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Abstract—Recent advances in digital video compression and
networks have made video more accessible than ever. However, the
existing content-based video retrieval systems still suffer from the
following problems. 1 ) Semantics—sensitive video classification
problem because of the semantic gap between low-level visual
features and high-level semantic visual concepts; 2) Integrated
video access problem because of the lack of efficient video database
indexing, automatic video annotation, and concept-oriented sum-
mary organization techniques. In this paper, we have proposed
a novel framework, called ClassView, to make some advances
toward more efficient video database indexing and access. 1)
A hierarchical semantics-sensitive video classifier is proposed to
shorten the semantic gap. The hierarchical tree structure of the
semantics-sensitive video classifier is derived from the domain-de-
pendent concept hierarchy of video contents in a database.
Relevance analysis is used for selecting the discriminating visual
features with suitable importances. The Expectation-Maximiza-
tion (EM) algorithm is also used to determine the classification
rule for each visual concept node in the classifier. 2) A hierarchical
video database indexing and summary presentation technique is
proposed to support more effective video access over a large-scale
database. The hierarchical tree structure of our video database
indexing scheme is determined by the domain-dependent concept
hierarchy which is also used for video classification. The pre-
sentation of visual summary is also integrated with the inherent
hierarchical video database indexing tree structure. Integrating
video access with efficient database indexing tree structure has
provided great opportunity for supporting more powerful video
search engines.

Index Terms—Video classification, video database indexing,
video retrieval, visual summarization.

I. INTRODUCTION

AS a result of decreasing cost of storage devices, increasing
network bandwidth capacities, and improved compression

techniques, digital video is more accessible than ever. To help
users find and retrieve relevant information effectively and fa-
cilitate new and better ways of entertainment, advanced tech-

Manuscript received March 1, 2001; revised July 29, 2002. This work
was supported by National Science Foundation under Grants 0208539-IIS,
9972883-EIA, 9974255-IIS, and 9983249-EIA, and by grants from HP, IBM,
Intel, NCR, Telcordia and CERIAS. L. Wu was supported by the National
Science Foundation of China under Contract 69935010. Parts of this work
were performed while J. Fan was with the Department of Computer Science,
Purdue University. The associate editor coordinating the review of this paper
and approving it for publication was Prof. Wayne Wolf.

J. Fan is with the Department of Computer Science, University of North Car-
olina at Charlotte, Charlotte, NC 28223 USA (e-mail: jfan@uncc.edu).

A. K. Elmagarmid, X. Zhu, and W. G. Aref are with the Department of Com-
puter Science, Purdue University, West Lafayette, IN 47907 USA.

L. Wu is with the Department of Computer Science, Fudan University,
Shanghai 200433, China.

Digital Object Identifier 10.1109/TMM.2003.819583

nologies need to be developed for indexing, browsing, filtering,
searching, and updating the vast amount of information avail-
able in video databases [1], [2]. The recent development of con-
tent-based video retrieval systems has advanced our capabilities
for searching videos via color, layout, texture, motion, and shape
features [3]–[11]. However, these content-based video retrieval
systems still suffer from the following challenging problems.

• Semantics-sensitive video classification problem:
When very large video data set comes into view, effi-
cient video database indexing can no longer be ignored
[12]. However, the traditional database indexing trees
[13]–[18], such as R-tree, SR-tree, and SS-tree, are
unsuitable for video database indexing and management
because of the curse of dimensionality [49]. Video re-
trieval can be performed in an efficient way by classifying
the similar videos into the same cluster [10], [11]. Un-
fortunately, there is a semantic gap between low-level
visual features and high-level semantic visual concepts
[22]–[32]. The traditional pure feature-based data clus-
tering techniques are unsuitable for video classification
because of the semantic gap [19]–[21]. Decision tree clas-
sifier is also widely used for supervised data classification
[33]–[35], but it may consist of too many internal nodes
which are consequently very difficult to comprehend and
interpret. Even after pruning, the decision tree structures
induced by the existing machine learning algorithms can
be extremely complex and the constructed tree structures
do not make sense for video database indexing. Therefore,
the semantics-sensitive video classifier is expected not
only to shorten the semantic gap but also to provide an
effective scheme for video database indexing, automatic
video annotation, and concept-oriented summary presen-
tation. In this paper, we propose an efficient hierarchical
semantics-sensitive video classifier and its hierarchical
tree structure is derived from the domain-dependent
concept hierarchy of video contents.

• Integrated video access problem: There are three
widely-accepted but independent approaches to access
the video in a database, as follows.

– Query-by-example is widely used in the existing video
retrieval systems. Query-by-example is necessary in
a situation where naive users cannot clearly describe
what they want via keywords or they do not want to
search the large-scale video database via hierarchical
summary browsing. However, the query-by-example
approach suffers from at least two problems. The first
one is that not all database users have example video
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clips at hand. Even the video database system inter-
face can provide some templates of video clips, there
is still a gap between the various requirements of dif-
ferent users and the limited templates that can be pro-
vided by the database interface. The second one is that
the naive users may prefer to query the video database
via the high-level semantic visual concepts or hierar-
chical summary browsing through the concept hier-
archy of video contents. The major difficulty for the
existing video retrieval systems is that they are unable
to let users query video via the high-level semantic vi-
sual concepts and enable concept-oriented hierarchical
video database browsing [12].

– Query-by-keywords is also used in some content-based
video retrieval systems based on manual text annota-
tion [3], [6]. The keywords, which are used for de-
scribing and indexing the videos in the database, are
subjectively added by database constructionist without
a well-defined structure. Since the keywords used for
video indexing are subjective, the naive users cannot
find exactly what they want because they may not be
so lucky to use the same keyword as the database con-
structionist did. Moreover, manual text annotation is
too expensive for large-scale video collections.

In order to avoid the problem of subjective and
expensive manual video annotation in our system, the
videos are annotated automatically via the well-de-
fined and widely-accepted concept hierarchy, where
only the keywords used for constructing and inter-
preting the domain-dependent concept hierarchy are
selected for video annotation. An efficient high-level
video retrieval technique is provided by using the key-
words which are used for interpreting the high-level
semantic visual concepts. We call this, integrating the
query-by-example with the query-by-keywords, as the
integrated video access problem 1.

– Hierarchical browsing is also widely accepted by the
naive internet users to access text document via Yahoo,
Google search engines. The naive users should be
interested in hierarchical browsing the summaries that
are presented on different visual concept levels, rather
than having to use visual features or keywords to
describe their requests. However, most existing video
retrieval systems do not support concept-oriented
hierarchical video database browsing because of the
lack of efficient video summary presentation structure
[12]. In order to support video browsing, some pioneer
works have been proposed in the past [36]–[39].
However, these existing techniques just focus on
browsing a video sequence and they did not address
how to support the concept-oriented hierarchical video
database browsing [40].

A key issue to the concept-oriented hierarchical
video database browsing is whether the visual sum-
maries found make sense to the naive users and how
to interpret the contextual and logical relationships
of the visual summaries on different visual concept
levels. We call this, integrating the concept-oriented

hierarchical video database browsing with the inherent
database indexing structure, as the integrated video
access problem 2.

Based on above observations, we propose a novel framework,
called ClassView, to make some advances in overcoming these
problems. This paper is organized as follows. Section II pro-
poses a semantics-sensitive video database model which can
support more effective video database indexing and access. A
novel semantics-sensitive video classification technique is pro-
posed in Section III. Section IV presents a hierarchical indexing
structure and an efficient video access procedure. We have also
provided the performance analysis of our techniques in the re-
lated Sections. We conclude in Section V.

II. SEMANTICS-SENSITIVE VIDEO DATABASE MODEL

Several high-dimensional database indexing trees have been
proposed in the past and they are expected to be used for video
database indexing [13]–[18], but they suffer from the problem
of curse of dimensionality because the visual features used for
video representation and indexing are normally in high-dimen-
sions [49]. One reasonable solution is first to classify videos into
a set of clusters and then to perform the dimension reduction
on these clusters independently [41], [42], the traditional data-
base indexing trees can supposedly be used for indexing these
video clusters independently with relatively low-dimensional
features. However, the pure feature-based clustering techniques
are unsuitable for video classification because of the semantic
gap [22]–[32]. Decision tree classifier is very attractive for
video classification via learning from the labeled training ex-
amples [33]–[35], but its internal nodes do not make sense
for video database indexing. The semantics-sensitive video
classifier is expected not only to be efficient for bridging the
semantic gap but also to provide an effective video database
indexing scheme, thus the tree structure of the semantic video
classifier should be related to the concept hierarchy of video
contents. Unfortunately, the video database model problem
has not been addressed efficiently for supporting video access
over the large-scale database [1], [2].

There are two widely-accepted approaches to characterize
video in the database: shot-based and object-based. In this
paper, we focus on the shot-based approach because video shots
are good choice as the basic unit for video content indexing
[36]–[38]. In order to support more efficient video database
management, we classify video shots into a set of hierarchical
database management units as shown in Fig. 1. In order to
achieve hierarchical video database management, we need to
address the following key problems. 1) How many levels should
be included in this video database model and how many nodes
should be included on each database level? 2) Do these nodes
in the classifier make sense to human beings? 3) What kind
of discriminating features should be selected and what kind
of classification rule should be used for each visual concept
node?

We solve the first and second problems by deriving the data-
base model from the concept hierarchy of video contents. Ob-
viously, the concept hierarchy is domain-dependent and a video
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news example is given in Fig. 2. This domain-dependent con-
cept hierarchy defines the contextual and logical relationships
between the higher level visual concepts and the relevant lower
level visual concepts. ClassView has provided the following
techniques to achieve this novel framework.

• A semantics-sensitive video classifier to shorten the se-
mantic gap between the low-level visual features and
the high-level semantic visual concepts. The hierarchical
tree structure of our semantics-sensitive video classifier
is derived from the domain-dependent concept hierarchy
of video contents and is provided by domain experts or
obtained by using WordNet [43], [44]. Each visual con-
cept node in this classifier defines a specific semantic
visual concept which makes sense to human beings, the
contextual and logical relationships between the higher
level visual concept nodes and their relevant sublevel
visual concept nodes are defined by the domain-depen-
dent concept hierarchy. Relevance analysis is integrated
with the Expectation-Maximization (EM) algorithm to
determine the discriminating features and classification
rule for each visual concept node by learning from the
labeled training examples.

Since different visual features capture different aspects
of perception of visual concepts, the video database
management units (i.e., visual concept nodes) as shown
in Fig. 1 should be characterized and indexed by their
discriminating features with different significances. The
basic assumption of our work is that the semantically
similar video shots should be close to each other in
their warped subspace defined by their discriminating
features, even though they may be far from each other
in their original feature space. Note that the goal of se-
mantics-sensitive video classification is not to understand
videos the way human beings do, but to classify the unla-
beled video clips to the known semantic visual concepts
defined by the domain-dependent concept hierarchy so
that more efficient video database indexing and access can
be supported [26]. After the classification, the unlabeled
video shots inherit the semantic labels assigned for the
visual concept nodes they belong to, thus automatic video
annotation is supported by using the widely-accepted
keywords (i.e., keywords used for constructing and inter-
preting the domain-dependent concept hierarchy) with a
well-defined structure (i.e., concept hierarchy).

The hierarchical tree structure of our semantics-sensi-
tive video classifier, which is determined by the domain-
dependent concept hierarchy, is also used as the database
indexing tree structure for supporting hierarchical video
database management. For each visual concept node of

the proposed hierarchical video database indexing tree,
we use Gaussian functions to approximate the distribu-
tion of its video shots in their warped feature subspace
with a certain degree of accuracy. We use the following
parameters to represent and index the visual concept node

, shown at the bottom of the page, where is its
semantic label for the visual concept node (inherited
from the keyword-based interpretation of the concept hi-
erarchy), is the subset of the discriminating features
for the corresponding visual concept node , is the
number of its discriminating features, indicates the
weights associated with these discriminating features,
and will be used to approximate the Gaussian distri-
bution of the video shots with the feature
values assigned to the corresponding visual concept
node , with and being the mean and the variance
respectively. The node seeds, , which
are the principal video shots for the corresponding visual
concept node , are used for representing the high-level
semantic visual concept because of the lack of featural
support for the higher level visual concepts.

• A hierarchical database indexing and summary presen-
tation technique to support more effective video access.
The video database indexing and management structure is
inherently provided by the domain-dependent concept hi-
erarchy which is also used for video classification. The or-
ganization of visual summaries is also integrated with the
inherent hierarchical database indexing tree structure, thus
the concept-oriented hierarchical video database browsing
can be supported.

III. SEMANTICS-SENSITIVE VIDEO CLASSIFIER

Video analysis and feature extraction are necessary steps for
supporting hierarchical semantics-sensitive video classification
[45]. In our approach, a MPEG video sequence is first partitioned
into a set of video shots by using our automatic video shot
detection technique. In general, threshold setting plays a critical
role in automatic video shot detection [46]. The thresholds
for shot detection should be adapted to the activities of video
contents. It is impossible to use a universal threshold that can
satisfy various conditions because the thresholds for different
video sequences or even different video shots within the same
sequence should be different. Our previous technique can
adapt the thresholds for video shot detection according to
the activities of various video sequences [46], but it cannot
adapt the thresholds for different video shots within the same
sequence.

In order to adapt the thresholds to the local activities of dif-
ferent video shots within the same sequence, we use a small

semantic label subset for discriminating features

dimensions feature weights

Gaussian parameters mean variance

node seeds
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Fig. 1. Proposed hierarchical video database model, where the cluster may include several levels according to the concept hierarchy and a video scene basically
consists of a sequence of connected or unconnected shots.

Fig. 2. Concept hierarchy for video news used in our system.

window (i.e., 20 frames in our current work) and the threshold
for each window is adapted to its local visual activity. The video
shot detection results shown in Figs. 3–6 are obtained from sev-
eral video data sources used in our system, such as movies, video
news and medical videos. Each video shot is then processed to
extract a set of visual features such as 256-dimensional HSV
color histogram (i.e., 16 components for H, four components for
S and four components for V), 32-dimensional texture feature
via directional edge histogram (i.e., 32 directions), Tamura tex-
ture features, nine-dimensional directional motion histogram,
and camera motions.

In this paper, we focus on generating semantic video scenes
and upper-level visual concepts such as clusters from these ob-
tained video shots, so that more efficient database management
structure can be supported. The semantic video classifier is built
in a bottom-up fashion as shown in Fig. 7. As mentioned in
Section II, the hierarchical tree structure of the classifier, i.e.,

levels and nodes, is first determined according to the domain-de-
pendent concept hierarchy of video contents and is given by
the domain experts or obtained via WordNet [43], [44]. Once
such hierarchical video classification structure is given, we use
a set of labeled training examples to determine the discrimi-
nating features (i.e., feature subspace) and classification rule for
each visual concept node via relevance analysis. For each visual
concept node, a labeled training example is in terms of a set
of shot-based low-level visual features and the
semantic label provided by the domain experts or the naive
users. There are two measurements for defining the similarity
among the labeled training video shots under the given visual
concept node, as follows.

• Visual similarity via comparing their shot-based low-level
visual features.

• Semantic similarity via comparing their high-level se-
mantic labels (i.e., visual concepts).
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Fig. 3. Video shot detection results from a movie: (a) part of the detected scene cut frames; (b) the corresponding color histogram difference and the determined
thresholds for different video shots, where the values of color histogram difference in a small window is also given.

The feature-based similarity distance between two
video shots and is defined as

(1)

where denotes the similarity distance between
and according to their th visual feature , is the weight
for the th visual feature, is the set of original visual features,
and is the total number of visual features as described above
which are initially extracted for video shot representation.

The concept-based semantic similarity distance
between two video shots and can be defined as

otherwise
(2)

where and is the semantic labels for the video shots
and . There are only two possibilities for the concept-based
semantic similarity between two labeled video shots under the
given semantic label for the corresponding visual concept node:
similar versus dissimilar.

Our hierarchical semantics-sensitive video classifier focuses
on bridging the gap between these two similarity measurements,

so that the feature-based visual similarity can correspond to
the concept-based semantic similarity by selecting the discrimi-
nating features with suitable importance. We have integrated rel-
evance analysis with the EM algorithm to shorten the semantic
gap and determine the feature subspace and classification rule
for each visual concept node.

A. Semantic Visual Concept Generation

We now describe how to build this hierarchical semantics-
sensitive video classifier. For the first classification (from video
shots to semantic video scenes), we first use a set of labeled
training examples to select the discriminating features and their
importances and determine the classification rule for each visual
concept node at the scene level. These labeled training examples
can be partitioned into four groups according to their feature-
based visual similarity and concept-based semantic similarity.

• Type one positive examples which are both semantically
and visually similar.

• Type two positive examples which are both semantically
and visually dissimilar.

• Type one negative examples which are visually similar but
semantically dissimilar.

• Type two negative examples which are semantically sim-
ilar but visually dissimilar.
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Fig. 4. Video shot detection results from a movie: (a) part of the detected scene cut frames; (b) the corresponding color histogram difference and the determined
thresholds for different video shots, where the values of color histogram difference in a small window is also given.

Type One Negative Examples:

(3)
where indicates the subset for the discriminating features
which make the type one negative examples far from each other,

is the total number of the discriminating features, ,
and is the weight for the th dimensional feature .

Type Two Negative Examples:

(4)

where indicates the subset for the discriminating features
which make the type two negative examples close to each other,

is the total number of the discriminating features, ,
and is the weight for the th feature .

Type One Positive Examples:

(5)
where indicates the subset for the discriminating fea-
tures for the type one positive examples and , and

is the total number of these discriminating features,
.

Type Two Positive Examples:

(6)

where indicates the subset for the discriminating
features for the type two positive examples, is
the total number of these discriminating features, and is the
weight of the th feature .
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Fig. 5. Video shot detection results from a medical video: (a) part of the detected scene cut frames; (b) the corresponding color histogram difference and the
determined thresholds for different video shots.

Fig. 6. Video shot detection results from a video news: (a) part of the detected scene cut frames; (b) the corresponding color histogram difference and the
determined thresholds for different video shots.

The type one negative examples have small average similarity
distances according to their original visual fea-
tures, but they should have big dimensional similarity distances
according to some discriminating features (i.e., )
because they are semantically dissimilar. The visual features,
which indicate these type one negative examples to be far from
each other, should be selected as the discriminating features
with high importances for the corresponding visual concept
node.

The type two negative examples have big average visual
similarity distances according to their original
visual features, but they should have small dimensional simi-
larity distances according to some discriminating features (i.e.,

) because they are semantically similar. The visual
features, which indicate these type two negative examples to
be close to each other, should be selected as the discriminating
features with high importances for the corresponding visual
concept node.

Based on above observations, the visual features, which in-
dicate the type one negative examples to be far from each other
and the type two negative examples to be close to each other,
should be selected as the discriminating features with high im-
portance for video shot representation and classification for the
corresponding visual concept node.

Instead of searching the weights from the high-dimensional
original feature space (i.e., ) [28], [29], we first use decision
tree to obtain the feature subsets, and , for the corre-
sponding visual concept node [33]–[35]. Determining the fea-
ture subsets first via decision tree has reduced the search burden
of relevance analysis dramatically. The Lagrangian optimization
technique is then used for obtaining the dimensional weights for
these discriminating visual features [28], [29]:

(7)

We now describe how to learn the classification rules for the
visual concept nodes at the scene level in the classifier. The pos-
terior probability of a video shot with the feature
values being in a video scene can be computed via Bayes
law [47]:

(8)

where and indicate the conditional prob-
abilities for the presence and absence of the video scene ,
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Fig. 7. Bottom-up procedure for building the hierarchical video classifier, where the semantic cluster may include multiple levels according to the concept
hierarchy.

and represent the probabilities for the presence and ab-
sence of the video scene in the training data set, and is the
feature weights for the corresponding visual concept node.

The prior probability of the video scene can be easily
estimated from the labeled training data set by dividing , the
number of instances in the video scene , by the total number of
instances in the training data set, . The condi-
tional density for each video scene is modeled as a
Gaussian distribution or be obtained from a large training data
set by using histogram approximation [47]. The classification
rule for the video scene node is determined by maximizing
the function

(9)

The second level classification (from semantic scene to se-
mantic clusters) is also modeled by a set of probabilities:

(10)

where and indicate the conditional
probabilities for the presence and absence of the cluster ,

and represent the probabilities for the presence
and absence of the cluster in the training data set, and is
the feature weights for the corresponding visual concept node
at the cluster level. The classification rule for the cluster node

is determined by maximizing the function

(11)

The semantic cluster may consist of several levels according
to the concept hierarchy of video contents, we just discuss one
level here as an example because the classification rules for the
other levels can also be obtained via a similar approach.

After the hierarchical semantics-sensitive video classifier is
generated, an interactive pruning step is performed to simplify
the classifier so that all these visual concept nodes are mean-
ingful to the human users. For each visual concept node of the
proposed hierarchical video classifier, Gaussian functions are
used to approximate the distribution of its video shots in its
warped feature subspace (see Section II). The mean and vari-
ances of the distribution of video shots, feature subspace (i.e.,
discriminating features) and their weights, semantic label, and
node seeds are selected for visual concept node representation
and indexing.

B. Video Shot Classification

Once the hierarchical semantics-sensitive video classifier is
in place, it is used to semantically classify the unlabeled videos.
The video shots are first extracted from the unlabeled videos
by using our automatic video shot detection technique. The task
of video shot classification can then be summarized as follows.
Given an unlabeled video shot (obtained from the unlabeled
video) and its -dimensional feature values , it is first as-
signed to the best matching semantic video scene that corre-
sponds to the maximum probability, and subsequently to the best
matching semantic cluster, in a bottom-up fashion according to
the domain-dependent concept hierarchy. Along with each step
of classifying a new video shot into a specific visual concept
node, the means and variances for the corresponding visual con-
cept node is also updated by involving this new video shot.
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Fig. 8. Semantic scenes generated from a video news: (a) reports; (b) army; (c) reports; (d) sports news.

Fig. 9. Semantic scene of dialog generated from medical video.

It is important to note that once an unlabeled video shot is
classified, the semantic labels for the corresponding visual con-
cept nodes that it is assigned to becomes its semantic labes;
therefore the corresponding unlabeled video shot is automati-
cally associated with a hierarchy of semantic labels. Such se-
mantic labels (keywords used for constructing and interpreting
the concept hierarchy) make it possible for video query via se-
mantic visual concepts (see Section IV-A).

High-level semantic visual concept nodes (i.e., cluster levels)
may have lower featural support because the variances of the
shot-based low-level visual features may be very large for these
semantically similar video shots residing in. In order to avoid
this problem, we have identified a number of principal video
shots (i.e., concept abstract) for each high-level visual concept

node and these principal video shots can also be taken as the
node seeds for video classification and access. The basic re-
quirement of seed selection is that the selected principal video
shots (i.e., seeds) for the higher level visual concept node should
convey all the potential visual concepts in its relevant sublevel
visual concept nodes. We currently select these principal video
shots for each visual concept node via a semi-automatic ap-
proach, full-automatic techniques are expected in the future.

To answer query-by-example, the naive users can select to
achieve similarity video search by using the average properties
of clusters (i.e., Gaussian distribution) or the node seeds (i.e.,
principal video shots assigned to the high-level visual concept
nodes).

C. Performance Analysis

In order to evaluate the real performance of our hierarchical
semantics-sensitive video classification technique, we selected
three testing video sources: video news, movies, and medical
videos. The video shots are first detected automatically by using
our adaptive shot detection technique. A set of low-level vi-
sual features as described above are then extracted for video
shot representation and indexing. In order to support video ac-
cess via the high-level visual concepts in our systems, we first
select a training example set and the domain experts are in-
volved to annotate these training examples manually according
to the domain-dependent concept hierarchy. Currently, part of
these training examples are also annotated by the naive users.
After the manual annotation (i.e., high-level visual concepts
from human point of view) and the low-level visual features are
available for these training examples, our hierarchical seman-
tics-sensitive video classification technique is then performed to
obtain the classification rule, feature subspace and dimensional
weights for each high-level visual concept node in the classifier.

After the hierarchical semantics-sensitive video classifier is
obtained, we then obatin its performance based on three testing
video sources. The average performance of our hierarchical
semantics-sensitive video classifier shown in Table I is obtained
from three video sources: movies, video news, and medical
videos. The video scene generation results from two sources
are shown in Figs. 8 and 9.

For one-level and two-state image classification techniques
[26], [30], their classification accuracy can be achieved higher
than 90%. As compared with these traditional one-level and



FAN et al.: ClassView: HIERARCHICAL VIDEO SHOT CLASSIFICATION 79

TABLE I
THE AVERAGE PERFORMANCE OF OUR SEMANTICS-SENSITIVE VIDEO CLASSIFIER

two-state semantic image classification techniques, one can find
that the accuracy ratio for our hierarchical semantics-sensitive
video classifier is not perfect as we expected. The reasons are
as follows.

a) The relevance analysis has been integrated with the EM al-
gorithm to bridge the semantic gap by exploiting the sta-
tistical properties of the semantically similar video shots,
but there is a semantic gap between the low-level vi-
sual features and the high-level visual concepts. Thus the
statistical properties of these shot-based low-level visual
features are too general to characterize the relevant se-
mantic visual concepts. On the other hand, representing
the high-level visual concepts by using the limited node
seeds cannot effectively convey the statistical properties
of the semantically similar video shots residing in the
same visual concept node.

b) It is not the best solution to use the feature weighting
technique to bridge the semantic gap, especially when
the shot-based low-level visual features are unsuitable
for characterizing the relevant visual concepts. The con-
cept-based semantic similarity among these training ex-
amples is too label-intensive because the manual labels
may be defined by the domain experts or the naive users
just according to the semantic categorizations instead of
the visual perceptions.

c) The accuracy of our semantic video classifier also depends
on the distribution of the training example set and some
selected training examples may be irrelevant to the corre-
sponding visual concept, thus result in poor performance.

d) As shown in Fig. 10, the performance of our video shot
classifier depends the size of the training data set, a large
training data set often increases the accuracy of the classi-
fication as shown in Fig. 10. However, it is very expensive
for obtaining the large-scale training example set. The
limited size of the training data set for each specific visual
concept node depends on the dimensions of its discrim-
inating features and the number of its relevant sublevel
visual concept nodes.

e) Our hierarchical semantics-sensitive video classifier
focuses on addressing the video classification problem
with multiple levels (i.e., concept hierarchy) and mul-
tiple states (i.e., each visual concept cluster consists
of multiple sublevel clusters), thus the variances of the
shot-based low-level visual features for the semanti-
cally similar video shots should be very large and thus
result in poor performance. One simple but reasonable
solution is to treat the hierarchical video classifier as a

set of independent one-level and two-state classifiers,
thus each semantic visual concept in our hierarchical
semantics-sensitive video classifier will be generated by
a specific one-level and two-state classifier, but the rela-
tionships among these visual concepts on the same level
will be lost and thus the generated visual concepts may
have heavy overlaps in their low-level feature spaces.

f) The single video shot may consist of multiple semantic
visual concepts and induces very different subjective in-
terpretations, thus the concept-based semantic similarity
between the labeled video shots suffers from the subjec-
tivity problem.

g) As defined in (8) and (10), the conditional probabilities
for the absences of the corresponding visual concepts
are defined as the joint probabilities and

. However, the irrelevant video shots (i.e.,
indicating the absence of the corresponding visual con-
cept) may consist of multiple visual concepts, thus they
will not follow the same joint probability and mixture
probabilities should be used.

IV. HIERARCHICAL DATABASE INDEXING AND ACCESSING

Once video shots are organized via our hierarchical seman-
tics-sensitive video classifier, the next issue is how to provide
more efficient and effective video database indexing through
this structure, so that fast video retrieval and browsing can be
supported in our system. Recall that each visual concept node in
our hierarchical video classifier consists of a set of relevant sub-
level visual concept nodes, and all these visual concept nodes
are further associated with a set of video shots and their distri-
butions in the low-level visual feature space.

The distributions of video shots from different semantic
clusters may overlap in their original feature space. The distri-
bution of video shots from the same semantic cluster may have
large variance in the original feature space. If the traditional
database indexing structures are used for representing these
high-level visual concept nodes via hyper-rectangular or even
hyper-sphere boxes, they suffer from the problem of curse of
dimensionality because of heavy overlap of the distributions
of video shots from different visual concept nodes at the same
level. In order to make the semantically similar video shots
be close to each other and make the semantically dissimilar
video shots be far from each other, we use the discriminating
features with different importances for each visual concept
node. The distributions of video shots for different visual con-
cept nodes at the same database level are isolated as shown in
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Fig. 10. Learned classification accuracy based on different training data size.

Fig. 11 even they have heavy overlap in their original feature
space. As mentioned in Section II, we use Gaussian function
to approximate the distribution of video shots for each visual
concept node in its warped feature subspace with a certain
degree of accuracy.

We use geometric hashing to build the database indices. The
database indexing structure includes a set of hash tables for dif-
ferent visual concept levels: a root hash table for keeping track
of the information about all semantic clusters in the database, a
hash table for each cluster to preserve the information about all
its sublevel clusters, a set of hash tables for each internal nodes,
a hash table for each leaf cluster for indexing all its scenes, and
a hash table for each scene providing indices of all its video
shots, and every index point to the disk pages that the corre-
sponding video shot resides. The leaf cluster node as shown in
Fig. 1, which indicates the end of the concept hierarchy, may in-
clude large number of video scenes or shots and it is inefficient
to index the leaf cluster node by using only one hash table. The
leaf cluster node can further be partitioned into a set of groups
according to its distribution of video shots. This hierarchical
partitioning of a leaf cluster node will end when the number
of video shots in each group is less than a predefined threshold

, where is the total number of video shots in
the group, and is the dimensions of the discriminating fea-
tures for the corresponding leaf cluster node [48].

A. Integrated Video Query

Our hierarchical video database indexing structure can also
support more powerful query-by-example. As mentioned above,
the naive users can select two approaches to achieve query-by-
example: similarity search by using the average properties and
similarity search by using the node seeds.

To answer a query-by-example by using the average prop-
erties, our video database system first extracts the features of
the query-example , which are then
compared to those of the semantic clusters as shown in Fig. 12.
The similarity distance between the query-example and the
cluster in its warped feature subspace is calculated as

(12)

Fig. 11. Feature space transformation to support better node representation:
(a) data distribution for two clusters in the original feature space; (b) data
distribution for two clusters in their warped spaec with different discriminating
features and weights.

where is the similarity distance between the query-
example and the semantic cluster according to their th rep-
resentative feature. If

(13)

then the query processor will subsequently obtain the weighted
sum of the Gaussian probabilities that the subject of the query-
example belongs to :

(14)

Similarly, we can also get other potential semantic clusters
where the subject of query-example also belongs to and the
corresponding Gaussian probabilities. The semantic cluster
with the maximum sum of weighted Gaussian probabilities is
first selected (Fig. 12). In the same fashion, the query processor
can subsequently find the relevant sublevel clusters, groups,
scenes, and then video shots that reside in the database. The
video query results from movie and news clusters are shown
in Figs. 13 and 14. The average performance of hierarchical
video database indexing structure is given in Fig. 15. One can
find that including more hierarchical visual concept levels in
the database indexing structure can reduce the query time, but
it also induces lower query accuracy. The average CPU time
for video query is shown in Fig. 16. The average query time
depends on three parameters: the number of the levels of the
visual concepts in the concept hierarchy, the size of the feature
subspaces for the relevant visual concept nodes, and the size of
the leaf node.

In order to avoid the low featural support for the high-level
semantic visual concepts (i.e., clusters), we have used the
node seeds (i.e., principal video shots) for visual concept
representation and indexing. Given a query video shot

characterized by full -dimensional
representative features, a similarity search is performed as
follows.
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Fig. 12. Hierarchical query procedure: The query processor will first select the most relevant cluster, and then its sublevel cluster, and then the scene, and finally
the video shot before linking it to its point in the storage disk.

Fig. 13. Shot-based video query results from a movie cluster.

a) The query processing subsystem first tries to find the best
matched seed from each cluster. Since there are several
node seeds for each cluster, the weighted feature-based
similarity distance between the query shot

and the th seed of the cluster is calculated:

(15)

Fig. 14. Shot-based video query results from a video news cluster.

where is the similarity distance between
the query shot and the th seed of cluster on the
basis of their th dimensional features. The best matched
seed in the corresponding cluster can be determined as

(16)
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Fig. 15. Average performance of hierarchical video database indexing
technique, and each point is obtained via 810 queries from three different video
sources used in our system.

Fig. 16. Average query cost of our hierarchical video database indexing
technique which is obtained from three video sources.

b) The query processing subsystem then find the best
matched cluster:

(17)
c) The query processing subsystem can then find the best

matched sublevel clusters and finally obtain the best
matched group by using the similar approach. The users
can then decide which video they want by browsing the
content abstractions of the ranked query results.

As introduced in Section III, each video shot inherits a hier-
archy of the semantic labels (i.e., keywords used for constructing
and interpreting the domain-dependent concept hierarchy) for
the corresponding visual concept nodes that it belongs to. Se-
mantic label is also used as an attribute for video database
indexing as described in Section II, thus query by high-level

visual concept can also be supported by using the semantic
labels assigned to the video shots. To answer the query by
visual concept, the query processor performs the similar pro-
cedure that is used for achieving query-by-exmaple, but only
the attribute of the semantic label is used for computing the
concept-based semantic similarity. Since the low-level visual
features and the high-level semantic visual concepts are inte-
grated for video database indexing in our system, more powerful
video database search engine has been provided.

B. Hierarchical Video Database Browsing

Browsing has the advantage to keep the user in the loop in
the search process (i.e., I know it when I see it), however, most
the existing video retrieval systems do not support browsing
because of the lack of efficient visual summary presentation
structure. As mentioned before, a key issue to video database
browsing is whether the visual summaries found make sense to
users and whether the contextual and logical relationship of the
visual summaries at different database level (which will be ac-
cessed by the users hierarchically) is well-defined.

In our current work, the video shots are classified into a set
of hierarchical database management units according the do-
main-dependent concept hierarchy, and this can help us under-
stand the context of video contents in the database. Since the
contextual and logical relationships of the related visual con-
cepts is defined via the domain-dependent concept hierarchy,
our semantics-sensitive video classification and management
structure can provide a good environment for organizing and
presenting visual summaries hierarchically.

For each high-level visual concept node in our database
model (i.e., a semantic cluster, sublevel cluster), we could
create its visual summary either in terms of its most significant
or principal components (i.e., lower-level visual concepts) or
the representative video shots which are closest to the centers
of each component, depending on the desired level of details.
Our system can support three types of browsing: 1) browsing
the whole video database via the summaries of all the semantic
clusters, 2) browsing a semantic cluster via the summaries of
its relevant sublevel clusters, and 3) browsing a leaf cluster
via the summaries of its video scenes. For the high-level
visual concepts, their visual summaries consist of the principal
components of their relevant sublevel visual concepts as shown
in Fig. 17. For the leaf visual concept node (i.e., semantic
video scene) in the concept hierarchy, it is unsuitable to use
the discontinuous key frames to provide the visual summary
for the semantic video scene because the adjoining video shots
may be classified into the same semantic video scene. Thus it
is very important to detect the boundary of the corresponding
semantic video scene and use a “significant” and continuous
video pieces to produce a short but meaningful summary for
the corresponding semantic video scene. As shown in Fig. 18,
we integrated the adjoining and relevant video shots as the
visual summary for the corresponding semantic video scene.

C. Related Problem Discussion

Because classifying video shots into a set of high-level
semantic visual concepts according to the domain-dependent
concept hierarchy can help us understand the logical and



FAN et al.: ClassView: HIERARCHICAL VIDEO SHOT CLASSIFICATION 83

Fig. 17. Visual summaries for video news cluster at the cluster level.

Fig. 18. Visual summaries for video news cluster at the scene level.

contextual relationships among the related visual concepts, our
semantics-sensitive hierarchical video classification technique
can support more effective video database indexing and access.
Annotating videos by using the predefined keywords listed on the
domain-dependent concept hierarchy could reduce the diversity
of the annotation results from different people. Unfortunately,
it still suffers from the following challenging problems.

• Subjectivity problem: The concept hierarchy should be
domain-dependent because bridging the semantic gap, in
general, is still impossible for current computer vision
and machine learning techniques. For each semantic
visual concept (i.e., each node on the classifier and
database indexing structure), its feature subspace, feature
weights (i.e., importances) and classification rule are
predetermined without considering the user’s subjec-
tivity [50]–[52]. The same domain-dependent concept
hierarchy is used as the inherent database indexing tree
structure for video management and holden for all the
users. While it is very important to enable real-time
updating of these predetermined feature subspaces, fea-
ture weights, classification rules and even the inherent

video database indexing structure according to the user’s
subjectivity, it is impossible to perform this real-time
updating for the large-scale video database. In our current
work, the concept hierarchy and the semantic labels for
the training examples are provided by the domain experts
or obtained according to some common knowledge. It is
very important to generate this concept hierarchy atomat-
ically according to the user’s subjectivity, however, it is
very hard if not impossible for current machine learning
techniques to achieve this [54]. Using the common
knowledge or the domain knowledge from the experts
is a good tradeoff for us to address this hard problem
now, obviously, automatic techniques are expected to be
provided in the future.

Our hierarchical semantics-sensitive video classifier
tries to bridge the semantic gap between the low-level vi-
sual features and the high-level semantic visual concepts,
so that the feature-based visual similarity can correspond
to the concept-based semantic similarity by learning from
the limited labeled training examples. Obviously, all these
are schieved under some specific domain. On the other
hand, the semantic labels for these training examples are
also provided by some domain experts or naive users.
Therefore, the performances of the proposed feature
selection and video classification techniques also suffer
from the subjectivity problem.

• High-level summary determination problem: Proper
identification of principal components is very important in
supporting visual summarization for the high-level visual
concepts. However, it is not a trivial work. In our current
work, we define the visual summary for the high-level
visual concepts by exploiting the domain knowledge or
selecting the principal video shots which are close to
the centers of their relevant sublevel visual concepts. It
is important to develop more effective techniques in the
near future for determining the principal components
automatically for the high-level visual concepts.

• Integrated similarity problem: It is very important
to integrate query-by-example with query-by-keywords
because the users may prefer to access video contents via
high-level visual concepts. However, using the shot-based
low-level visual features along cannot characterize the
high-level semantic visual concepts effectively even the
discriminating feature subspace is extracted. On the other
hand, manual annotations and keywords are too subjec-
tive. It is important to integrate the feature-based visual
similarity with the concept-based semantic similarity for
defining more effective similarity measurement among
the high level visual concepts [50]–[52]. Unfortunately, it
is not an easy work to determine the importance between
these two similarity measurements because the impor-
tance also depends on the user’s subjectivity.

On the other hand, the online relevance feedback approach
is more attractive for supporting semantic video retrieval be-
cause it keeps the naive users in the loop of retrieval. Since the
naive users can exchange their subjective judgments with the
database system interactively, the online relevance feedback
approach is more suitable for serving a large population of naive
users [5], [28], [29]. However, the conventional online rele-
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vance feedback techniques suffer from the following problems
when they are applied for video retrieval over the large-scale
database: 1) Few works have been done to integrate the on-
line relevance feedback with the inherent database indexing
structure, thus the conventional online relevance feedback tech-
niques cannot scale to the database size [53]. The conventional
nearest neighbor search is also unsuitable for supporting online
relevance feedback because it treats all the visual features with
the same importance. If the naive users do not have a good
example to start a query, query refinement around some bad
examples is misleading and also very time-consuming. 2) The
expected numbers of query iterations and samples for each
query iteration (i.e., query results deployed to the naive users
interactively) should be small enough because the naive users
may be impatient to browse and label large-scale samples.
Support Vector Machine techniques have been used to address
the problem of limited samples by regarding video retrieval
as a strict two-class classification problem. Since the feature
space for video shot representation and indexing is normally
in high-dimensions, it is still an open problem to learn the
stable classification rules from the limited samples in real-time
[50]. Our hierarchical video database indexing technique can
support more effective video access over the large-scale data-
base. Therefore, the next attractive research issue is how we
can support more effective relevance feedback based on this
proposed hierarchical video database indexing structure.

V. CONCLUSIONS AND FUTURE WORKS

We have proposed a novel framework, called ClassView, to
make some advances in overcoming the problems suffered by
the existing content-based video retrieval systems. A hierar-
chical semantics-sensitive video classifier is proposed to shorten
the semantic gap between the low-level visual features and the
high-level semantic concepts. The hierarchical structure of the
semantics-sensitive video classifier is derived from the domain-
dependent concept hierarchy of video contents in the database.
Relevance analysis is used to shorten the semantic gap by se-
lecting the discriminating visual features and suitable impor-
tances. The EM algorithm is used to determine the classification
rule for each visual concept node. A hierarchical video data-
base indexing and summary presentation technique is also pro-
posed to support more effective video access over the large-scale
database. Integrating video querying with video browsing has
provided great opportunity for supporting more powerful video
search engines.

While we are not claiming to be able to solve all the problems
related to content-based video retrieval, we have made some
advances toward the final goal, close to human-level video
retrieval by using the domain-dependent concept hierarchy.
The following research issues should be addressed in the future
to avoid the limitations of our hierarchical semantics-sensitive
video classification and indexing techniques.

• Research in semantics-sensitive video classification is cur-
rently limited by the relative lack of large-scale labeled
training data set. It should be very attractive to generate the
classification rules by integrating the unlabeled video clips
with the limited labeled video clips. Since the unlabeled

training examples may consist of different visual concepts,
they will not follow the joint probability and they may
also degrade the classification performance. Mixture prob-
ability model is expected to be used for avoiding this joint
probability problem when using the unlabeled training ex-
amples learns more accurate classification rules.

• Video characterization and classification via integration of
multiple media, such as video, audio, and text information
such as closed caption, will provide more meaningful re-
sults. At the same time, it is urgent to address problems of
the normalization of multiple cues and the automatic de-
termination of their importances for semantic visual sim-
ilarity judgment.

• Shot-based low-level visual features may be too general to
characterize the semantic visual concepts associated with
the video shots. A single video shot may consist of mul-
tiple semantic visual concepts, thus the single video shot
should be permitted to be classified into the related mul-
tiple visual concept nodes. Semantic video classification
can be improved by detecting the salient objects such as
human faces, skin color regions, from the video shots be-
cause the presence or absence of the salient objects can
indicate the presence or absence of the relevant visual con-
cepts more effectively.

• The basic assumption of our work is too strong for
some video types, thus our current works include high
classification errors for the movie video source which
includes more complex visual concepts. High-dimensional
data visualization should be developed for evaluating the
effectiveness of the semantic video classifier because the
semantically similar video shots should be close to each
other in their warped discriminating feature subspace.

• It is very important to enable the real-time updating
of these predetermined feature subspaces, dimensional
weights, classification rules or even the inherent con-
cept hierarchy according to the user’s subjectivity for
the large-scale video database. Our hierarchical video
database indexing structure can support more effective
video retrieval and concept-oriented hierarchical video
database browsing, thus it is very attractive to support
the online relevance feedback over this hierarchical video
database indexing structure and achieve more effective
query optimization for the large-scale video database. The
final users will ultimately evaluate the performances of
the inherent video database representation and indexing
model, semantics-sensitive video classification under
the given database model, query optimization and con-
cept-oriented hierarchical video database browsing in the
task of content-based video retrieval. It is very important
to study the human factors in supporting content-based
video retrieval through this proposed prototype system.

Our recent research works focus on providing some practical
solutions for these challenging problems.
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