CbgcHCG instantiates the abstract partial GC algo-

rithm described in Section 2.2 with a generalized version
of Cheney-scan copying [12]. We picked this algorithm be-
cause it is simple and efficient and works naturally on lists
of blocks.

1. Choose a set C of partitions.
See Section 3.3.

2. Color all objects in C white.
For each partition p ∈ C, treat the current list of blocks

as from-space and create a new empty list as to-space.
Objects in the from-space are white.

3. Scan roots.
For each pointer in a stack or global variable that
points to a non-forwarded object in C, copy that object
to the to-space of its partition and install a forwarding
pointer in the from-space. Update the root to point to
the copy.

4. For each partition q ∈ C in topological order,

(a) Initialize the scan pointer to the beginning of the
to-space. All objects between the start of the to-
space and the scan pointer are black, all objects
between the scan pointer and the end of the to-
space are gray.
While the scan pointer has not yet reached the
end of the to-space of partition q,

i. Consider the object o at the scan-pointer.

ii. For each pointer in a field of o that points to
a non-forwarded object in a from-space in C,
copy that object to the to-space of its parti-
tion and install a forwarding pointer in the
from-space. Update the field to point to the
copy.

iii. Advance the scan-pointer to the next object.

(b) Reclaim the from-space of q.

3.3 Opportunism

3.3.1 Estimator
CbgcHCG uses the combined estimator to annotate each

partition p ∈ P with dead(p) and live(p) (the ‘C’ in ‘HCG’
stands for “combined”). This estimator is a hybrid estima-
tor combining the roots estimator and the decay estimator,
described below.

The roots estimator is motivated by our observation that
objects reachable from global variables tend to be immor-
tal, while objects reachable only from the stack tend to be
shortlived [24]. The roots estimator first scans the roots to
find out which partitions contain objects directly pointed to
by stack variables and which by global variables. It then
propagates this information over the edges of the partition
dag to find out which partitions may contain objects that
are reachable from stack variables, and which may contain
objects that are reachable from global variables. The in-
formation is conservative: if a partition p contains objects
reachable from stack/global variables, this is noted, but the
reverse is not necessarily true. The roots estimator then as-
sumes the survivor rate function

sroots = if(globalsReach(p)) then 90%
else if(stackReach(p)) then 20%
else 0%

The decay estimator assumes that the survivor rate of a
partition p is an inverse exponential function of the average
age, a, of its objects as shown in Figure 3. This expresses
the intuition that the longer you wait, the more objects die.
The literature refers to the model behind our decay estima-
tor as the radioactive decay model. Stefanović found that
none of the well-known analytical models for object lifetime
distributions is completely satisfactory [41], but we were still
interested in how well a simple model works for Cbgc.

4

a

(survivor rate)s

(average age)0

1

a0

Figure 3: Decaying survivor rate sdecay(a) = e−da.

For each partition p, the decay estimator maintains the
observed decay factor, d, at the previous GC of p, the aver-
age age, a, of objects in p, and the total number, n, of ob-
jects in p. At each allocation, the decay estimator updates
the average age: a← (a + timeSinceLastAlloc) · (n/(n + 1)).
After each garbage collection of partition p, the decay esti-
mator updates the decay factor d← − ln(S)/a based on the
exact observed survivor rate S in p. Before the first garbage
collection, the decay factor d defaults to the same constant
for all partitions, e.g. 10−8.

The combined estimator combines the roots and decay
estimator. If a partition has not been collected before, it uses
the roots estimator, otherwise it uses the decay estimator.
This means that it does not have to use an arbitrary default
decay factor, since it has an opportunity to learn a better
one before using the decay estimator.

3.3.2 Chooser
CbgcHCG uses the greedy chooser to pick a closed set of

partitions to collect based on the results of the combined
estimator (the ‘G’ in ‘HCG’ stands for “greedy”). Equa-
tion (2) defines the quality of a set C ⊆ P of partitions.

quality(C) =

∑
p∈C dead(p)∑
p∈C live(p)

(2)

The numerator
∑

dead represents the payoff of reclaiming
garbage from C, and the denominator

∑
live represents the

cost of traversing the reachable objects in C.
The greedy chooser works as follows:

1. Initialize C ← ∅.

2. For each partition q, let A(q) = {p ∈ P \ C | p →∗ q}
be the set that contains all ancestors of q that have
not yet been chosen. Since the ancestor relation is
reflexive, q is an ancestor of itself.

3. Find the partition p with the highest quality(A(p)).

4. If dead(C) is not yet enough to satisfy the current al-
location request, or if quality(C) < quality(C ∪A(q)),

(a) then C ← C ∪A(p), and go back to Step 2,

(b) else return the choice C.

4. ALTERNATIVE CBGC ALGORITHMS
Section 2 presented the family of Cbgc collectors, and

Section 3 described one specific member of the family. This
section discusses how different choices for the ingredients of
a Cbgc algorithm yield different members of the family.

4.1 Partitioning
There are many ways to come up with a partitioning

(m, P, E) for Cbgc. The simplest possible partitioning is
to have only one partition, in which case Cbgc degenerates
to full GC. A simple, realistic partitioning is based on the
Harris Analysis [20] as described in Section 3.1. We are in-
vestigating how to postprocess the results of various other
static analyses from the literature (e.g. [3, 16, 19, 27, 28, 32,
37, 45]) to obtain partitionings; some of them will be based
on types, some on allocation sites.

To get a sense for whether or not more precise partition-
ing would improve the performance of Cbgc, we also exper-
imented with two limit partitioners: allocsite-dynamic and
type-dynamic.
The initial partitions in allocsite-dynamic are the alloca-
tion sites. If our benchmark run contains an assignment
that creates a pointer from an object created at one allo-
cation site to an object created at another allocation site,
allocsite-dynamic adds a corresponding edge between the al-
location sites. Finally, allocsite-dynamic collapses SCCs of
the allocation site graph to form partitions.
The initial partitions in type-dynamic are program object
types (classes in Java terminology). If our benchmark run
contains an assignment that creates a pointer from an ob-
ject of one type to an object of another type, type-dynamic
adds a corresponding edge between the types. Finally,
type-dynamic collapses SCCs in the type graph to form par-
titions.
We find the allocsite-dynamic and type-dynamic partition-
ings by doing offline passes over the trace before simulation.

All partitionings we consider in this paper are based on
strongly connected components of some form of may-point-
to graph. Using finer partitions than SCCs would require
some changes to the framework, e.g. introducing write barri-
ers. Using coarser partitions would not require any changes
to the framework, but would reduce the flexibility for partial
garbage collections.

4.2 Partial GC
A member of the Cbgc family has two choices for partial

GC: how to implement the tricolor abstraction and in which
order to do the reachability traversal.

There are various ways to implement the tricolor ab-
straction for Cbgc, for example copying GC or mark-sweep
GC [26].

Partial GC in a Cbgc performs a reachability traversal,
but Section 2.2 leaves the traversal order for this undefined.
It is up to the specific algorithm to decide in which order
Step 3 scans the roots and Step 4a processes gray objects.
In Section 3.2 we use generalized Cheney scan, leading to
breadth-first order in Step 4a. If the tricolor abstraction is
based on marking, it would be natural to use a mark-stack,
leading to depth-first order in Step 4a. Wilson, Lam, and
Moher [47] describe alternatives for Steps 3 and 4a, in partic-
ular a hierarchical decomposition order for Step 4a. Further-
more, one can even perform Step 4a on multiple processors
in parallel without need for synchronization if the involved
partitions are independent.

The choices for implementing the tricolor abstraction
and for the traversal order do not have to be fixed. As
pointed out for example by Moss [29] and by Brooksby and
Barnes [9], it is possible to manage different partitions with
different tricolor abstractions. In Cbgc, we could also treat

5

objects in the same partition differently, e.g. by copying
small objects, but re-linking the blocks of old objects into
their partition’s to-space to avoid copying them. Further-
more, we could even change the tricolor abstraction and
traversal order based on dynamic feedback, as done, for ex-
ample, by Chilimbi and Larus [14].

4.3 Opportunism

4.3.1 Estimator
So far, we have investigated four estimators: roots, de-

cay, combined, and oracle. Section 3.3.1 describes the roots,
decay, and combined estimators.

In our simulator, we have also implemented an oracle
estimator that uses the precise deathtimes obtained from
Merlin [22]. The oracle estimator assumes information un-
available without a reachability traversal of the whole heap.
Thus, unlike the roots, decay, and combined estimators, it
is not useful in practice. However, it allows a limit study of
how Cbgc behaves with the most precise estimator possible.

4.3.2 Chooser
Section 3.3.2 defines the quality of a set of partitions, and

describes the greedy chooser, a simple greedy algorithm that
tries to choose a closed set with a high quality. More for-
mally, it approximates a solution to the following problem:

Given a partition dag (P, E) and a pair of func-
tions dead, live : P → N, find a closed subset
C ⊆ P of partitions that maximizes quality(C).

We have also invented a flow-based chooser that solves this
problem exactly. The algorithm uses network flow [1], for
details see our technical report [23]. We found the greedy
chooser to be much faster while maintaining good choice
quality.

One alternative for the chooser is to add more constraints,
for example a lower bound on the total size of dead objects
that must be reclaimed, or an upper bound on the total
size of live objects that should be traversed. We have imple-
mented this for the greedy chooser. It has a similar effect for
Cbgc as Barret and Zorn’s dynamic threatening boundary
for generational GC [7].

So far we have assumed that Cbgc runs the estimator, the
chooser, and the actual partial GC in that order. We fol-
lowed a divide-and-conquer strategy by investigating these
Cbgc components separately. One could also imagine inter-
leaving them, which may enable the estimator and chooser
to make more informed decisions and may thus lead to syn-
ergy. For example, the estimator may revise its estimates
based on exact survivor rates of some partitions in a GC in
progress, and the chooser may revise its choice based on the
updated estimates.

5. METHODOLOGY
Section 5.1 describes our traces and how we generated

them. Section 5.2 describes our garbage collection simula-
tor that consumes the traces. Section 5.3 describes how we
validated our traces and simulation runs. Finally, Section
5.4 discusses the strengths and weaknesses of our simulation-
based approach to evaluating Cbgc.

5.1 Garbage Collection Traces
We use traces from a number of Java benchmarks to drive

our simulations. These traces are chronological recordings
of every object allocation, heap pointer update, and object
death (when an object becomes unreachable) over the exe-
cution of a program. The traces also include an enumeration
of all changed roots at each point where garbage collection
can occur. Each of these events includes the information
required to simulate it: object allocations include a unique
identifier for the new object, its size (including a two-word
header), type, and allocation site; pointer updates identify
the pointer being updated and the updated value; and ob-
ject deaths identify the object that becomes unreachable.
The object death events are perfect in the sense that they
denote the exact time when the object first becomes un-
reachable [22].

Table 1 lists our benchmarks. The table shows the to-
tal allocation and high watermark (maximum number of si-
multaneously reachable bytes) to give a feeling for the size
of the runs. The benchmarks bh, health, and power are
the only programs from the Java Olden suite of pointer-
intensive kernels that exercise GC. The deltablue bench-
mark is a small constraint solver that has been trans-
lated into many languages. The benchmarks compress, db,
jack, javac, jess, and mtrt are all the programs from the
SPECjvm98 suite that exercise GC. The benchmark ipsixql
is an XML database, and xalan is an XSLT processor; both
are real-world programs, their class files take up 1,986KB
and 4,200KB respectively. The pseudojbb benchmark is a
version of SPECjbb2000 modified to perform a fixed number
of transactions [8]. Finally, null is an empty Java program,
and thus it gives an indication of how much memory the
virtual machine uses just for starting up. We included it to
put the data in Table 1 into perspective, but of course do
not present numbers for it in Section 6.

We implemented the trace generator in version 2.2.0 of
Jikes RVM [2]. Jikes RVM is a highly-optimizing compiler
and run-time system for Java. It is written mostly in Java
and runs on a variety of hardware platforms and operat-
ing systems. Our platform was an Intel Pentium worksta-
tion running Linux. Jikes RVM allocates its own objects on
the same heap as application objects, and we treated ob-
jects from all owners uniformly in our simulations. We ran
Jikes RVM with adaptive optimization system [5] enabled,
and started tracing after one benchmark run had completed.
Since most (if not all) of the compilation happens in the first
run, tracing only the second run ensures that our traces con-
tain events mostly from application code and not the com-
piler.

5.2 Garbage Collection Simulator
We developed a simulator, gcSim, to perform the experi-

ments in this study.3 It consists of implementations of the
collectors described in this paper, supported by a number of
abstractions. These abstractions include models of the root
set, the heap, and individual objects and a block manager
(the heap is organized as a number of fixed-sized blocks).

5.3 Validation
Garbage collectors are notoriously difficult to write and

debug. While undertaking the experiments for this paper,

3http://www.cs.colorado.edu/~hirzel/gcSim

6

http://www.cs.colorado.edu/~hirzel/gcSim

Table 1: Traces used in this evaluation.
Program Input Total allocation High water- URL

objects bytes mark bytes

null – 373,315 48,791,248 48,695,104 class Null{public static void main(String[] args){}}
power – 1,230,662 73,228,028 49,700,876 http://www-ali.cs.umass.edu/~cahoon/olden

deltablue – 1,303,984 77,502,904 49,305,572 http://research.sun.com/people/mario/java_benchmarking

bh -b 500 -s 10 1,453,904 83,503,920 49,342,316 http://www-ali.cs.umass.edu/~cahoon/olden

health -l 5 -t 500 -s 1 2,102,507 86,718,316 51,499,180 http://www-ali.cs.umass.edu/~cahoon/olden

db -s100 3,807,582 133,782,036 58,714,536 http://www.specbench.org/osg/jvm98

compress -s100 388,832 159,951,240 56,684,200 http://www.specbench.org/osg/jvm98

mtrt -s100 7,973,471 237,305,784 59,777,468 http://www.specbench.org/osg/jvm98

ipsixql 3 2 10,089,370 351,117,828 53,827,992 http://systems.cs.colorado.edu/colorado_bench

jess -s100 12,345,040 437,641,308 54,330,928 http://www.specbench.org/osg/jvm98

jack -s100 14,274,816 473,120,964 55,925,844 http://www.specbench.org/osg/jvm98

xalan 3 2 7,388,779 488,960,484 85,682,372 http://systems.cs.colorado.edu/colorado_bench

pseudojbb 1 warehouse, 70,000 trans. 18,063,813 566,361,852 78,049,072 http://www.specbench.org/osg/jbb2000

javac -s100 17,943,604 579,746,244 61,123,296 http://www.specbench.org/osg/jvm98

we found ourselves in the unenviable position of having to
implement a large number of garbage collectors. When we
first implemented these collectors we noticed much anoma-
lous behavior and had a difficult time convincing ourselves of
the correctness of our results. To address this, we adopted a
new methodology where we incorporated significant redun-
dancy into our implementation. The redundancy enabled us
to find bugs and gain confidence in our results.

Broadly speaking a garbage collector has two parts. The
first part is in the compiler and is responsible for identifying
the roots. Since we were evaluating garbage collectors using
trace-driven simulations, the compiler also needed to gen-
erate maps that enable listing the roots and other relevant
events (such as pointer assignments) to a trace file for sim-
ulator consumption. The second part is the collector itself
(which in our case is in a simulator).

To validate the trace generation, we performed periodic
sanity checks: we would trigger a full heap collection in Jikes
RVM and also perform a full heap traversal using the roots
that were output to our trace. Any disagreement between
the two indicated a bug. Since Jikes RVM handles most
of Java, including threads, it was surprisingly difficult to
get the root identification right. Our methodology was in-
strumental in identifying possible problems as soon as they
arose.

To validate the simulations, we compared the dead objects
found by a GC simulator to the precise deathtime informa-
tion obtained from our implementation of Merlin [22]. Any
disagreement between the two indicated a possible bug. We
found a number of bugs using this methodology.

5.4 Strengths and Weaknesses of our Method-
ology

Using a simulator to evaluate Cbgc had some advantages
over a full implementation: it allowed us to abstract from
implementation details, it allowed us to compare Cbgc to
other collectors in a controlled environment, and it allowed
us to experiment with various Cbgc algorithms, some of
which are not possible to implement in practice, but are
interesting for limit evaluation.

There are also drawbacks to not using a full implemen-
tation in a Java virtual machine. The most important is
that simulation can not give us concrete timing numbers.
Another drawback is that we have no cache-level locality
numbers. However, previous work has shown that simula-
tors can be useful for GC research: the older-first collector

was first evaluated using a simulator similar to ours [40], and
the results carried over to the real implementation [39].

6. RESULTS
Broadly speaking, there are three aspects of performance

for evaluating a garbage collector: (i) cost in time, (ii) cost
in space, and (iii) pause times. We now compare a range
of Cbgc collectors to each other and to the Semispace and
Appel garbage collectors, with respect to these three per-
formance aspect. Semispace is a copying garbage collector
that does not use any partitioning, but instead performs
only full GCs. Appel [4] is a generational collector with
two partitions: a nursery partition containing all objects al-
located since the last GC, and a mature partition containing
the remaining objects. Prior work has found Appel to be
one of the best performing generational collectors [8].

For Cbgc, we examined several different partitionings,
estimators, and choosers. We abbreviate the configurations
with Cbgcpec, where

• p ∈ {H,T,A} is the Harris, Type-dynamic, or
Allocsite-dynamic partitioning (Section 4.1);

• e ∈ {D,R,C,O} is the Decay, Roots, Combined, or
Oracle estimator (Section 4.3.1); and

• c ∈ {G,F} is the Greedy or Flow-based chooser (Sec-
tion 4.3.2).

Figure 4 shows the relative strength of our various config-
urations. Two configurations are connected by an edge if the
upper configuration is theoretically “better” than the lower
one. For example, CbgcAOF is theoretically better than
CbgcAOG, since CbgcAOF uses the flow-based chooser,
which is optimal given a particular partitioning and estima-
tor, whereas CbgcAOG uses the greedy chooser, which is
only approximate.

Components in Figure 4 that are not realistic (e.g., they
require information from a program run) are underlined. For
example, TDF uses an unrealistic type-dynamic partition-
ing and so we underline the ‘T’. We include the unrealistic
configurations to allow us to better explore the design space
of the Cbgc family.

Sections 6.1, 6.2, and 6.3 evaluate the cost in time, cost in
space, and pause times for both CbgcAOG and CbgcHCG.
We chose to evaluate these configurations in Sections 6.1,
6.2, and 6.3 because CbgcHCG is a fully realistic configu-
ration, showing what can be achieved in practice, whereas

7

http://www-ali.cs.umass.edu/~cahoon/olden
http://research.sun.com/people/mario/java_benchmarking
http://www-ali.cs.umass.edu/~cahoon/olden
http://www-ali.cs.umass.edu/~cahoon/olden
http://www.specbench.org/osg/jvm98
http://www.specbench.org/osg/jvm98
http://www.specbench.org/osg/jvm98
http://systems.cs.colorado.edu/colorado_bench
http://www.specbench.org/osg/jvm98
http://www.specbench.org/osg/jvm98
http://systems.cs.colorado.edu/colorado_bench
http://www.specbench.org/osg/jbb2000
http://www.specbench.org/osg/jvm98

F F F F GA D A R A C T O A O

F F F F GG G GT D T R T C HO A D A R A C T O

FFF GG GGHD HR HC T D T R T C HO

GGGHD HR HC

FA O

Figure 4: CBGC Configurations. Higher positions
represent a “stronger” or more optimal configura-
tion. The configurations with an ‘A’, ‘T’, or ‘O’ use
information from a benchmark run and are therefore
not realistic.

CbgcAOG is one of our strongest (albeit unrealistic) con-
figurations, presenting the full potential of Cbgc.

Section 6.4 explores many of the other points in the design
space in order to better understand the tradeoffs in Cbgc
algorithms.

In our experiments, and unless otherwise indicated, the
collectors use a heap size of three times the high watermark
of the benchmark, and a block size of 1KB. Section 6.5 shows
that our results generalize to different heap sizes and block
sizes.

6.1 Cost in Time
We now compare Semispace, Appel, CbgcHCG, and

CbgcAOG with respect to the time cost of garbage col-
lection. Section 6.1.1 compares the amount of work each
collector does during garbage collection, while Section 6.1.2
considers the other time costs of garbage collection.

6.1.1 GC Work Per Time
To compare the work done by different garbage collec-

tion algorithms during GC, we use the gcWorkPerTime met-
ric. We define gcWorkPerTime as the total number of bytes
copied in all garbage collections (work), divided by the total
allocation, in bytes, of the program (time). Measuring time
in bytes allocated is common in memory management re-
search; Table 1 shows the total allocation of our benchmark
programs.

As an example, if the gcWorkPerTime is 0.5, then for ev-
ery 2 bytes that the application allocates, GC must per-
form 1 byte of copying work. Since in classical mark-
sweep collectors the main work consists of marking objects
and the classical LISP function for allocation is cons, the
gcWorkPerTime metric is often called mark-cons-ratio in the
literature.

Figure 5 shows gcWorkPerTime for Semispace, Appel,
the simplistic CbgcHCG, and the oracle-based CbgcAOG.
In this and subsequent figures taller bars indicate worse per-
formance.

When comparing CbgcAOG to Appel, we see that except
for one benchmark (jess), CbgcAOG outperforms Appel.
For the benchmarks that do relatively little allocation4 we

4The benchmarks in this and subsequent figures are ordered

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 p
ow

er

 d
elt

ab
lue

 b

h

 h
ea

lth

 d
b

 c
om

pre
ss

 m
trt

 ip
six

ql

 je
ss

 ja
ck

 x
ala

n

 p
se

ud
ojb

b

 ja
va

c

 Semispace
 Appel
 CBGC_HCG (simplistic)
 CBGC_AOG (oracle-based)

Figure 5: gcWorkPerTime (bytes copied / bytes al-
located).

cannot see a bar for CbgcAOG! In other words, at each
garbage collection CbgcAOG is able to choose only parti-
tions where almost every object is a dead object. For the
benchmarks that allocate more, CbgcAOG copies more, but
typically still copies far fewer bytes than Appel does.

On the other hand, the realistic CbgcHCG collector is
usually worse than Appel, but usually outperforms Semi-
space. CbgcHCG performs worse than Semispace for
xalan because of weakness in the estimator (Figure 11); the
combined estimator tells CbgcHCG that certain partitions
have many dead objects when they do not. CbgcHCG per-
forms worse than Semispace for bh and power because these
benchmarks perform only one collection each with Semi-
space (Table 2) and thus the exact timing of the one collec-
tion ends up being significant.

6.1.2 Other Time Cost Factors
Besides the time spent in garbage collection, there are

many other costs of memory management [42]. Other time
costs of Cbgc include time to perform the partitioning
analysis upon class loading, and running the estimator and
chooser before GC. Time costs present in Appel but not in
Cbgc include the time to compile and execute write barriers.
In addition, the two collectors may have different memory
system costs (we present a preliminary exploration of these
last costs in Section 6.2.1). In order to quantify these costs
we need to implement Cbgc, measure its actual time cost
(i.e., execution time, memory stalls, etc.) and compare this
to the costs incurred by Semispace and Appel for each of
our benchmark programs. As the goal of the present pa-
per is to better understand Cbgc and explore the tradeoffs
between different members of the Cbgc family, these exper-
iments are beyond our current scope.

6.1.3 Cost in Time Conclusions

• The oracle-based CbgcAOG usually performs much
less GC work per time than Appel. A good Cbgc
algorithm can potentially have lower cost in time than
state-of-the-art collectors.

from left to right by increasing numbers of bytes allocated.

8

• The simplistic CbgcHCG usually performs more GC
work per time than Appel, but less than Semispace.
We need better realistic Cbgc components to reduce
Cbgc’s cost in time.

• There are other time cost factors besides GC work per
time. The authors are working on a real-world Cbgc
implementation to allow more definitive comparisons.

6.2 Cost in Space
There is an obvious space-time tradeoff with garbage col-

lectors. Increasing the memory available to run an applica-
tion reduces the time spent in garbage collection. At one
extreme, if an application has an infinite amount of mem-
ory, it will never need to garbage collect. Conversely, if an
application has little memory, it needs to perform more col-
lections which causes an increase in the time costs of GC.

To allow for controlled and fair comparison across garbage
collectors, our experiments used a fixed heap size equal to
three times the high watermark of the benchmark program.
The high watermark is the maximum number of bytes that
are reachable at the same time. Table 1 shows the high
watermark for each benchmark. We computed these val-
ues using the Merlin perfect death time traces. We used a
fixed heap size of three times this high watermark, because
previous research shows it to be a heap size at which many
algorithms perform well [4, 8]. In Section 6.5, we show that
our results hold across a range of heap sizes.

reclaimed (benefit)

copied (cost)
chosen

rest

occupied before gc

copy reserve

footprint

heap size
0.5

1.0

Figure 6: Heap Anatomy.

Even though the heap size is fixed, we can still evaluate
the cost in space by measuring the footprint of memory in
use. Figure 6 shows the space usage of garbage collectors
in our simulator (for simplicity, Figure 6 shows the mem-
ory regions as contiguous; in reality, they are represented
as sets of fixed-sized blocks.) During program execution,
the collectors maintain half of the heap as “copy reserve”
since in the worst case, all objects may survive GC. While
Semispace collects the entire heap at each GC, Cbgc and
Appel may perform a partial GC and examine only a few
partitions (“chosen”). A partial GC will use only a subset
of the copy reserve. The maximum footprint of a collector
is the maximum fraction of the heap that is simultaneously
in use. A smaller footprint generally translates into better
memory system performance (e.g., less paging).

6.2.1 Maximum Footprint
Figure 7 shows the maximum footprint for Semispace,

Appel, the realistic, but simple CbgcHCG, and the oracle-
based CbgcAOG.

Figure 7 shows that the realistic CbgcHCG consistently
has a smaller footprint than Appel. For some benchmarks

(e.g., jess) the footprint of CbgcHCG is much smaller than
that of Appel.

The oracle-based CbgcAOG consistently has a much
smaller footprint than Appel. Oftentimes, the footprint of
CbgcAOG is close to 0.5 indicating that CbgcAOG hardly
uses the copy reserve at all.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 p
ow

er

 d
elt

ab
lue

 b

h

 h
ea

lth

 d
b

 c
om

pre
ss

 m
trt

 ip
six

ql

 je
ss

 ja
ck

 x
ala

n

 p
se

ud
ojb

b

 ja
va

c

 Semispace Appel
 CBGC_HCG (simplistic) CBGC_AOG (oracle-based)

Figure 7: maxFootprint (maximum footprint / heap
size in bytes).

There are two reasons why Cbgc has such a good max-
imum footprint. First, we never observed the pathological
case where it would need to do the equivalent of a full GC
in Appel. Second, it allows early reclamation and reuse of
memory while a GC is still in progress as discussed in Sec-
tion 2.4. Appel, on the other hand, usually has a maximum
footprint close to 85% of the heap size. This is because most
of the immortal data of a benchmark is allocated upfront and
survives the first garbage collection, where Appel’s flexible-
sized nursery occupies 50% of the heap. The immortal data
includes the runtime system of the virtual machine, the ap-
plication stacks, and compiled methods.

Both Cbgc and Appel may suffer from some amount of
internal fragmentation. One might have expected this to be
worse for Cbgc than for Appel, because Cbgc has more
partitions. The simplistic CbgcHCG usually uses around
85 partitions, and on average 3.4 partitions contain 95%
of the heap objects. The oracle-based CbgcAOG usually
uses around 900 partitions, and on average 13.7 partitions
contain 95% of the heap objects. But as Figure 7 shows,
the differences in fragmentation due to many partitions has
little impact on the footprint.

6.2.2 Other Space Cost Factors
Besides the space occupied by objects, all garbage col-

lectors maintain a number of data structures that also con-
tribute to the space cost. For example, Cbgc needs space for
the partition graph and Appel needs space for the remem-
bered sets and the write barrier instructions (in the code).
While we do not have detailed experimental results for these
costs, it is our experience that the above mentioned space
costs for Cbgc are insignificant.

9

6.2.3 Cost in Space Conclusions

• Even the simplistic CbgcHCG has a lower cost in
space than Appel. Therefore, the paging and TLB
activity of Cbgc are likely to be lower than that of
Appel. That can lead to better memory system per-
formance.

• Since Cbgc has a lower cost in space than Appel, it
may enable programs to run in less memory.

6.3 Pause Times
The amount of work that a garbage collector performs

during a collection determines the amount of time for which
the application is paused.5 We consider two measures for
this: the amount of work the garbage collector performs on
average during a collection (Section 6.3.1) and the maxi-
mum amount of work the garbage collector performs on any
collection (Section 6.3.2).

6.3.1 Average Work Per GC
Figure 8 gives the average amount of copying per-

formed by a collector as a fraction of heap size in bytes
(avgWorkPerGc). For example, if the avgWorkPerGc is
0.01, then the average collection copies 1% of the heap size
(see Figure 6).

0

0.05

0.1

0.15

0.2

0.25

 p
ow

er

 d
elt

ab
lue

 b

h

 h
ea

lth

 d
b

 c
om

pre
ss

 m
trt

 ip
six

ql

 je
ss

 ja
ck

 x
ala

n

 p
se

ud
ojb

b

 ja
va

c

 Semispace
 Appel
 CBGC_HCG (simplistic)
 CBGC_AOG (oracle-based)

Figure 8: avgWorkPerGc (average copied / heap
size in bytes).

Figure 8 shows that while Appel usually performs well
(especially for the larger benchmarks), CbgcAOG performs
much better. As a matter of fact, CbgcAOG performs so
well that its bars are not visible for most of the benchmarks.

The realistic CbgcHCG performs well, even outperform-
ing Appel for some benchmarks. As expected, Semispace
performs poorly, since at each collection it needs to copy all
the reachable objects.

CbgcAOG has such a low avgWorkPerGc because it usu-
ally collects only partitions that contain mostly garbage and
it performs many garbage collections (Table 2). Since there
is an overhead to triggering a garbage collection (e.g., root
scanning), it may be worthwhile to consider other choosers
that pick more partitions to collect at each collection (Sec-
tion 4.3.2).
5This is not true for incremental and concurrent collectors.
In this paper we consider only stop-the-world collectors.

Table 2: Number of Garbage Collections.
Program Semispace Appel CbgcHCG CbgcAOG

Total Total Major Total Total

power 1 1 0 2 1
deltablue 1 1 0 1 55
bh 1 1 0 4 11
health 1 1 0 1 10
db 2 2 0 3 9
compress 3 3 0 5 5
mtrt 6 6 0 13 1,925
ipsixql 11 22 1 34 1,097
jess 14 15 0 17 692
jack 14 34 0 30 2,155
xalan 9 33 2 31 703
pseudojbb 12 39 1 27 2,619
javac 17 79 2 35 3,349

6.3.2 Maximum Work Per GC
Even if a garbage collector has a low average pause time,

it may still be disruptive if some pauses are much longer.
Thus, in this section, we consider the maximum pause time.

Figure 9 shows maxWorkPerGc for Semispace, Appel,
the realistic CbgcHCG, and the oracle-based CbgcAOG.
The maxWorkPerGc is the maximum number of bytes
copied at any garbage collection divided by the heap size
(see Section 6.2). For example, if the maxWorkPerGc is
0.18, then the largest collection copies 18% of the heap size
(see Figure 6).

0

0.05

0.1

0.15

0.2

0.25

 p
ow

er

 d
elt

ab
lue

 b

h

 h
ea

lth

 d
b

 c
om

pre
ss

 m
trt

 ip
six

ql

 je
ss

 ja
ck

 x
ala

n

 p
se

ud
ojb

b

 ja
va

c

 Semispace
 Appel
 CBGC_HCG (simplistic)
 CBGC_AOG (oracle-based)

Figure 9: maxWorkPerGc (maximum copied / heap
size in bytes).

From Figure 9 we see that even the realistic CbgcHCG
has a better maxWorkPerGc than Appel for all bench-
marks except power and javac, where it is slightly worse.
CbgcAOG is consistently the best configuration.

With respect to this metric, Appel does not perform any
better than Semispace. The reason for this is that Appel
occasionally performs major collections that collect the en-
tire heap. Also, the first collection with Appel is effectively
a full heap collection.

6.3.3 Pause Times Conclusions

• Even the simplistic CbgcHCG tends to incur less work
per GC than Appel.

10

• Cbgc never required full-heap collections in our exper-
iments. It always chose few enough and small enough
partitions to collect. While one can construct a patho-
logical situation that forces Cbgc to do a full-heap GC,
we never observed that in practice. Appel, on the
other hand, usually does full-heap GCs in long runs.

6.4 Exploring the CBGC Design Space
So far, we looked at whether or not Cbgc can outperform

other garbage collectors. In this section, we explore the
Cbgc design space and try to identify weaknesses in the re-
alistic Cbgc implementations. Since cost in time appears to
be the biggest challenge for the simplistic CbgcHCG (com-
pared to Appel, it already has low cost in space and low
work per GC), this section uses cost in time to compare
Cbgc configurations.

Our methodology is to vary one component (e.g., parti-
tioning) while fixing the other components at their strongest
level (which may be unrealistic). This methodology allows
us to evaluate how different implementations of a compo-
nent perform without worrying about interactions with poor
implementations of the other components. For example, a
poor implementation of a partitioner may obfuscate the dif-
ferences between estimators.

6.4.1 Partitionings
We now explore the partitionings described in Section 4.1.

The Harris partitioning is realistic, but simple. The
allocsite-dynamic partitioning is a limit study for the finest-
grained partitioning one can get if all objects allocated at
the same allocation site must reside in the same partition.
Type-dynamic falls in between Harris and allocsite-dynamic.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 p
ow

er

 d
elt

ab
lue

 b

h

 h
ea

lth

 d
b

 c
om

pre
ss

 m
trt

 ip
six

ql

 je
ss

 ja
ck

 x
ala

n

 p
se

ud
ojb

b

 ja
va

c

 CBGC_HOG (Harris)

 CBGC_TOG (type-dynamic)

 CBGC_AOG (allocsite-dynamic)

Figure 10: gcWorkPerTime (bytes copied /
bytes allocated) for different partitionings. The
CBGC AOG bars are the same as in Figure 5, the
other bars are new.

Figure 10 shows the gcWorkPerTime metric from Sec-
tion 6.1 for CbgcHOG, CbgcTOG, and CbgcAOG. In
other words, it keeps the estimator (oracle) and chooser
(greedy) constant and varies the partitioner. Figure 4 shows
the theoretical ordering between these alternatives.

From Figure 10 we see that as the partitioning improves,
so does the gcWorkPerTime metric. Using the type-dynamic

partitioning is usually not much better than using Harris.
Using the allocsite-dynamic partitioning often reduces the
amount of GC work by a factor of 2 or more over the other
partitioners.

Comparing to Figure 5, we see that the differences due
to different partitionings are less than the total differ-
ence between the realistic CbgcHCG and the unrealistic
CbgcAOG. Thus, the estimator also contributes to the dif-
ference.

To summarize, the quality of the partitioning makes a big
difference in the performance of Cbgc. Our results sug-
gest that the next realistic partitioning that we try should
be based on allocation sites. Fortunately, there are many
practical pointer analyses in the literature (e.g., Steens-
gaard [37]) that separate allocation sites and thus may be
worth trying for Cbgc.

6.4.2 Estimators
We now explore the estimators described in Section 4.3.1.

The roots and decay estimators are simple and realistic. The
combined estimator is a hybrid of these two, so it is still re-
alistic and a little more sophisticated. The oracle estimator
is a limit study that always estimates correctly. A realistic
estimator can perform at most as well as the oracle.

0

0.5

1

1.5

2

2.5

3

3.5

 p
ow

er

 d
elt

ab
lue

 b

h

 h
ea

lth

 d
b

 c
om

pre
ss

 m
trt

 ip
six

ql

 je
ss

 ja
ck

 x
ala

n

 p
se

ud
ojb

b

 ja
va

c

CBGC_ARG (roots)
CBGC_ADG (decay)
CBGC_ACG (combined)
CBGC_AOG (oracle)

Figure 11: gcWorkPerTime (bytes copied / bytes al-
located) for different estimators. The CBGC AOG
bars are the same as in Figure 5, the other bars are
new.

Figure 11 shows the gcWorkPerTime metric from Sec-
tion 6.1 for CbgcARG, CbgcADG, CbgcACG, and
CbgcAOG. Since decay needs some time to learn the sur-
vival rates, it performs poorly for the smaller benchmarks
that cause few collections (for those benchmarks, decay also
has high cost in space and high pause times). The roots esti-
mator performs poorly for larger benchmarks. Fortunately,
the combined estimator combines the strengths of roots and
decay to yield a much better estimator. The oracle estimator
performs much better than the other estimators especially
for the larger benchmarks.

To summarize, the combined estimator is the best of our
realistic estimators. However, comparison with the oracle
estimator shows that there is still much room for improve-
ment. It may be worthwhile to incorporate profile informa-
tion or information from a GC in progress into the estimator.

11

6.4.3 Choosers
So far, we have reported results for the greedy chooser

instead of the optimal flow-based chooser. We com-
pared the gcWorkPerTime, maxFootprint, avgWorkPerGc,
and maxWorkPerGc metrics from Sections 6.1 to 6.3 for
CbgcAOG and CbgcAOF, the results are almost identical.
For details see the technical report describing the flow-based
chooser [23].

6.4.4 CBGC Design Space Conclusions

• A partitioning needs to be more fine-grained than
types for Cbgc to perform well. The coarsest par-
titioning (putting all objects in one partition) would
correspond to Semispace.

• Our realistic combined estimator is a good start, but
there is still much room for improvement with better
estimators. A bad estimator can lead Cbgc totally
astray.

• The greedy chooser is simple and close to optimal.

6.5 Sensitivity to Heap Size and Block Size
So far we have reported results for a heap size of 3.0 times

the high watermark and a block size of 1KB. We now con-
sider how our results change if we use different heap and
block sizes.

6.5.1 Heap Sizes
Assuming zero fragmentation, a copying collector needs at

least a heap size of 2.0 times the high watermark to work,
since it keeps a copy reserve. Previous research indicates
that a heap size of 2.5 times the high watermark is tight
and a heap size of 4.0 times the high watermark is loose [8].

Table 3 shows the gcWorkPerTime metric from Section 6.1
using three different heap sizes. We see that for all heap sizes
and all benchmarks except for jess the relative performance
of CbgcAOG and Appel is the same. For jess, CbgcAOG
performs worse than Appel at heap sizes 2.5 and 3.0.

While we have not repeated all our experiments with a
range of heap sizes, these results give us some confidence
that our results hold for other heap sizes as well.

6.5.2 Block Sizes
All data presented in this paper uses a block size of 1KB.

We chose this small block size to reduce potential internal
fragmentation, especially when Cbgc uses a large number
of partitions. Since Appel uses only two partitions, we do
not expect it to be affected by a different block size.

We experimented with block size 4K. The numbers for
each individual collector are virtually the same with block
size 1K as they are with block size 4K. The small variations
appear unrelated to the collector.

7. RELATED WORK
Jones and Lins [26] and Wilson [46] provide good intro-

ductions to garbage collection and also describe many tech-
niques and algorithms that inspired Cbgc.

7.1 Eliminating write barriers
Cbgc does partial GC without any write barriers. Shuf

et al. describe a simple type-based partitioning that allows

eliminating some write barriers [34]. Zee and Rinard have
presented an analysis for eliminating some of the write bar-
riers for generational GC [48]. We are not aware of any other
work on eliminating write barriers for partial GC.

7.2 Partitioning
Cbgc partitions heap objects by connectivity to improve

locality (allocate connected objects together, since the mu-
tator is likely to access them together), to enable oppor-
tunism (do GC where you get high payoff with little effort),
and to improve responsiveness (reduce pause times by avoid-
ing full GC). Over the years, other partitioning techniques
have been proposed to achieve these goals.

7.2.1 Age-based partitioning
Age-based garbage collectors partition objects by age.

They assume that the survivor rate is related to object
age, and exploit this by making opportunistic choices about
where to do partial GC.

The weak generational hypothesis states that most objects
die young, and thus generational collectors collect young ob-
jects most frequently [44]. While Appel flexibly adapts the
boundary between young and old objects to achieve optimal
memory usage [4], Barrett and Zorn adapt the boundary to
achieve a variety of objectives [7].

Some researchers have found that the weak generational
hypothesis does not allow the best opportunistic choices
about where to collect. Pretenuring allocates objects that
are expected to be long-lived directly into the old generation
to avoid copying long-lived objects out of the nursery [13].
Older-first collection assumes that the very youngest objects
are unlikely to be dead since they have not yet had time to
die [40]. The Beltway collector generalizes existing copying
age-based collectors by using a configurable partitioning [8].

Age-based collectors are well-studied and often successful,
but we believe one should not rely solely on age, as it is not
always a reliable predictor for when objects die. While we
propose using heap object connectivity as the main princi-
ple for guiding garbage collection, it may also be beneficial
to use Cbgc just for the old generation of a generational
collector.

7.2.2 Stack-based partitioning
Stack-based techniques partition objects by the stack

frames that allocated them. They assume that the lifetime
of objects is related to the time at which the stack frame
gets popped, and exploit this by opportunistically deallo-
cating objects together with stack frames if possible.

Some stack-based techniques rely on static information.
Stack allocation is based on escape analysis and allocates
the objects directly on the stack [30]. In region allocation,
regions are allocated and deallocated at statically predefined
program points following a stack discipline, and individual
objects are allocated into their region, but deallocated only
when the entire region is deallocated [18, 43].

Other stack-based techniques rely on dynamic checks.
Contaminated GC tracks the lowest stack frame from which
an object is reachable, and only deallocates the object when
that stack frame gets popped [11]. Qian and Hendren as-
sociate a region with each stack frame and track whether
objects escape from it; if so, the region is merged into the
global region and handled by conventional GC, otherwise it
is reclaimed en masse when the stack frame is popped [31].

12

Table 3: gcWorkPerTime (bytes copied / bytes allocated) for different heap sizes.
Program HeapSizeFrac 2.5 HeapSizeFrac 3.0 HeapSizeFrac 4.0

Appel CbgcAOG Appel CbgcAOG Appel CbgcAOG

power 0.679 0.000 0.676 0.000 0.000 0.000
deltablue 0.634 0.160 0.632 0.000 0.000 0.000
bh 0.593 0.075 0.588 0.000 0.000 0.000
health 0.596 0.071 0.579 0.000 0.000 0.000
db 0.433 0.000 0.431 0.000 0.430 0.000
compress 0.384 0.020 0.330 0.000 0.312 0.000
mtrt 0.277 0.150 0.257 0.057 0.248 0.029
ipsixql 1.078 0.342 0.390 0.137 0.173 0.049
jess 0.132 0.541 0.128 0.236 0.121 0.101
jack 0.397 0.202 0.160 0.092 0.134 0.050
xalan 0.570 0.373 0.634 0.328 0.467 0.126
pseudojbb 0.641 0.539 0.338 0.240 0.187 0.084
javac 0.734 0.565 0.405 0.234 0.183 0.113

Stack-based techniques may work well for functional lan-
guages, but they often require hand-tuning by the program-
mer. We feel that the job of automatic memory management
should be to relieve the programmer from having to pay
much attention to memory, and that large object-oriented
programs are unlikely to obey a strict stack discipline.

7.2.3 Other partitioning techniques
Age-based and stack-based partitioning are the most pop-

ular techniques for improving locality and allowing partial,
opportunistic GC. But we are not the first to seek other
partitionings to achieve this goal.

Some techniques use static analyses. Dolby and Chien
analyze ownership relations between objects. If they find
a relation between two objects such that the owned object
has a fixed size and dies before the owner, they inline it into
the owner [17]. Steensgaard describes thread-specific heaps
for objects that are not shared among multiple threads [38].
Other techniques rely on profile information. Seidl and Zorn
partition heap objects by the number of dynamic references
to them and by their expected lifetime [33], and Shuf et
al. partition heap objects by whether their type has many
instances or not [34, 35].

As early as 1991, Barry Hayes envisioned key object op-
portunism, which observes when a key object dies and op-
portunistically reclaims the objects connected to it [21]. Key
object opportunism relies on the hypothesis that connected
objects die together, and we have evidence that supports
this [24]. To implement key object opportunism, a GC needs
to be aware of connectivity, hence we hope Cbgc will bring
us closer to making Hayes’s vision a reality.

8. CONCLUSIONS
We introduce a new family of garbage collection algo-

rithms (Cbgc) that are based on object connectivity proper-
ties. Cbgc segregates objects into partitions based on their
connectivity, and also uses the connectivity information to
decide which partitions to collect at each collection. Cbgc
is motivated by our prior work that demonstrated that there
is a strong correlation between connectivity and the lifetime
and deathtime characteristics of programs. We also describe
a number of collectors from the Cbgc family and evaluate
them using a simulator.

Our results demonstrate that even a simplistic member of
the Cbgc family outperforms Appel with respect to pause
times and memory footprint. Our experiments with oracle-
based Cbgc reveal that Cbgc has potential to dramatically

improve upon all performance aspects of existing garbage
collectors.

We are currently implementing a prototype Cbgc in Jikes
RVM. For the partitioning, we are developing an Andersen-
style pointer analysis [3] that works with Java and dynamic
class loading.

Acknowledgments
We thank Michael Hind for his feedback and guidance during
the research that led up to this paper. We are also grateful to
the many members of IBM’s Jikes RVM group, CU Boulder’s
programming languages group, and the DaCapo group for
listening to our ideas, and providing insightful questions and
comments. We thank Hal Gabow for helping us develop the
flow-based chooser.

9. REFERENCES
[1] Ravindra Ahuja, Thomad Magnanti, and James Orlin.

Network Flows Theory, Algorithms, and Applications.
Prentice Hall, 1993.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J.
Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño virtual
machine. IBM Systems Journal, 39(1), 2000.

[3] Lars Ole Andersen. Program Analysis and
Specialization for the C Programming Language. PhD
thesis, University of Copenhagen, 1994. DIKU report
94/19.

[4] Andrew Appel. Simple generational garbage collection
and fast allocation. Software—Practice and
Experience, 1989.

[5] Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, and Peter Sweeney. Adaptive optimization in
the Jalapeño JVM. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
2000.

[6] Henry G. Baker, Jr. List processing in real time on a
serial computer. Communications of the ACM
(CACM), 1978.

[7] Dave A. Barrett and Benjamin G. Zorn. Garbage
collection using a dynamic threatening boundary. In
Programming Languages Design and Implementation
(PLDI), 1995.

13

[8] Stephen M. Blackburn, Richard Jones, Kathryn S.
McKinley, and J. Eliot B. Moss. Beltway: getting
around garbage collection gridlock. In Programming
Languages Design and Implementation (PLDI), 2002.

[9] Richard Brooksby and Nicholas Barnes. The memory
pool system. Unpublished paper, 2002.

[10] Brendon Cahoon. Java-Olden benchmarks.
http://www-ali.cs.umass.edu/˜cahoon/olden.

[11] Dante Cannarozzi, Michael Plezbert, and Ron Cytron.
Contaminated garbage collection. In Programming
Languages Design and Implementation (PLDI), 2000.

[12] C. J. Cheney. A non-recursive list compaction
algorithm. Communications of the ACM (CACM),
1970.

[13] Perry Cheng, Robert Harper, and Peter Lee.
Generational stack collection and profile-driven
pretenuring. In Programming Languages Design and
Implementation (PLDI), 1998.

[14] Trishul Chilimbi and James Larus. Using generational
garbage collection to implement cache-conscious data
placement. In International Symposium on Memory
Management (ISMM), 1998.

[15] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin,
C. S. Scholten, and E. F. M. Steffens. On-the-fly
garbage collection: an exercise in cooperation.
Communications of the ACM (CACM), 1978.

[16] Amer Diwan, Kathryn McKinley, and J. Eliot B.
Moss. Using types to analyze and optimize
object-oriented programs. Transactions on
Programming Languages and Systems (TOPLAS),
2001.

[17] Julian Dolby and Andrew Chien. An automatic object
inlining optimization and its evaluation. In
Programming Languages Design and Implementation
(PLDI), 2000.

[18] David Gay and Alex Aiken. Memory management
with explicit regions. In Programming Languages
Design and Implementation (PLDI), 1998.

[19] Rakesh Ghiya and Laurie Hendren. Connection
analysis: a practical interprocedural heap analysis for
C. International Journal of Parallel Programming,
1996.

[20] Timothy Harris. Early storage reclamation in a
tracing garbage collector. ACM SIGPLAN Notices,
April 1999.

[21] Barry Hayes. Using key object opportunism to collect
old objects. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 1991.

[22] Matthew Hertz, Stephen M. Blackburn, J. Eliot B.
Moss, Kathryn S. McKinley, and Darko Stefanović.
Error-free garbage collection traces: How to cheat and
not get caught. In ACM SIGMETRICS, 2002.

[23] Martin Hirzel, Harold N. Gabow, and Amer Diwan.
Choosing a set of partitions to collect in a
connectivity-based garbage collector. Technical Report
CU-CS-958-03, University of Colorado at Boulder,
2003.

[24] Martin Hirzel, Johannes Henkel, Amer Diwan, and
Michael Hind. Understanding the connectivity of heap
objects. In International Symposium on Memory
Management (ISMM), 2002.

[25] Richard Hudson and J. Eliot B. Moss. Incremental
collection of mature objects. In International
Workshop on Memory Management (IWMM), 1992.

[26] Richard Jones and Rafael Lins. Garbage collection:
Algorithms for automatic dynamic memory
management. John Wiley & Son Ltd., 1996.

[27] Chris Lattner and Vikram Adve. Automatic pool
allocation for disjoint data structures. In Workshop on
Memory System Performance (MSP), 2002.

[28] Ondr̆ej Lhoták and Laurie Hendren. Scaling Java
points-to analysis using SPARK. In Compiler
Construction (CC), 2003.

[29] J. Eliot B. Moss. Regions determined by kind and
generation. Unpublished note, 1999.

[30] Young Gil Park and Benjamin Goldberg. Escape
analysis on lists. In Programming Languages Design
and Implementation (PLDI), 1992.

[31] Feng Qian and Laurie Hendren. An adaptive,
region-based allocator for Java. In International
Symposium on Memory Management (ISMM), 2002.

[32] Atanas Rountev, Ana Milanova, and Barbara G.
Ryder. Points-to analysis for Java using annotated
constraints. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
2001.

[33] Matthew Seidl and Benjamin Zorn. Segregating heap
objects by reference behavior and lifetime. In
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 1998.

[34] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and
Jaswinder Pal Singh. Exploiting prolific types for
memory management and optimizations. In Principles
of Programming Languages (POPL), 2002.

[35] Yefim Shuf, Manish Gupta, Hubertus Franke, Andrew
Appel, and Jaswinder Pal Singh. Creating and
preserving locality of Java applications at allocation
and garbage collection times. In Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), 2002.

[36] Standard Performance Evaluation Corporation
(SPEC). SPECjvm98 benchmarks.
http://www.specbench.org/osg/jvm98.

[37] Bjarne Steensgaard. Points-to analysis in almost linear
time. In Principles of Programming Languages
(POPL), 1996.

[38] Bjarne Steensgaard. Thread-specific heaps for
multi-threaded programs. In International Symposium
on Memory Management (ISMM), 2000.

[39] Darko Stefanović, Matthew Hertz, Stephen M.
Blackburn, Kathryn S. McKinley, and J. Eliot B.
Moss. Older-first garbage collection in practice:
Evaluation in a Java virtual machine. In Workshop on
Memory System Performance (MSP), 2002.

[40] Darko Stefanović, Kathryn McKinley, and J. Eliot B.
Moss. Age-based garbage collection. In
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), 1999.

[41] Darko Stefanović, Kathryn S. McKinley, and
J. Eliot B. Moss. On models for object lifetime
distributions. In International Symposium on Memory
Management (ISMM), 2000.

14

[42] David Tarditi and Amer Diwan. Measuring the cost of
storage management. Lisp and symbolic computation,
1996.

[43] Mads Tofte and Jean-Pierre Talpin. Region-based
memory management. Information and Computation,
1997.

[44] David Ungar. Generation scavenging: A
non-disruptive high performance storage reclamation
algorithm. In Practical Software Development
Environments, 1984.

[45] John Whaley and Monica Lam. An efficient
inclusion-based points-to analysis for strictly-typed
languages. In Static Analysis Symposium (SAS), 2002.

[46] Paul R. Wilson. Uniprocessor garbage collection
techniques. Accepted for publication in ACM
Computing Surveys.

[47] Paul R. Wilson, Michael S. Lam, and Thomas G.
Moher. Effective “static-graph” reorganization to
improve locality in garbage collected systems. In
Programming Languages Design and Implementation
(PLDI), 1991.

[48] Karen Zee and Martin Rinard. Write barrier removal
by static analysis. In Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA),
2002.

15

	Introduction
	The CBGC Algorithm Family
	Partitioning
	Partial GC
	Opportunism
	Discussion

	A CBGC Algorithm
	Partitioning
	Partial GC
	Opportunism
	Estimator
	Chooser

	Alternative CBGC Algorithms
	Partitioning
	Partial GC
	Opportunism
	Estimator
	Chooser

	Methodology
	Garbage Collection Traces
	Garbage Collection Simulator
	Validation
	Strengths and Weaknesses of our Methodology

	Results
	Cost in Time
	GC Work Per Time
	Other Time Cost Factors
	Cost in Time Conclusions

	Cost in Space
	Maximum Footprint
	Other Space Cost Factors
	Cost in Space Conclusions

	Pause Times
	Average Work Per GC
	Maximum Work Per GC
	Pause Times Conclusions

	Exploring the CBGC Design Space
	Partitionings
	Estimators
	Choosers
	CBGC Design Space Conclusions

	Sensitivity to Heap Size and Block Size
	Heap Sizes
	Block Sizes

	Related Work
	Eliminating write barriers
	Partitioning
	Age-based partitioning
	Stack-based partitioning
	Other partitioning techniques

	Conclusions
	REFERENCES -9pt

