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ABSTRACT
Most graph decomposition procedures seek to partition a
graph into disjoint sets of vertices. Motivated by applications
of clustering in distributed computation, we describe a graph
decomposition algorithm for the paradigm where the parti-
tions intersect. This algorithm covers the vertex set with a
collection of overlapping clusters. Each vertex in the graph is
well-contained within some cluster in the collection. We then
describe a framework for distributed computation across a
collection of overlapping clusters and describe how this frame-
work can be used in various algorithms based on the graph
diffusion process. In particular, we focus on two illustrative
examples: (i) the simulation of a randomly walking particle
and (ii) the solution of a linear system, e.g. PageRank. Our
simulation results for these two cases show a significant re-
duction in swapping between clusters in a random walk, a
significant decrease in communication volume during a linear
system solve in a geometric mesh, and some ability to reduce
the communication volume during a linear system solve in
an information network.

1. INTRODUCTION
Graph partitioning is a broad term for processes that take

a graph and break it into pieces. These processes are ap-
plied throughout scientific computation because they model
the conundrum of distributed computations, namely, how to
balance local work and communication. In a typical appli-
cation, a graph serves as a surrogate for the computational
domain [14]. Each vertex denotes a piece of information
and each edge denotes dependencies between information.
Usually, the goal is a partition of the vertices where no piece
is too large, and the number of edges crossing between parti-
tions is small. Such a partition implies that most of the work
is within a piece and only minimal work takes place between
pieces. Thus, a good partitioning minimizes the amount of
communication during a distributed computation.

But why partition the vertices? Alternatives such as hyper-
graph partitioning or partitioning the edges often show better

results [38, 18, 9]. These models minimize the total number
of communication messages and their volume by constructing
a hyper-graph to model the actual computation structure
more accurately. A concern with such methods is that they
make distributed computations more difficult to implement.

We tackle the problem from a different angle. In light
of the plethora of local resources available on modern com-
puters and the paucity of communication bandwidth and
latency [17], we ask why partition at all? Partitioning min-
imizes the total amount of storage under the constraint of
minimizing communication volume. In this paper, we want
to design scalable algorithms that address communication
problems using a set of overlapping clusters, or vertex par-
titions that intersect. With overlapping clusters, we store
more of the graph than required. The framework then af-
fords the ease of implementation of vertex partitioning, and
by removing the minimum storage constraint, our hope is
that this technique allows us to reduce communication in a
distributed computation. As we shall see in the results sec-
tion, such an idea is a simple means to improve a distributed
computation. For a standard test problem – computing the
PageRank vector – we observe a drastic reduction in commu-
nication volume for geometric graphs and a modest reduction
in communication volume for some information networks.

Our main application for this procedure is a distributed
diffusive process on a graph. This differs from the goal of
much of the overlapping clustering work in the statistical
physics communities (see ref. [15] for a survey). There, the
goal is to use the clusters to extract information from the
network. Many of the methods employed are also rather
expensive for a large graph, for example, building overlap-
ping clusters by finding large cliques. As mentioned above,
we use a particularly well known diffusion process as our
test problem: the PageRank random surfer [32]. Diffuse
processes such as PageRank often become linear systems,
and our overlapping clustering computation framework also
applies to solving a linear system. This lets us compute
Katz indices [22], hitting times, commute times, and semi-
supervised learning on graphs [40]. We discuss linear systems
further in Sections 3 and 6 Our goal is to have a single set
of overlapping clusters that will make all of these diffusive
graph processes fast, not just PageRank. Thus, much of
this paper is spent analyzing random walks on overlapping
clusters. This metric is indicative of the performance of
any diffusive process. Random walks are, themselves, a key
enabling routine for many approximate graph computations
(e.g. nearest tree [11] and MaxCut [19]) and distributed graph
computations (e.g. random spanning tree [34]).
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In the remainder of the paper, we explore overlapping clus-
ters. We first review existing work on overlapping clustering
in matrix computations and graph computations (Section 3).
Next we formally define overlapping covers and specify how
we use them in distributed computation of a random walk
(Section 4). For a concrete example, we study a random
walk process on a cycle graph. For this graph, we prove that
overlapping clusters need fewer communication steps than
do partitions (Theorem 1). This proof uses an optimal set
of overlapping clusters for the graph. In the remainder of
the paper, we provide a scheme to find a good set of over-
lapping clusters for the purpose of distributed computation
(Section 5). Our algorithm combines several primitive opera-
tions: (i) determining a good set of clusters, (ii) computing a
containment score for these clusters to find good vertices, (iii)
covering the graph with highly contained vertices, and (iv)
combining clusters to optimize performance. These steps in-
volve a few interesting sub-algorithms. For example, we use a
personalized PageRank clustering algorithm [3] to determine
a good set of clusters in a local graph computation frame-
work. Also, we use an approximate set covering algorithm
to cover the vertices with a small set of clusters.

With a computational algorithm in hand, we investigate its
performance in the final section. These experiments evaluate
the clusters from our algorithm in terms of total storage
and communication. We compare against the metis graph
partitioner [21] and the graclus graph partitioner [13]. To
evaluate the clusters in a computational setting, we simulate
random walks and measure the number of times these walks
switch between clusters. We use this as a proxy for the
performance of a diffusion process on a graph. Again, we
compare against metis and graclus. These comparisons
show that our procedure reduces the probability of swapping
between clusters by a factor of between 1.15 to 100.

Let us explicitly note that this paper is intended as a
proof of concept demonstration that overlap can help. We
do not evaluate our procedures in a true distributed environ-
ment. Instead, we simulate what communication would have
occurred in such an environment. Because of this nature
and that many of our results appear to depend strongly on
the individual properties of the graph, we make our codes
and experiments available for others to use and reproduce:
https://dgleich.com/projects/overlapping-clusters

2. NOTATION
Throughout the paper, we are concerned with graphs.

Thus, we adopt standard graph theoretic notation. A graph
G = (V,E) consists of its vertex set V and edge set E. We
use deg(v) to denote the degree of a vertex. Sets are denoted
with a capital letter. For a set of vertices S, then the volume
of the set measures the degree of all vertices in the set:

Vol(S) =
∑
v∈S deg(v).

Just like a physical volume quantifies space, the volume of a
set of vertices is the amount of storage space they require.
Another useful measure is the boundary of a set ∂(S):

∂(S) = {(u, v) ∈ E : u ∈ S, v ∈ S̄}.

In this definition, we denote the complement of a set S by S̄.
The complement is respect to the set vertices for the entire
graph, thus S̄ = {v ∈ V : v 6∈ S}. Finally, let cut(S, T ) =
|{(u, v) ∈ E : u ∈ S, v ∈ T}| be the generalization of the size
of a boundary to the size of a particular boundary. Notice

that these definitions are related by: deg(v) = Vol({v}) =
|∂({v})| = cut({v}, V − {v}). Also, |∂(S)| = cut(S, S̄).

Our final definition is the conductance of a set:

Cond(S) =
|∂S|

min
(
Vol(S),Vol(S̄)

) .
Conductance is a useful metric for graph partitioning because
it is small when there are few edges leaving a big group of
vertices and large elsewhere.

3. RELATED WORK
Our proposal for overlapping clusters is novel in its imple-

mentation, but not so in concept. As always seems to be
the case with clustering algorithms, statisticians studied the
problem of overlap in the 1970s [10]. These have also been
studied for a long time in the field of domain decomposition.
There, overlapping domains are used to solve a partial dif-
ferential equation (PDE) using a Schwarz method. Given a
domain that is decomposed into overlapping pieces, Schwarz
methods solve the PDE by iterative solving the PDE on
each piece and communicating between the domains via the
overlapping boundary. Within the numerical linear algebra
community, these ideas have been generalized to solve many
linear systems Ax = b in either an additive or multiplicative
Schwarz method [37, 6, 28]. The difference between the
methods is not important for this paper, but suffice it to say
that our distributed PageRank technique discussed in Sec-
tion 6 is equivalent to an additive method. These techniques
have been applied to solving PageRank [7] and recently this
community began studying techniques to generate overlap
from an existing graph partition [16]. Yet another recent
and related idea from numerical linear algebra is the notion
of a communication avoiding algorithm, see, for example,
ref. [31]. A communication avoiding algorithm substitutes
local computation instead of communication. In ref. [31].,
they design a matrix-power kernel to reduce the communica-
tion required for k consecutive sparse matrix-vector products.
The matrix-power kernel will create overlap among the ver-
tices managed by each processor. A key difference between
our work and the two previous projects is that they start
with a partitioning and add overlap; instead, we build a set
of overlapping clusters and then add a mapping from vertices
to clusters.

Others recognized the benefits of overlapping clusterings
too. These have also been studied in social network analy-
sis [30, 1], and inherent multi-assignment clustering [36]. In
some settings, like discovering communities in social networks,
the clusters are naturally overlapping and by restricting our
attention to non-overlapping clustering, we may lose valu-
able information about the structure of communities in a
social network. This fact have been formally observed in the
context of social networks [30] and information networks [1].

Graph partitioning and finding sets with small conduc-
tance are important problems that have also been attacked
theoretically. Several approximation algorithms exist for
them [35, 4, 25, 2, 3]. One of the authors has recently stud-
ied the analogous problems with overlapping clusters and
established both complexity results and new polylogarithmic
approximation algorithms for these problems [23].

Many decentralized or distributed graph computations also
use overlap among a partition. For example, ref. [33] proposes
a PageRank algorithm for a peer-to-peer environment, and
ref. [20] uses a specific type of overlap to compute minimum
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spanning trees in a MapReduce environment.

4. DISTRIBUTED COMPUTATION WITH
OVERLAPPING CLUSTERS

In this section, we formally define an overlapping cover for
a graph and specify how to use it in a distributed random
walk. The number of swaps between clusters will be one of
our distributed computation metrics. We then show the re-
lationship between our overlapping clusters and partitioning.
This will let us formally show an instance where overlapping
clusters minimize swaps compared to a partitioning.

4.1 Overlapping covers
An overlapping cover (C, τ) consists of a collection C of

clusters, which are subsets of V , and a mapping τ : V → C
that associates each vertex v ∈ V with a single cluster
τ(v) ∈ C. We require that the collection C cover the graph,
and that each vertex v be contained in its associated clus-
ter τ(v). For this reason, τ will define a partition of the
vertices. As further explained below, the idea is that τ
will give the best cluster for a given overlapped vertex.

At left, we illustrate an overlapping
cover with three clusters denoted by
the red, blue, and gray regions. The
function τ is given by the color of
the vertices themselves, not the re-
gions. For instance, the gray cluster
contains two vertices from the whose
associated cluster is the blue cluster;
but the blue cluster contains no ver-
tices whose associated cluster is the
gray one. These two “blue” vertices

are stored in both blue and gray clusters, providing an in-
stance of overlap. In our model, the adjacency information
for the graph G is distributed among the clusters in C. Each
cluster stores the adjacency list of its member vertices, but
not the adjacency lists of other vertices in the graph. Thus,
Vol(C) is a proxy for the space required to store the cluster
C, since Vol(C) is the total size of the adjacency lists of
vertices in C. We define MaxVol(C) to be the maximum
volume of any cluster in C, and define TotalVol(C) to be
the sum of the volumes of all clusters in the collection. We
will also commonly refer to the volume ratio of a collection:
TotalVol(C)/Vol(V ).

4.2 A random walk in overlapping clusters
Given a maximum volume MaxVol as an upper bound for

the volume of a graph on each machine, we need to divide
a large graph into several clusters and store each cluster on
one machine. The main drawback of this process is that any
type of distributed computation or random walk incurs some
communication cost or swapping probability among clusters.
To model that cost, the random walk process is defined in
the usual way. Given a starting vertex X0, a sequence of
vertices X0 . . .XT is obtained by choosing Xt+1 uniformly
at random from the neighbors of Xt.

We can simulate the random walk process in G using a
collection (C, τ) of overlapping clusters. For each time step
t let Yt be the current vertex and Ct be the current active
cluster. The current vertex Yt is some vertex in V , and the
current active cluster Ct is some cluster in C that contains Yt.
Initially, Y0 is a specified starting vertex, and C0 = τ(Y0). To

advance to the next time step, the active cluster Ct chooses
the next vertex Yt+1 uniformly at random from the neighbors
of Yt. If the new vertex Yt+1 is contained in Ct, then the
current cluster remains the active cluster. If the new vertex
Yt+1 is not contained in Ct, then the cluster τ(Yt+1) becomes
the active cluster. The sequence of active clusters {Ci} is
completely determined by the sequence of vertices {Yi},

Ct+1 =

{
τ(Yt+1) if Yt+1 6∈ Ct,
Ct otherwise.

Also, the state of the walk simulation at time t is completely
described by the pair (Yt, Ct).

4.3 The frequency of cluster swapping
Our goal is to minimize the number of times the active

cluster Ct must be changed during the simulation of the walk.
A good collection C will allow us to simulate a random walk
without constantly switching between clusters.

We define Swaps(X0, . . . ,XT ) to be the number of times
the active cluster Ct changes during the walk X0, . . . ,XT .
We also define ρ(X0, . . . , XT ) = Swaps(X0, . . . , XT )/T to be
the fraction of steps where the active cluster changes during
the walk. For a given vertex v, we define

ρT (v) = E [(1/T ) Swaps(X0, . . . , XT ) | X0 = v]

to be the expected number of swaps in a walk starting from
v. We also define

ρT =
1

n

∑
v∈V

ρT (v)

to be the average number swaps in a walk from a starting
vertex chosen uniformly at random. Finally, we define ρ∞
to be the limit of ρT (G) as T →∞.

We can easily estimate these quantities by repeatedly sim-
ulating a random walk. However, we can also compute ρ∞
exactly. To do so, define a directed graph G(C, τ) that de-
scribes the transition between the pairs (Yt, Ct). Presuming
that a random walk on G(C, τ) has a single ergodic class –
which it will if the initial graph is connected and undirected
– then let π̂ be the stationary distribution. The swapping
probability ρ∞ is then

ρ∞ =
∑
C

∑
u∈C

π̂(u,C)
cut(u, C̄)

deg(u)
.

4.4 Relationship with partitioning
Recall, the traditional way to find such clusters is to par-

tition the graph into several non-overlapping parts. Based
on a partitioning P = (P1, . . . , Pm), we can define an over-
lapping cover (P, τ) where τ(v) = Pi if v ∈ Pi. In this
case, the stationary distribution of (P, τ) is the standard
stationary distribution of a random walk on an undirected
graph: π̂(u) = deg(u)/Vol(G). The swapping probability of
(P, τ) is then

ρ∞ =
∑
C∈P

∑
u∈C

π̂(u)
cut(u, C̄)

deg(u)
=

1

Vol(G)

∑
C∈P

|∂(C)|.

Therefore, the goal for partitioning is to minimize the
the number of edges among clusters:

∑
C∈P |∂(C)|. The

advantages of partitioning the graph are that it is simple
and uses the minimal storage to store the whole graph, since
each node in the original graph corresponds to only one
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Figure 1: Overlap improves performance for the US
road network and a WWW network; see §7.1.

node on exactly one machine. On the other hand, this
advantage may result in large communication or swapping
probability among clusters. Using overlapping covers may
improve the communication cost and the switching cost of
the clustering by a large factor. See Figure 1 for an example
of this phenomenon. For the graph of the US road network
and a web-graph, adding overlap improves the performance
of a distributed PageRank computation and the swapping
probability of a random walk considerably compared to a
partition from the metis partitioner. The vertical axis is the
relative work compared to metis, and the horizontal axis is
the overlap expressed as a volume ratio. Of course, storing
overlapping clusters take more space. It is not hard to see
that there is a trade-off between the total volume of the
clusters TotalVol, and the swapping probability ρ∞. Next,
we show that for cycle graphs, storing overlapping clusters
with TotalVol = 2 Vol(G) improves the cost function ρ∞
significantly.

4.5 A clear win for overlap

Theorem 1. Consider a large cycle Cn of n = M` nodes
for a large number M > 0, and let the maximum volume of a
cluster MaxVol be `. Let P be the optimal partitioning of G
to non-overlapping clusters of size at most MaxVol and ρ∗∞
be the swapping probability of P . There exists an overlapping
cover with TotalVol of 2Vol(G) whose swapping probability

ρ′∞ is less than
ρ∗∞

Ω(MaxVol)
.

Proof. In a cycle of size n, any cluster of size at most `
nodes has a cut size of at least 2. We know that partition P is
at least M clusters. Thus, the size of the cut ∂(P) is at least
2M . Therefore, the optimal partition P is to divide the cycle
into M paths of consecutive nodes each of which have ` nodes,

Thus, the swapping probability ρ∗∞ = ∂(P)
Vol(Cn)

= 2M
n

= 2
`
.

We now illustrate an overlapping cover (C, τ) of TotalVol =
2 Vol(G) with swapping probability ρ∞ ≤ 4

`2
: C has 2M

clusters (C1, . . . , CM , C
′
1, . . . , C

′
M ), where Ci = {v|i`−`+1 ≤

v ≤ i`} for 1 ≤ i ≤M , and C′i = {v|i`− `
2

+ 1 ≤ v ≤ i`+ `
2
}

for 1 ≤ i ≤M − 1, and C′M = {v|1 ≤ v ≤ `
2
} ∪ {v|M`− `

2
≤

v ≤ M`}. Let centers of clusters Ci and C′i be the two
middle nodes of each cluster, e.g., centers of Ci are i`− `

2

and i`− `
2

+ 1. center of a cluster C is denoted by center(C).
For any node v ∈ V (G), let τ(v) the cluster whose center is
the closest center to v. In particular, τ(center(C)) = C.

Consider a long enough random walk W . Note that centers
of Ci are borders of C′i−1 and C′i+1. In particular, on walk

W whenever we swap to a new cluster, we go to the center
of another cluster. As a result, the expected number of steps
between two swaps on walk W is the expected time that
a random walk starting at the center of a cluster leaving
that cluster. Consider cluster C1, and let ai be the expected
number of steps before a uniform random walk leaves cluster
C1 starting from node i. Also let a0 = a`+1 = 0. Since
the random walk is uniform, we know that for 1 ≤ i ≤ `,
ai = 1 + 1

2
(ai+1 + ai−1). Solving this recurrence relation, we

get ai = i(` − i). Thus, acenter(C1) = `(`+2)
4

. As a result,
starting from any cluster in C, the expected time to leave the

cluster and swap to another cluster is `(`+2)
4

. As discussed
before, after swapping to a new cluster, we start from the

center of another cluster. Therefore, in average, after `(`+2)
4

steps of the random walk, a swapping occur. Thus, the
swapping probability ρ′∞ = 4

Ω(`2)
.

4.6 Hardness of optimality
Before stating the heuristic algorithms to identify the

clusters, let us remark that the corresponding optimization
problems are NP-hard and, most likely, hard to approximate
as well. To be formal, consider the following optimization
problem: Given a graph G(V,E), an upper bound for the
volume each cluster `, and an upper bound on total volume
of T . Find an overlapping cover of G with clusters of volume
at most ` and total volume of at most T with the minimum
swapping probability ρ∞. This problem is NP-hard and we
sketch a proof of this hardness result.

To do so, we use a hardness result for the minimum bi-
section problem. Given a graph, the goal of the minimize
bisection problem is to find a minimize size edge set whose
deletion splits the graph into two parts with an (almost)-equal
number of nodes. Consider our problem with ` = Vol(G)/2
and T = Vol(G), i.e., the total volume of clusters in the
overlapping cluster is the same as the volume of G. In this
special case, the goal is really to partition the graph into two
equal volume clusters and our solution will minimize the edge
set between these clusters – thus solving the minimize bisec-
tion problem. Hence, the hardness of the minimum bisection
problem translates to our problem as well [8]. Other than
the NP-hardness, we think that combining inapproximability
results for minimum bisection [5, 24] shows the hardness of
approximation of our problem. We leave a formal proof of
this to the longer version of this manuscript, and proceed to
develop a multi-stage scalable heuristic clustering algorithm
for the purpose of efficient distributed computation

5. FINDING OVERLAPPING CLUSTERS
In this section, we give an overview of the algorithm for

computing the overlapping cover. Given a graph and an
upper bound of MaxVol for the volume of the graph stored
on each machine, we need find such an overlapping cover
that results in a small ρ∞. The algorithm has 4 main parts:

Identify candidate clusters In the first stage, we want
to find clusters with maximum volume MaxVol and small
conductance. The idea is to produce a bag of good clusters
that we’ll wheedle down and combine.

Compute well-contained sets For each cluster, we com-
pute a containment score for each vertex. The vertices with
highest containment are assigned as cores of the cluster. A
random walk from a core vertex should take a while to leave
the cluster.
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Cover with cluster cores We now find a subset of the
candidates based on three measures: (i) the total volume
should not be too large; (ii) the sum of the cut sizes should
be small; and (iii) for each node v, we should pick a cluster C
such that v is in the core of C. This is a set-cover problem.

Combine clusters Finally, we combine any small clusters
until the final size of each is about MaxVol.

5.1 Candidate clusters
As previously mentioned, we desire a large set of clusters

with “high” containment. This implies that we want a small
cutsize. We use two procedures to generate candidate clusters.
The first is a local clustering algorithm based on personalized
PageRank [3]. The second is repeatedly running the metis
algorithm with randomization enabled.

In the first, we compute personalized PageRank vectors
with a local algorithm (one that does not access the en-
tire graph) and then generate clusters by sweeping through
the ordering induced by the personalized PageRank vector
rescaled by inverse degree. In the sweep, we pick the cluster
with minimum conductance less than MaxVol. A parameter
ε controls the accuracy of the PageRank vector and affects
the final size of the cluster. We proceed through all vertices
of the graph and compute a PageRank vector from each
vertex with a random value of ε chosen to give a cluster with
volume between 10 and MaxVol. We will skip looking for a
cluster at vertex if that vertex is already in k clusters. This
helps keep the work down. The value of α controls the size of
the clusters, and α = 0.99 produces clusters of a reasonable
size. (In this case, α is the link-following probability. This is
different from the convention in [3].)

In the second, we repeatedly run metis with different
random seeds and different partition sizes to generate a
range of partitions. Each partition is considered a cluster,
and thus running this procedure at least twice yields a set of
overlapping clusters.

5.2 Core vertices
Given a cluster C, we want to find the vertices that are the

most central in C in the sense that a random walk takes a
long time to exit the cluster when started from those vertices.
We quantify this with the expected leave time for a random
walk in a cluster. This derivation is just an application
of first-transition analysis in the random walk to the non-
cluster vertices. Let X0, . . . be the random walk. Also let
u(v) = E[min(T ) | X0 = v, . . . , XT 6∈ C] be the expected exit
time from the cluster. Trivially, u(v) = 0 if v 6∈ C. Applying
the memory-less hypothesis and note about v 6∈ C, we have

u(v) = 1 +
∑

(v,r)∈E

u(r)

deg(v)
= 1 +

∑
(v,r)∈E
r∈C

u(r)

deg(v)
.

Now let u be a vector of these leavetimes for each vertex in C
and let B be the random walk transition matrix restricted to
vertices in C. This second equation states u = e +Bu where
e is a vector of all ones. Assuming that there is at least one
vertex not in C, then this equation is a non-singular linear
system. We can quickly approximate its solution using the
Neumann series:

u ≈ uk = Buk + e =
∑k
j=0 B

je u0 = e.

This formulation has the attractive property that uk is related
to the expected leavetime in walks of length at most k. Thus,

we can quickly compute expected leavetimes in time kVol(C),
where k is a large but finite random walk time. We use
k = 150 and additionally modify B to be a PageRank Markov
chain with α = 0.99. This latter modification changes the
answer only slightly, but avoids a few convergence problems
when the random walks are slow to exit the cluster. Let
leavetime(C, v) = u(v) which we treat as our containment
score. Vertices in a cluster with high leavetime are considered
core vertices, which we describe further next.

5.3 Covering the graph
Consider a set of clusters B = (C1, C2, . . . , Cm). For any

cluster C, let Core(C) be the well-contained set of vertices in
C. (These nodes should have long leavetimes.) From B, our
goal is to find a minimum cost overlapping cover (C, τ) such
that for each node v ∈ V (G), there exists a cluster C ∈ C
whose core include v, i.e., v ∈ V (C). Also, it is required
that for each node v, v ∈ Core(τ(v)). Two parameters are
important in determining the cost of the overlapping cover.
One parameter is TotalVol(C), and the other parameter is
the total number of edges outgoing from clusters in C. As
a heuristic solution, we can formalize this problem as a set
cover problem as follows. Each cluster C has some cost
Cost(C) = Vol(C) + γ|∂(C)|, where γ is an appropriate
scaling factor. We find it isn’t particularly sensitive to this
choice and use γ of 0.2.

To find a minimum-cost overlapping cover, we need to find
a set of clusters that cover all the nodes of the network. This
can be formalized as a set cover problem. In an instance of
the set cover problem, we are given a family of sets S1, . . . , Sm
of a ground set V , each with a cost c(Si), we need to pick a
minimum-cost subfamily of Si’s that cover all elements of V .
Given a set of clusters B, we construct a set cover instance
as follows: we set Si in the set cover problem to be Core(Ci),
and the cost c(Si) to be Cost(C) as defined above.

The set cover problem is NP-hard, and not approximable
better than a factor of Ω(log n). Nevertheless, the following
simple greedy algorithm gives an O(logn)-approximation
algorithm for this problem. It also assigns core vertices in
the final step.

1. Let C = ∅, and T = V (G).
2. While some nodes of V (G) are uncovered,

(a) Find a cluster C 6∈ B\C that maximizes
|Core(C)∩T |

Cost(C)
.

(b) Add C to C, and let T = T\Core(C).
3. For all nodes v,

(a) Find a cluster C′ ∈ C such that v ∈ C′, and leavetime(v, C′)
is maximized,

(b) Set τ(v) = C′.

5.4 Combining the Clusters
We take into account the maximum allowed volume of the

cluster MaxVol while computing the candidate clusters, but
we did not use the parameter MaxVol while selecting the
final set of clusters C using the set cover greedy algorithm.
In this section, we show that we can combine the clusters
resulting from the set cover algorithm, and only improve
the the total volume, the total cost, and the parameter ρ∞.
Then, we give a heuristic to combine a set of clusters given
a maximum volume constraint on each combined cluster.

In order to prove that various cost functions only improve
by combining the clusters, we need to prove that these cost
functions are subadditive. A function f is subadditive if for
any two cluster A,B ⊂ V (G), f(A ∪B) ≤ f(A) + f(B). We
first observe this for Vol and ∂ cost functions.
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Remark 1. For any two clusters C1 and C2:

1. Vol(C1 ∪ C2) ≤ Vol(C1) + Vol(C2),

2. ∂(C1 ∪ C2) ≤ ∂(C1) + ∂(C2),

The above remark implies that after combining any set of
clusters, the cost function Vol, function ∂, and as a result
function Cost will not increase. Now, we show that combining
clusters only improve the cost function ρ∞. Consider an
overlapping cover (C, τ), and two cluster C1, C2 ∈ C. Let
C′ = C\{C1, C2} ∪ {C1 ∪ C2}, i.e, C′ is C after removing
clusters C1 and C2 and adding the cluster C1 ∪ C2. Also,
construct the mapping τ ′ as follows: if τ(v) is C1 or C2, then
τ(v) = C1 ∪C2; otherwise, τ ′(v) = τ(v). While performing a
(random) walk W on the overlapping cover (C′, τ ′), we know
that whenever we switch from C1 ∪C2, the same change has
to happen in the overlapping cover (C, τ). This fact proves
that cost function ρ∞ is not larger for (C′, τ ′) compared to
(C, τ).

The above discussion shows that combining the cluster can
only decrease all cost functions that we have considered so
far. Here, we give a heuristic for combining the clusters that
attempts to maximize such decrease in the cost. The algo-
rithm reads an overlapping cluster (C, τ), and a parameter
MaxVol and runs the following algorithm:

1. Let C′ = ∅, B = C, and T = ∅.
2. While B is nonempty

(a) Find C ∈ B that minimizes Vol(C ∩ T ).
(b) Let C′ = C, B = B − {C}, T = T ∪ C.
(c) While B is nonempty

i. Find C ∈ B with Vol(C ∪ C′) ≤ MaxVol and
maximum Vol(C ∩ C′)/Vol(C).

ii. Break if no such C exists, otherwise
let C′ = C′ ∪ C, B = B − {C}, T = T ∪ C.

(d) Add cluster C′ to C′ and update τ to C′ for all ag-
glomerated clusters.

6. SOLVING LINEAR SYSTEMS WITH
OVERLAPPING CLUSTERS

We now describe how to solve a certain class of linear
systems using overlapping clusters. The convergence analysis
of this algorithm places some restriction on where it may
be applied, but these are not too restrictive. Many linear
systems, including the PageRank linear system [32] and the
linear system for Katz scores [22], satisfy these restrictions.
Note that this algorithm for PageRank is not new. McSherry
discussed its essence in ref. [29].

We first describe the algorithm in general, and then discuss
how it applies to the PageRank linear system. Consider a
linear system Ax = b. Each row and column of A corre-
sponds to a vertex in our graph. For each cluster, assign that
cluster to a processor. The processor holds the columns of
the linear system associated with the vertices in its cluster.
For a cluster/processor, we allocate a solution vector xC and
a residual vector rC . These vectors store information about
the solution and residual for all vertices in the cluster. If it
helps, think about them as sparse vectors defined only on
the vertices of the cluster. Our goal is to compute a sequence

of x
(k)
C and r

(k)
C on each processor such that

x ≈
∑
C

x
(k)
C r ≈

∑
C

r
(k)
C

where Ax ≈ b and b−Ax = r is small. On each processor, we
only store a non-zero value in the vector xC for the vertices

in the cluster, however, we store a non-zero value the vector
rC for the vertices in the cluster and the vertices on the
boundary of the cluster. We call the latter fC when we refer
only to these vertices. Let AC be the local matrix among
vertices in C and let BC be the matrix from vertices in C to
the boundary. In each iteration, we compute

x
(k+1)
C = x

(k)
C +A−1

C rC(k).

This is, we locally solve the linear system. This has the

effect of making r
(k+1)
C = 0 for all vertices in the cluster.

However, we then must update the residual for all bound-
ary vertices. Recall that we use fC to denote the “foreign”

residual: fC = BCA
−1
C r

(k)
C . After performing this update, we

communicate fC(v) to the processor with τ(v). The remote

processor, say C′, adds this element into r
(k+1)

C′ . The local
processor subsequently sets fC(v) = 0. Thus, at the end of
an iteration fC = 0 (all the foreign residual was communi-

cated elsewhere), and r
(k+1)
C is only non-zero where other

processors communicated their values to C. Take note that
all communication occurs via residuals. This property is a
hallmark of additive Schwarz methods, which locally solve
for the residual. Consequently, this algorithm is an additive
Schwarz method. Also note that b does not appear in the
above iteration. Each solution vector xC is set to 0 initially,
and thus rC(v) is initially set to b(v) when τ(v) = C. Put an-
other way, the residual is assigned to the “core” vertices. The
relationship with the additive Schwarz method lets us con-
clude that this approach will converge for linear systems with
M -matrices and symmetric positive definite systems [37].

When we apply this algorithm, we do not always commu-
nicate the foreign residual as described above. Instead, we
only communicate elements of the foreign residual if they
exceed a solution dependent tolerance. This further reduces
communication. The final communication volume metric is
the number of foreign residual elements communicated during
the course of the linear system solve.

PageRank as a linear system is (I − αPT )x = e, where
P is the random walk normalization of an adjacency matrix
and α is the link-following probability in PageRank. This “A”
is an M -matrix and thus the above procedure will converge
– although PageRank admits a much simpler convergence
analysis, which we omit due to space. For PageRank, we
solve each local system using the PageRank push algorithm
proposed by McSherry [29], using a queue as described by
Andersen et al. [3]. This algorithm updates the foreign
residuals along with the local residuals. At each iteration,
it “pushes” the residual rank to the boundary of the cluster,
updating the solution xC within the current cluster. After
completing all of these push operations, it communicates the
residuals to the core vertices as above.

There is no closed form solution for the PageRank vector
of an undirected graph, although it is usually nearby the
standard normalized degree stationary distribution. Nonethe-
less, using this approach, it is actually possible to solve a
PageRank system with zero communication. This occurs
when the core vertices are sufficiently far from the bound-
ary, so that the residual rank arriving at the boundary is
negligible. In a real implementation, there would be a few
small communication steps in aggregating the solution vector
x and checking the residual r; however, we do not model
those communication steps in our PageRank communication
metric. This result cannot occur in a partitioning because

6



Table 1: All graphs are undirected and connected.
Edges are counted twice and some graphs have self-
loops. The first group are geometric networks and
the second are information networks.

Graph |V | |E| maxdeg |E|/|V |
onera 85567 419201 5 4.9

usroads 126146 323900 7 2.6
annulus 500000 2999258 19 6.0

email-Enron 33696 361622 1383 10.7
soc-Slashdot 77360 1015667 2540 13.1

dico 111982 2750576 68191 24.6
lcsh 144791 394186 1025 2.7

web-Google 855802 8582704 6332 10.0
as-skitter 1694616 22188418 35455 13.1
cit-Patents 3764117 33023481 793 8.8

there no boundary around the cluster.
To summarize, when solving a problem with overlapping

clusters, solve locally within each cluster and communicate
the residual on the boundary to the core vertices identified
by the map τ .

7. EXPERIMENTAL RESULTS
At this point, we provide experimental evidence for the

ability of our heuristic technique to (i) reduce the swapping
probability (Table 2) and (ii) reduce the communication in
a distributed PageRank solve (Table 3). Before getting to
that demonstration, we first discuss the datasets we utilize
for our experiments.

7.1 Data Sets
The data we use to evaluate our techniques comes in

two classes: geometric networks and information networks.
(We include social networks within information networks.)
Our technique is extremely effective at the geometric net-
works, whereas it is less effective at information networks.
Thus, we focus more on the latter. All of our experimental
data comes from the following public sources: the Univer-
sity of Florida Sparse Matrix collection [12], the Stanford
SNAP collection [26], the Library of Congress subject head-
ings (lcsh graph) [39], and the National Highway Plan-
ning Network (usroads graph – http://www.fhwa.dot.gov/

planning/nhpn/). The annulus graph is a random triangu-
lation of points in an large annulus. Please see Table 1 for
information about the size of the networks. We removed the
direction of any edges and only consider the largest connected
component of the network.

7.2 Cluster performance
The first stage of our algorithm is to generate a set of

clusters with small conductance using a local personalized
PageRank algorithm [3]. This algorithm has well known
properties and has been used in other experimental probes of
graph clusters [27]. This algorithm has a few parameters we
can control. Although our final goal may be to have clusters
of the network with a MaxVol of 10% of the total graph
volume, we often found it effective to find smaller clusters
and combine these together. We investigate three regimes.
The first, called small, seeks clusters up to MaxVol of 10000
with a small average volume. The second, called med, seeks
clusters up to MaxVol of 10000 with a large average volume.
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Figure 2: Cluster conductance for three differ-
ent regimes on the graph lcsh. From left: small,
medium, and big. The red dots are the results with
the final set of combined clusters.
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Figure 3: Cluster combinations. See §7.3 for details.

The third, called big, seeks clusters up to MaxVol of 10% of
the total graph volume with a average volume comparable to
the medium set. The conductance of the sets generated by
these algorithms is plotted in Figure 2 for the graph lcsh.

7.3 Combine performance
We now show that we can effectively combine clusters. See

Figure 3 for relationships between the input to the cluster
combination process and the output in three measures. This
experiment summarizes the result of all the cluster combina-
tion experiments we performed on the information networks
during the sweep experiment discussed in the next section.
The first measure is the number of clusters. In this measure,
the algorithm effectively combines up to 1,000,000 initial
clusters down to a few hundred or thousand. The second
measure is the volume ratio of the input clusters to the vol-
ume ratio of the output clusters. This ratio always decreases,
though not always by a large margin. The final measure is
the average conductance of the input clusters to the average
conductance of the output clusters. Here, we find the average
conductance can increase, although it most often decreases.

7.4 Distributed computation measures
At last we come to our experiment demonstrating the

benefit of overlapping clusters. In this experiment, MaxVol
is 10% of the edges in the graph. For each graph in Table 1,
we then compute two partitions: one with metis and one
with graclus. We asked for more than 10 partitions when
the algorithms returned partitions exceeding MaxVol; and
then combined small partitions using a heuristic based on
the intersection in boundary vertices until all partitions were
about size MaxVol.

Tables For the overlapping experiments, we ran our clus-
ter identification algorithm in the small, med, and big regimes
described in Section 7.2. We examined these cases with a
target overlap T of 1, 2, 5, 10, and 30. Recall that the PageR-
ank clustering algorithm looks for a cluster around a starting
vertex. We sequentially iterate through all the vertices of
the graph and start a cluster from that vertex if it is not
already in T clusters. This setup has 15 different experiments
for each graph. In the tables, we label each method by the

7



0 5 10 15 20 25
0

0.5

1

1.5

2

Volume Ratio

R
el

at
iv

e 
S

w
ap

pi
ng

 P
ro

ba
bi

lit
y

 

 

email−Enron
soc−Slashdot0811
dico
lcsh

 

 

Metis Partitioner

web−Google
as−skitter
cit−Patents

Figure 4: Swapping probability relative to METIS
for all our overlapping experiments.

combination of regime and overlap, i.e. “med.5” is the med
regime with an overlap of 5. We also use metis to generate
overlapping clusters. We do so by running it 2, 4, or 10 times
to generate the same number of partitions. Each run uses a
different seed and a different number of partitions designed
to produce clusters with volume of 1000 and 10000. This
gives us the methods “metis.2”, “metis.4”, and “metis.10”.

After generating the clusters, we combine them into a set
of clusters with MaxVol up to 10% of the edges in the graph.
Given the resulting partitions and overlapping clusterings,
we estimate the swapping probability via sampling and mea-
sure the communication volume of solving PageRank on the
overlapping clusters using the procedure from Section 6. The
results for swapping probability are shown in Table 2. Each
row of the table shows the swapping probability for the best
partition result, along with the average conductance of the
clusters in that partition. When the partitioning results from
graclus are superior to those of metis, we show them in
the table and denote them with a ∗. The next set of columns
shows the best swapping probability from any of the overlap-
ping clustering experiments. We also list the performance
ratio (overlap / partition), volume ratio, average conduc-
tance, and method for the best overlap result as well. In

Table 3 we see the same data, but for PageRank communica-
tion volume instead. The PageRank problem used α = 0.85
and a relative tolerance of 1/n where n is the number of
vertices in the graph.

The results for swapping probability show that our over-
lapping cluster method reduces it by a factor of 10 to 100
on geometric networks and 1-2 for information networks.
The results for PageRank communication are perhaps more
compelling for geometric networks. In all cases, we only
needed a trivial amount of communication compared to the
partitioning approach. (The zero result is not an error, see
§6.) For information networks, they are much less compelling.
We reduce the communication for three graphs: lcsh, web-
Google, and cit-Patents. These graphs have the lowest
average conductance scores among the information networks,
suggesting a possible a priori performance estimate.

Finally, Figure 4 shows the reduction in swapping prob-
ability occurred in almost every experiment we performed
with the overlapping clusters. The figure also shows that
slightly smaller swapping probabilities may be obtained for
significantly less total volume.

8. CONCLUSION AND FUTURE WORK
Minimizing communication in a distributed computation

with an information network is a challenging problem. Here,
we have tried to address the issue of whether careful use
of overlap or redundancy of the distributed data can help
reduce the communication. Towards that end, we proposed
a computational framework with overlapping clusters. These
overlapping groups of vertices are simple to use, and we
propose a procedure to find a good set of them. The re-
sults on our large information networks are encouraging as
preliminary support for the use of overlapping clusters. We
are consistently able to reduce the swapping probability of a
random walk in a network with only a moderate amount of
overlap. Typically, this metric decreases almost monotoni-

Table 2: Swapping probability results. See §7.4, Tables paragraph for more information.

Graph Swap. Prob.
of Partition

Avg. Cond. Swap. Prob.
of Overlap

Perf. Ratio Vol. Ratio Avg. Cond. Method

onera 7.6 × 10−4 0.02 1 × 10−4 0.129 2.82 0.03 Med.30

usroads 1.3 × 10−4* <0.01 1 × 10−6 0.008 1.49 0.01 Med.30

annulus 1 × 10−4 <0.01 5 × 10−6 0.049 1.17 <0.01 Med.10

email-Enron 0.02 0.39 0.013 0.650 14.86 0.47 Big.30
soc-Slashdot 0.03 0.66 0.026 0.867 13.52 0.65 Med.30

dico 0.04 0.82 0.03 0.750 12.35 0.82 Big.30
lcsh 0.003* 0.06 0.0007 0.233 6.63 0.12 Med.30

web-Google 7.8 × 10−4* 0.02 4.6 × 10−4 0.592 1.43 0.02 Big.30
as-skitter 0.005 0.1 0.004 0.549 8.36 0.2 Big.30
cit-Patents 0.0064 0.13 0.0034 0.524 3.25 0.42 Small.10

Table 3: PageRank computation volume. See §7.4, Tables paragraph for more information.

Graph Comm. of
Partition

Avg. Cond. Comm. of
Overlap

Perf. Ratio Vol. Ratio Avg. Cond. Method

onera 18654 0.02 48 0.003 2.82 0.03 Med.30
usroads 3256* <0.01 0 0.000 1.49 0.01 Med.30
annulus 12074 <0.01 2 0.000 0.01 <0.01 Med.10

email-Enron 194536* 0.4 235316 1.210 1.7 0.46 Metis.2
soc-Slashdot 875435* 0.68 1.3 × 106 1.480 1.78 0.74 Metis.2

dico 1.5 × 106* 0.79 2.0 × 106 1.320 1.53 0.84 Metis.2
lcsh 73000* 0.06 48777 0.668 2.17 0.08 Small.5

web-Google 201159* 0.02 167609 0.833 1.57 0.04 Metis.10
as-skitter 2.4 × 106 0.1 3.9 × 106 1.645 1.93 0.24 Metis.10
cit-Patents 8.7 × 106 0.13 7.3 × 106 0.845 1.34 0.16 Metis.4
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cally with increasing overlap. For such applications: overlap,
do not divide. In the future, we plan to investigate how
caching small blocks of vertex information would compare
against our centralized heuristic approach.

The results in our second metric – the communication
volume of a distributed linear system solve – are more murky.
Our heuristic algorithm to identify good overlapping clusters
is able to find a good set in geometric meshes. In large
information networks, using a set of overlapping partitions
by repeatedly running metis and using our cluster combi-
nation algorithm seems to perform better. In a few cases,
these clusters actually reduce the communication. For the
communication problem on an information network, there
seems to be a tension between large overlap and total com-
munication volume. We are most successful when we find a
set of clusters that does not increase the total volume stored
too much. Currently, our bag of clusters from the local
PageRank algorithm does not appear to identify a good set
for this task. We plan to study variations on this heuristic
to identify better sets of clusters from the algorithm. Also,
we plan to investigate some of the overlapping community
detection algorithms from the statistical physics community.

Our goal is to highlight possible advantages of overlapping
clustering over partitioning in the context of distributed
computing. We believe that our evaluation of overlapping
clustering for two related objective functions along with our
preliminary theoretical analysis have shown the effectiveness
of this idea. Evaluating these ideas in a true distributed
setting is an interesting subject of future research.
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