Information Theory and

The Perception-Action Cycle

Naftali Tishby

Interdisciplinary Center for Neural Computation
The Hebrew University, Jerusalem

Information Beyond Shannon
Venice - Italy, December 29-30, 2008,

Perception-Action Cycles

Executive memory

Perceptual memory

Multiple cycles with Multiple time scales!

The Perception-Action Cycle

The circular flow of information that takes place between the organism and its environment in the course of a sensory-guided sequence of behavior towards a goal.
(JM Fuster)

Outline

- Predictive information and the perception-action cycle
- A model for the circular flow of information in the cycle(s)
- The analogy with Shannon's Information Theory
- The unknown future as the channel input
- The future-past channel capacity: Predictive Information
- Two solvable examples
- Gambler in a binary world
- Optimal solution: the Past-Future Information Bottleneck
- A linear system in a Gaussian environment
- Optimal (Kalman-Ho) dimension reduction in LQR control
- Application to neuroscience
- Surprise in Auditory Perception
- Or why do we enjoy music?

A conceptual framework

The "Environment": Partially observed, (stationary?) stochastic process

We must simplify ...

(...hopefully not oversimplify...)

Internal Representations

The Environment: stationary stochastic process

Internal Representations

PAST
FUTURE

Internal Representations

PAST
FUTURE

(Optimal) Internal Representations

we like to think probabilistically

- Environment: $\mathrm{P}(\mathrm{X}, \mathrm{Y})$
- Internal representation: $\mathrm{P}(\mathrm{T} \mid \mathrm{X}), \mathrm{P}(\mathrm{Y} \mid \mathrm{T})$

Information Theoretic view of
 The Perception-Action Cycle

Sensing Cost

Simpler
 Perception-Action Cycle

The environment

The organism
Optimum: The Information Bottleneck optimal decoders/predictors

(Optimal) Internal Representations

and we want a computational principle...

- Environment: $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$ - predictive information
- Internal representation: $\mathrm{I}(\mathrm{T} ; \mathrm{X}), \mathrm{I}(\mathrm{T} ; \mathrm{Y})$ - compression \& prediction

(Optimal) Internal Representations and a computational principle...

Model Quantifiers:

- Complexity ("cost"): I (T;X)
- Predictive Info ("value"): I(T;Y)

Optimality Trade-off:

- minimize complexity
- maximize predictive-info
- Environment: $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$ - predictive information
- Internal representation: $\mathrm{I}(\mathrm{T} ; \mathrm{X}), \mathrm{I}(\mathrm{T} ; \mathrm{Y})$ - compression \& prediction

Perception-Prediction-Action Cycle

The organism
The Past-Future Information Bottleneck

A simple example:

The compulsive gambler in a binary world

A solvable example

A Gambler in a k-order Markov environment

Finite Automaton
Memory cost organism

wealth growth

Optimum: any side-information helps

The optimal compulsive gambler

$\boldsymbol{k}^{\text {th }}$-order Markov environment

Cost:
I(past:X)

$E \log$ Value $=$
I (X:future)

X: PFSA organism
(Probabilistic Finite State Automata)
Optimum: proportional biddling with IB predictive information

The Predictive Channel

Predictive Information:

The Capacity of the Future-Past Channel

 (with Bialek and Nemenman, 2001)

- Estimate $\mathrm{P}^{\top}\left(\mathrm{W}^{(-)}, \mathrm{W}^{(+)}\right)$: T-past-future distribution

Logarithmic growth for finite dimensional processes

- Finite parameter processes (e.g. Markov chains)

$$
I_{\text {pred }}(T \rightarrow \infty) \approx \frac{\operatorname{dim}(\theta)}{2} \log T
$$

- Similar to stochastic complexity (MDL)

Power law growth

- Such fast growth is a signature of infinite dimensional processes

$$
I_{\text {pred }}(T \rightarrow \infty) \approx T^{\alpha}
$$

$\alpha<1$

- Power laws emerges in cases where the interactions/correlations have long range

But WHAT - in the past - is predictive ?

The predictive capacity has multiple scales

- Find the "relevant part" of the past w.r.t. future...

Solve:

$$
\operatorname{Min}_{z} I\left(W^{(-)} ; Z\right)-\beta I\left(W^{(+)} ; z\right) \text { for all } \beta>0
$$

T-past-future information curve: $I^{\top}{ }_{F}\left(I^{\top}{ }_{P}\right)$

$$
I_{\text {Future }}\left(I_{\text {Past }}\right)=\lim _{T \rightarrow \infty} I_{F}^{\top}\left(I_{P}^{\top}\right)
$$

The environment's Predictive Information bounds the cycle's efficiency and the Perception-Action Capacity

A simple illustration

$$
\begin{array}{ll}
x \in\{1,2, \ldots, 18\} & , \quad|X|=18 \\
y \in\{A, B\} & ,|Y|=2
\end{array}
$$

$$
P(X, Y)
$$

A simple illustration

(most complex)

Info Curve

(perfect predictions)

$$
T=X \quad, \quad I(T ; X)=H(X)
$$

A simple illustration

$I(T ; X)=3$ bit

A simple illustration

$I(T ; X)=2$ bit

A simple illustration

$I(T ; X)=1$ bit

A simple illustration

$I(T ; X)=0.5$ bit

A simple illustration

$I(T ; X)=0$ bit

Application to neuroscience:

Auditory cortex encodes surprise

(or why do we enjoy music?)
(with Israel Nelken and Jonathan Rubin, Shlomo Dubnov)

The predictive bottleneck

Perception-Prediction-Action Cycle

The organism

The Past-Future Information Bottleneck

Information curve showing the optimal predictive information (surprise) as a function of the complexity of the internal model (memory bits) for the next-tone prediction of oddball sequences using a memory duration of 5 tones back.

The physiological surprise

Quantifying the complexity of neural representations

(1)

(2)

(3)

(4)

Left: scatter plots of the neural responses to either ' A ' (blue) or ' B ' (red) and the surprise values calculated for a specific model. Dots mark the mean response at a given surprise level, and the error-bars represent 25 and 75 percentile of the data. Right: (1) PSTH for stimulus ' A ', each row is the averaged PSTH corresponding to a single point in the scatter-plot, sorted from low to high surprise level. (2) PSTH for stimulus ' B '. (3) Correlations for ' A ' (as explained before). (4) Correlations for ' B '.

The PSTH plots help to see what part of signal is correlated with the surprise. For instance the onset seems pretty constant (and absent in the responses to ' B '), where the sustained part seems to be very correlated with the surprise.

Cortical representation of (optimal) auditory surprise

Summary

- The Perception-Action Cycles have an intriguing analogy with Shannon's model of communication, which suggests asymptotic bounds on the optimal cycle's efficiency
- This model extends old results on optimal gambling to a much more general optimal value-cost tradeoff with long sensing-decision-action sequences
- Crucial quantities are the "environment's predictive capacity" and the "perception-action-capacity".
- While obviously still rudimentary, the model provides new ways for analyzing neuroscience data and new insights on motor control and deficiencies.

Many Thanks to...

- Bill Bialek
- Amir Globerson
- Ilya Nemenman
- Eli Nelken
- Jonathan Rubin
- Gal Chechik
- Shlomo Dubnov
- Ohad Shamir
- Naama Parush
- Felix Creutzig
- Roi Weiss

