
VDBMS: A Testbed Facility for Research in Video Database Benchmarking

Walid Aref, Ann Catlin, Ahmed Elmagarmid, Jianping Fan, Moustafa Hammad,
Ihab Ilyas, Mirette Marzouk, Sunil Prabhakar, Yi-Cheng Tu, Xingquan Zhu

http://www.cs.purdue.edu/icds

VDBMS research1 is motivated by the requirements of
video-based applications to search by content, and by the
need for testbed facilities for research in video database
management. Our fundamental concept is to provide a full
range of functionality for video as a well-defined abstract
data type. The research issues addressed include: MPEG7
for multimedia content representation, techniques for
image processing, high-dimensional indexing, multimedia
query processing and optimization, new query operators,
real-time stream management, access control models for
streaming, and search-based buffer management. VDBMS
also provides an environment for testing and comparing
algorithms in a standardized way. We are currently
developing component wrappers with well-defined
interfaces to facilitate the modification or replacement of
components. Our ultimate goal is a flexible, extensible
framework that can be used for developing, testing and
benchmarking video database technologies.

1.0 Introduction

A significant and ever increasing portion of the
information created today has audio-visual components,
and most of it is now available in digital form. Real world
video-based applications require database technology that
is capable of storing this information in the form of video
databases and providing content-based video search and
retrieval. Methods for handling traditional data storage
and retrieval cannot be extended to provide this
functionality, and current approaches for handling video
(stored in video servers or as Binary Large OBjects) hide
the video data from the database system so that
meaningful processing and optimization is not possible.
Important functionality such as online customized video
views, content-based queries, video content control during
streaming and data abstraction cannot easily be supported.
The development of the VDBMS video database
management research platform is motivated by the
requirements of video-based applications to retrieve
portions of video data based on content and by the need
for testbed facilities to facilitate research in the area of
video database management. VDBMS provides a full
range of functionality for video as a well-defined data
type, with its own description, parameters and applicable

1 This work was supported in part by the National Science
Foundation under Grants IIS-0093116, EIA-9972883, IIS-
9974255, and IIS-0209120

methods. The development and integration of a video data
type into the database management system achieves a
clear separation between the video processing and
database components. This allows video-based application
design to focus on details of the application itself, while
relying on the underlying video framework components
for storage, search, retrieval, analysis and presentation of
the video data.

VDBMS system components include a video pre-
processing toolkit, a high-dimensional index manager, a
stream manager, and a search-based buffer management
policy. These VDBMS system components are described
in this paper, and details can be found in the literature
[1,2,8,10,13]. We present VDBMS as a research platform
because it provides an open and flexible environment for
investigating new research areas related to video database
management, including the implementation, integration
and evaluation of new and existing algorithms. Research
problems that were addressed within the VDBMS
environment to support the handling of video data include
MPEG7 document compliance for importing and
exporting video features [1], algorithms for image-based
shot detection [7,8], image processing techniques for
extracting low-level visual features [8], hierarchical video
summarization strategies for abstracting video content, a
high-dimensional indexing technique to access the high
dimensional feature vectors extracted by image pre-
processing, new multi-feature rank-join query operators
for image similarity matching [13], a real-time stream
manager to admit, schedule, monitor and serve concurrent
video stream requests, an enhanced buffer management
policy that integrates knowledge from the query processor
to improve streaming performance [10], and an access
control model that provides selective, content-based
access to streaming video data [5].

While investigating, developing, and testing the
fundamental components required to support full video
database functionality, we also utilized VDBMS as a
testbed for integrating and evaluating video processing
technologies from other sources. As such, the system has
provided us with an environment for testing the
correctness and scope of algorithms, measuring the
performance of algorithms in a standardized way, and
comparing the performance of different implementations
of a component. The next step in VDBMS system
development is the construction of video component
wrappers with well-defined interfaces that allow video

components to be easily modified or replaced. We also
plan to provide the corresponding semi-automatic
mechanisms for integrating these components into
VDBMS. The ultimate goal of the VDBMS project is a
flexible, extensible framework that can be used by the
research community for developing, testing and
benchmarking video database technologies.

We describe selected VDBMS system components in
Sections 2 and 3. To demonstrate the usefulness of
VDBMS as a testbed for video database benchmarking,
Section 4 presents experimental studies for alternative
techniques implemented within the VDBMS environment.

2.0 The Query Interface

A VDBMS query interface client supports content-
based query, search, retrieval and real-time streaming for
the VDBMS video database server. End-users can query
by image, camera motion, or keywords. In image-based
queries, users present an example image and query the
database for images or shots “most similar” to the
example based on any number and combination of visual
features. The features of the user’s query image are
extracted online and sent to the server for execution.
Results can be either frame level (video frames with
similar features) or shot level (video shots with similar
aggregate features, where aggregation is computed across
shot frames.) The VDBMS query processor returns a
ranked list of results, and users can navigate an image
skim of the results. When the user requests shot-level
results, a key frame representing shot content is returned
to the user, and the user can select the key frame to stream
the shot directly from the database to the query interface
media player.

Figure 1. VDBMS query interface.
Users access the VDBMS query interface using the

Windows-based client shown in Figure 1. The client
connects to the VDBMS system which resides on a Sun
Enterprise 450 machine with 4 UltraSparc II processors.
VDBMS functionality has been tested against more than

500 hours of medical videos obtained from the Indiana
University School of Medicine. The medical videos are
digitized, compressed into MPEG1 format, processed off-
line by the VDBMS pre-processing toolkit to generate
image and content-based meta-data, and then stored
together with their meta-data in the VDBMS database.

3.0 The Video Database Management System
The VDBMS database management system is built on top
of an open source system consisting of Shore [23], the
storage manager developed at the University of
Wisconsin, and Predator [20], the object relational
database manager from Cornell University. The VDBMS
research group has developed the extensions and
adaptations needed to support full database functionality
for the video as a fundamental abstract database data type.
Key database extensions include high-dimensional
indexing, video store and search operations, new video
query types, real-time video streaming, search-based
buffer management policies for continuous streaming, and
support for extended storage hierarchies including tertiary
storage. These extensions required major changes in many
traditional database system components. Figure 2
illustrates our layered system architecture with its
functional components and their interactions. The system
consists of the object storage system layer at the bottom,
the object relational database management layer in the
middle, and the user interface layer at the top.

Figure 2. VDBMS layered system architecture.

3.1 A Video Pre-processing Toolkit
The VDBMS video-preprocessing toolkit applies

image and semantic processing to partition raw video
streams into shots, then associates the shots with extracted
visual and semantic descriptors that represent and index
the video content for searching. Preprocessing algorithms
detect the video scene boundaries that partition the video
into meaningful shots using a process that computes color
histogram differences and incorporates a mechanism for

dynamic threshold determination [7]. Video shots are then
processed to extract MPEG7 compatible low-level visual
feature descriptors [2,7,8], spatial and temporal
segmentation, representative key frames, and the semantic
annotations of domain experts. The video, its features and
indices are stored in the VDBMS database. Our system
follows the recent trend of representing content
description in an XML-like format according to MPEG7
[14] multimedia content descriptors. MPEG7 is the
worldwide standard for video content description, and
VDBMS video pre-processing extracts nearly all low-
level features defined by MPEG7, including color
histogram (HSV,YUV), texture tamura, texture edges,
color moment and layout, motion and edge histograms,
dominant and scalable color, and homogeneous texture.

We are currently developing a wrapper that abstracts
the extraction, representation, and query of features. This
plug-in component allows users to define a new feature,
supply its extraction (image processing) algorithm, and
query against the feature for image similarity matching.
Our wrapper and integration mechanisms incorporate the
feature into the query interface, create the schema for
database representation and apply the user-provided
algorithm during video pre-processing and image-based
queries. This will allow researchers to compare and
evaluate alternate methods, improve exiting algorithms or
develop new ones.

3.2 High-dimensional Video Indexing
Since high-dimensional feature data is collected for each
video frame and aggregated for each video shot, the meta-
data that represents and indexes video content occupies
more disk space than the video itself. The magnitude of
this meta-data and its storage as high-dimensional vectors
present serious indexing and searching difficulties in the
execution and optimization of feature-based queries.
VDBMS extended the indexing capability of Shore by
incorporating the GiST v2.0 implementation [11,24] of the
SR-tree as the high-dimensional index [4,12,15] and
modified the query-processing layer of Predator to access
the Shore/GiST index. VDBMS added the vector ADT to
be used by all feature fields, and creates an instance of the
GiST SR-tree for each field to be used as the access path
in feature matching queries.

3.3 The Query Processor

The query processor handles the new high-dimensional
indexing scheme, supports new video query operators, and
takes into account the video methods and operators in
generating, optimizing and executing query plans. Image
similarity search is performed by issuing nearest neighbor
queries to the high-dimensional access path.

In multi-feature image similarity queries, users present
a sample image and query the database for images “most
similar” to the example based on some collection of visual

features. Results should be determined according to a
combined similarity order [9,17]. We have developed a
practical, binary, pipelined query operator, NRA-RJ,
which determines an output global ranking from the input
ranked video streams based on a score function [13]. Our
algorithm extends Fagin’s optimal aggregate ranking
algorithm [6] by assuming no random access is available
on the input streams. A new VDBMS query operator
encapsulates the rank-join algorithm in its GetNext
operation. Each call to GetNext returns the next top
element from the ranked inputs. The output of NRA-RJ
thus serves as valid input to other operators in the query
pipeline, supporting a hierarchy of join operations and
integrating easily into the query processing engine of any
database system.

Our modifications to the original NRA algorithm are
the following:

• The right input list is a source stream that provides
the operator with the ranked objects and their exact scores.
The left input may can be the output of another NRA-RJ
operator. In this case, the score is expressed as a range,
from worst to best. This means that GetNext must be able
to handle a score range rather than an exact score from the
left iterator.

• Parameter k, the number of requested output
objects, is not known in advance, rather it increases for
each call to GetNext.

The incremental and pipelining properties of our
aggregation algorithm are essential for practical use in
real-world database engines. Our new operator will help
implement this type of join in ordinary query plans.

A modular interface for the integration of query
operators into the VDBMS query processor is currently
underway. The interface will support the integration of
user-developed operators into the query execution plan. It
will also support the performance evaluation and
comparison of alternative algorithms for implementing
query operators by allowing developers to identify
performance metrics and test point locations for collecting
measurements and statistics. In Section 4.2, we
demonstrate this concept in the context of performance
analysis for different algorithms that implement the multi-
feature ranking query operator.

3.4 The Stream Manager

The VDBMS stream manager is responsible for
handling the special needs of video streaming. Each
request for video data needs to be streamed with a
predetermined rate. Violating the rate of streaming by
either increasing or decreasing the display rate may result
in overflow at the client buffer or hiccups at the client
side. To hide the latency associated with access to disk
storage, the stream manager streams part of the data while
pre-fetching the next segment into the memory buffers.

Since many stream requests are serviced
simultaneously by the manager, resources such as memory
buffers and disk bandwidth must be divided among the
streams. This is achieved by serving each stream request
periodically, and serving additional concurrent streaming
requests within that period. Due to limited memory and
disk bandwidth, the manager can only serve a specific
number of requests within a single period. To serve
requests in real-time, the segment referenced next should
be retrieved into the buffer before the end of the current
period. We have implemented a real-time stream manager
[2] above the buffer manager layer in VDBMS as multi-
threaded modules. It has well defined interfaces with the
query engine, the buffer manager, and the Extensible
Abstract Data Type (E-ADT) interface.

3.5 Search-based Buffer Management

Continuous-media servers that support content-based
search and retrieval use a main memory buffer to store the
requested media streams before sending them on to the
user. Caching parts of media streams that may be
referenced in the near future enhances streaming
performance in two ways: it reduces the number of
references to disk storage and it minimizes delay
associated with the start of streaming. Optimal pre-fetch
and replacement policies would pre-fetch the data before
its first reference and replace the data block that will not
be referenced for the longest time [21]. An obvious
difficulty is the policy’s dependence on knowledge about
expected streams, which is generally not available. In the
case of video streaming, however, there is a connection
between query processing and streaming: choices for
streaming are usually based on query results, and this
relationship can be used by the buffer manager to pre-
fetch and cache pages expected for reference.

The VDBMS buffer management policy uses feedback
from the query engine to make more accurate replacement
and pre-fetching decisions [10]. Top-ranked query results
are used to predict future video streaming requests, and a
weight function [3] determines candidates for caching. By
integrating knowledge from the query and streaming
components, VDBMS can achieve better caching of media
streams, thus minimizing initial latency and reducing disk
I/O.

In our search-based replacement policy, pages in the
buffer pool that are referenced by either current or
expected streams are considered for caching. We prefer
caching pages that will be reference by current streams to
those that will be referenced by expected streams,
assigning higher keep weight values to the current
streams. Lookup tables contain pointers to expected
streams, which are collected from the search results and
checked by the stream manager for matches when
determining pages to replace. The stream manager tracks
the utilization of the streaming period, and utilizes any

fraction of the streaming period unused by current streams
to pre-fetch the first segment of the top ranked expected
streams into the memory buffer. The pre-fetching policy
does not introduce much overhead, since it operates only
during idle period time, utilizing unused and reserved
streaming resources.

The performance of the search-based policy was
evaluated by investigating the effects of buffer
management on the number of I/Os when referencing the
first segment of a requested stream. Experimental results
are presented in Section 4.1.They show that initial latency
of the search-based policy is reduced on the average by
20% when compared with traditional policies.

4.0 Testbed for Video Database Benchmarking

While investigating and implementing components to
support full video database management, we have utilized
VDBMS to investigate, integrate, validate, compare and
evaluate alternate video processing techniques and
technologies. To illustrate the effectiveness of the current
VDBMS system for new component integration,
validation, and performance evaluation, we briefly
describe two recent research projects carried out within
the VDBMS environment. The contribution of these and
other experimental studies to the understanding of video
processing within the database environment is the
motivation for our effort to create a testbed facility for
video database benchmarking.

4.1 Validation of a Buffer Management Policy

To validate the search-based buffer management
policy in a heavy workload environment [10], we execute
32 simultaneous clients. Each client submits an image-
based query to VDBMS and receives a collection of key
frame representing the results of a shot-based image
similarity search. The client delays for a random period
(uniformly distributed between 10 to 20 seconds) after
retrieving the results, and then submits a streaming request
for one of them. We assume the client plays a shot
selected from the four top-ranked results 80% of the time.
The VDBMS stream manager admits the streaming
request if possible; otherwise the request is delayed until
one of the current streams has finished. The client
immediately submits a new search request following the
streaming of the selected shot, so that a heavy load
situation is maintained. Search results are synthesized by
randomly selecting 10 candidate shots from the database.
The random selection provides an upper bound for the
performance of our policy. Our keep weight is set to three
for pages referenced by an expected stream, and four for
pages referenced by a current stream. Higher values for
the keep parameter lead to excessive looping over buffer
pages to find replacement candidates. The experimental
data consists of eight one-hour videos, compressed in
MPEG-1 format with a total size of five Gbytes. Each

video has been pre-processed into shots with lengths
between 5 and 10 minutes. We set the page size to
8Kbytes, the segment size to 30 pages, and the maximum
number of concurrent streams to 16. Each experimental
run lasts for 30 minutes, and the total number of buffer
references is approximately 500,000.

We studied the performance of the following policies:
• Search-based replacement (SrchBR): pages cached

if referenced by current or expected-stream requests
• Search-based pre-fetching and replacement

(SrchBPR): first segment of expected-stream pre-fetched;
pages cached if referenced by current or expected requests

• Stream-based replacement (StrmBR): pages cached
only if referenced by concurrent stream request

• Use&Toss: pages are candidates for replacement
immediately after use

Figure 3. Reduction in I/O with change in (a) buffer
size (b) number of videos. (c) Improvement in buffer
hit ratio as buffer size changes.

Figure 3(a) shows the effect of the buffer policies on
reducing the number of I/Os when referencing the first
segment of the stream. For each first segment, we measure
the percentage of pages found in the buffer as we increase
the buffer size from 10 to 25 Mbytes. The figure shows
that SrchBPR caches about 25% of the total pages of new
streams based on the search results (initial latency reduced
by 25%.) Although SrchBR achieves better results than
StrmBR and Use&Toss, it caches only those pages either
used by current streams or referenced by expected
streams, therefore the improvement is smaller than that of
the pre-fetch policy. StrmBR has no knowledge of
expected streams and performs about the same as
Use&Toss. In Figure 3(b), the buffer size is fixed at 25
Mbytes, and we measure the reduction in I/O when
referencing the first segment of the stream as the number
of stored videos is increased from two to eight. SrchBPR
achieves the best performance, as high as 40% reduction
in the number of I/Os. This improvement results from
both pre-fetching and replacement strategies, since more
common data now exists between current and expected-
streams. As the number of videos increases, the chance for
interaction decreases and the improvement is dominated
by the positive effects of pre-fetching. The effect of the
replacement policy is obvious in SrchBR and StrmBR, as
both reduce the I/Os with small data sets. With larger data
sets, StrmBR and Use&Toss contribute similarly to the

reduction of I/O, since both have no knowledge about
expected streams. The short duration of streamed
segments represents an obstacle for replacement
algorithms that depend only on current streams for two
reasons: 1) in large data set with uniform access patterns,
common pages are infrequent, and 2) common pages
generally exist within a short interval of each other
(intervals are bounded, on average, by half the length of a
shot). Replacement policies based on caching common
pages between current streams will thus have a small
number of pages to recommend for caching.

Figure 3(c) shows the relative improvement in the
buffer hit ratio for policies based on current streams. As
the buffer size increases, more space is available to cache
the data and the chance of replacement is decreased. With
small buffer sizes, pages are replaced more frequently and
the improvement achieved with search-based policies such
as SrchBPR and StrmBR becomes significant.

4.2 Evaluation of Rank-Join Query Operators

We implemented three state-of-the-art rank-join
algorithms as query operators in VDBMS for an extensive
empirical study to evaluate operator performance and
trade-off issues in executing multi-feature queries. Our
experimental study compares the VDBMS NRA-RJ
operator, the J* operator introduced by Natsev et al.[18],
and (for a baseline comparison) the non-pipelined version
of the NRA algorithm as a multi-way rank-join operator,
MW-RJ [6]. Although most query optimizers are
restricted to binary operators, MW-RJ provides a
reference line for the best possible performance. We
investigated scalability as well as time and space
complexity between the algorithms for executing a join of
multiple ranked inputs (any number and combination of
features) on the stored video objects. The following multi-
feature query for the k top-ranked results was issued
against the VDBMS features:

Retrieve the top k video shots “most similar” to a
given image based on m visual features.

The query evaluation plan has m nearest neighbor (NN)
operators on m different visual features, and m-1 rank-join
binary operators are used, where the results of one
operator are pipelined to the next operator in the pipeline.
The number of features m in our study varies from 2 to 6,
and the number of top-ranked results k varies from 5 to
100. To evaluate the operators, we used the following
performance metrics: (1) query running time for retrieving
the top matching k output results, (2) size of the buffer
maintained by the operator, and (3) number of database
accesses in disk pages. While the number of database
accesses should give a good indication of the time
complexity of the operator, the experiments show a
significant CPU time complexity difference between the
two operators that affects the total running time, especially
for small numbers of inputs.

Figure 4. Comparison of NRA-RJ and J* for m=2.
Figures 4 and 5 give performance comparisons for

NRA-RJ, J* and MW-RJ, for m=2 and m=3, respectively,
where m is the number of input sources that give a
pipeline of length m-1. For m=2, NRA-RJ is identical to
MW-RJ since there is no pipeline. Figure 4(a) compares
the total running time of the NRA-RJ and J* operators.
The J* algorithm has a significant CPU overhead due to
the execution of its underlying A* graph search algorithm,
which considers more join combinations. Thus, NRA-RJ
shows a faster execution time. Both operators are nearly
equal in the database access count depicted in Figure 4(c).
NRA-RJ has a smaller maximum queue size than that of
J*, as shown in Figure 4(b), and the difference increases
as k increases (i.e., as more results are requested). The
difference in the maximum queue size and in the
execution time can be explained by the fact that the J*
algorithm has to consider more join combinations than
NRA-RJ since it was developed for a general join
condition. When used in self-join problem settings, the
generality of the J* algorithm causes expensive
unnecessary computations that increase both the queue
size and the running time.

Figure 5. Comparison of NRA-RJ, J* and MW-RJ for
m=3.

Figure 5 compares the NRA-RJ, J* and MW-RJ
operators for m=3. Figure 5(a) shows that NRA-RJ still
outperforms J* in total running time, and the pipeline does
not affect the speed of the NRA-RJ operator when
compared with MW-RJ. For the maximum queue size
given in Figure 5(b) and the number of database accesses
given in Figure5(c), we make the following observations:

• NRA-RJ has a larger maximum queue size and
more database accesses than MW-RJ. This results from
the tendency of NRA-RJ in the early pipeline stages to
retrieve more database objects in order to deliver as many
ranked tuples as required by the next NRA-RJ operator.
We refer to this as NRA-RJ’s local ranking problem.

• The J* operator has less database access cost than
NRA-RJ, and close to the cost of MW-RJ, despite NRA-
RJ's local ranking problem. In contrast to NRA-RJ, the
J*’s algorithm does not retrieve equal numbers of objects
from its left and right children.

• For the same reason that J* has less disk accesses
than NRA-RJ, J* starts with smaller maximum queue size
than NRA-RJ. However, as in the case for m=2, J* begins
to save many candidate join combinations in the queue,
causing its maximum queue size to become larger than
that of NRA-RJ as k increases. This also explains the fact
that J* has a larger queue size than MW-RJ, even though
both are retrieving almost the same number of database
objects, as shown in Figure 5(c).

Figure 6. The optimized NRA-RJ operator.
Our evaluation of the performance of NRA-RJ led to

an important insight: we must minimize the excessive
local ranking calls in earlier stages of the pipeline. Our
solution was to unbalance the depth step in the operator
children. We changed the NRA-RJ GetNext algorithm to
reduce the local ranking overhead by changing the way it
retrieve tuples from its children, that is, to require less
expensive GetNext calls to the left child, which is also an
NRA-RJ operator. Using different depths in the input
streams had a major effect on the performance. Figure 6
shows the comparison between the modified NRA-RJ, the
J* and the MW-RJ operator. The optimized NRA-RJ
operator showed significant performance improvements in
both the maximum queue size and in the number of
database accesses, due to the reduction of local ranking
overhead in the inner pipeline stages. With this
improvement, the optimized NRA-RJ operator is superior
to the J* operator, even for large m. The optimized NRA-
RJ operator is an order of magnitude faster, has less space
requirements, and has a comparable number of disk
accesses [13].

5.0 Conclusion

In this paper, we present a video database research
initiative that resulted in the successful development of a
video database management system which provides
comprehensive and efficient capabilities for indexing,
storing, querying, searching, and streaming video data.
Our fundamental concept was to support a full range of
functionality for video as a fundamental, well-defined
abstract database data type. We have also used VDBMS

as a testbed for integrating and evaluating video
processing techniques and components. As such, the
system has provided us with an environment for testing
the correctness and scope of algorithms, measuring the
performance of algorithms in a standardized way, and
comparing the performance of different implementations
of components. The use of VDBMS as a testbed facility
was illustrated by performance studies to investigate and
analyze alternative implementations of video database
processing methods.

We are currently constructing video component
wrappers with well-defined interfaces to facilitate the
modification or replacement of video processing
components. We are also developing semi-automatic
mechanisms for integrating these components into
VDBMS. The ultimate goal of the VDBMS project is a
flexible, extensible framework that can be used by the
research community for developing, testing and
benchmarking video database technologies.

References
[1] Aref, W., Catlin, A. C., Elmagarmid, A., Fan, J.,
Hammad, M., Ilyas, I., Marzouk, M., and Zhu, X. A
video database management system for advancing video
database research., MIS2002. Intl. Workshop on
Multimedia Info. Sys. Tempe, Arizona. Nov. 2002.
[2] Aref, W., Catlin, A. C., Elmagarmid, A., Fan, J., Guo,
J., Hammad, M., Ilyas, I., Marzouk, M., Prabhakar, S.,
Rezgui, A., Teoh, S., Terzi, E., Tu, Y., Vakali, A. and
Zhu, X. A distributed server for continuous media. In
Proc. 18th Conf. on Data Eng. San Jose, CA. Feb. 2002.
 [3] Aref, W., Kamel, I. and Ghandeharizadeh, S. Disk
scheduling in video editing systems. IEEE Trans. on
Knowledge & Data Eng. 13(6). pp. 933-950. Nov. 2001.
 [4] Berchtold, S., Böhm, C., Jagadish, H., Kriegel, H-P.
and Sander, J. Independent quantization: An index
compression technique for high-dimensional data spaces.
In Proc. 16th Intl. Conference on Data Engineering. San
Diego, CA. pp. 577-588. February 2000.
 [5] Bertino, E., Hammad, H., Aref, W. and Elmagarmid,
A. An access control model for video database systems. In
Proc. 9th Intl. Conf. on Info. & Knowledge Mgmt. pp.
336-343. November 2000.
 [6] Fagin, R., Lotem, A. and Naor, M. Optimal
aggregation algorithms for middleware. In PODS’01
Santa Barbara, CA. May 2001.
 [7] Fan, J., Aref, W., Elmagarmid, A., Hacid, M-S.,
Marzouk, M. and Zhu, X. Multiview: Multi-level video
content representation and retrieval. Journal of Electrical
Imaging, Vol. 10, No. 4, pp. 895-908, Oct 2001.
[8] Fan, J., Hacid, M-S. and Elmagarmid, A. Model-based
video classification for hierarchical video access.
Multimedia Tools and Appls.. Vol. 15. Oct 2001.

[9] Guntzer, U., Balke, W-T. and Kiessling, W.
Optimizing multi-feature queries for image databases. In
Proc. 26th Conf. on Very Large Databases. Cairo, Egypt.
p. 419-428. Sept 2000.
[10] Hammad, M., Aref, W., and Elmagarmid, A. Search-
based buffer management policies for streaming in
continuous media. In Proc. IEEE Intl. Conf. on
Multimedia & Expo. Lausanne, Switzerland. Aug. 2002.
[11] Hellerstein, J., Naughton, J. and Pfeffer, A.
Generalized search trees for database systems. In Proc. of
21st Conf. on Very Large Data Bases. Zurich, Switzerland.
Sept 1995.
[12] Ilyas, I. and Aref, W. SP-GiST: An extensible
database index for supporting space partitioning trees. J.
of Intelligent Sys. (JIIS). 17(2-3). pp. 215-235. 2001.
[13] Ilyas, I, Aref, W, and Elmagarmid, A. Joining ranked
inputs in practice. In Proc. 28th Conf. on Very Large
Databases. Hong Kong, China. 2002.
[14] ISO/IEC/JTC1/SC29/WG11: ISO/IEC 15938-3
Multimedia Content Description Interface Final
Committee Draft. Document No. N4062. March 2001
[15] Katayama, N. and Satoh, S. The SR-tree: An index
structure for high dimensional nearest neighbor queries.
ACM SIGMOD Record, Vol. 26(2). 1997.
 [16] Moser, F., Kraiss, A. and Klas, W. L. A buffer
management strategy for interactive continuous data flows
in a multimedia dbms. In Proc. 21st Conf. on Very Large
Databases. Zurich, Switzerland. pp. 275-286. Sept. 1995.
[17] Nepal, S., Ramakrishna, M. Query processing issues
in image (multimedia) databases. In Proc. 15th Intl. Conf.
on Data Eng. March 23-26. Sydney, Australia. p. 22-29.
IEEE Computer Society, 1999.
[18] Natsev, A., Chang, Y-C., Smith, J., Li, C-S. and
Vitter, J. Supporting incremental join queries on ranked
inputs. In Proc. of 27th Conf. on Very Large Data Bases.
Rome, Italy. 2001.
[19] Ozden, B., Rastogi, R. and Silberschatz, A. Buffer
replacement algorithms for multimedia storage systems. In
Proc. of IEEE Conf. on Multimedia Computing and
Systems. pp. 172-180. 1996.
[20] Seshadri, P. Predator: A resource for database
research. SIGMOD Record. Vol. 27(1). pp. 16-20. 1998.
[21] Smith, J. Sequentiality and prefetching in database
systems. ACM Trans. on Database Systems. 3(3). pp. 223-
247. September 1978.
[22] Stonebraker, M. Operating system support for
database management. CACM. 24(7). pp. 412-418. 1981
[23] Storage Manager Architecture. Shore Documentation,
Computer Sciences Department. UW-Madison. 1999.
[24] Thomas, M., Carson, C., and Hellerstein, J. Creating
a Customized Access Method for Blobworld, In Proc 16th
Conf. on Data Eng., San Diego, CA. Mar. 2000.

