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Part I: Information triples, non-probabilistic
modeling

Kolmogorov (≈ 1970): information theory must pre-
cede probability theory and not be based on it.
Claim: For standard tasks, mainly related to optimiza-
tion problems, this may be achieved in a theory op-
erating with description cost Φ = Φ(x, y), entropy
H = H(x) and divergence D = D(x, y).

Example (Shannon type, pointwise or local form)

Φ = x ln
1

y
+y , H = x ln

1

x
+x D = x ln

x

y
+y−x .

Example (Shannon type, standard (?) accum. form)

Φ =
∑ (

xi ln
1

yi
+ yi

)
, H =

∑ (
xi ln

1

xi
+ xi

)
,

D =
∑

xi ln
xi

yi
.

Associated problem: MaxEnt! (model selection!)

Q “adjusted “ Φ and H? Then adjusted entropy≥ 1!?



Example (change basic model to one with prior)

Φ = Φ(x, y)−Φ(x, y0) , H = −D(x, y0)

D = D(x, y) .

Then −Φ is updating gain. This is of Shannon type if
D= KL-divergence. OBS: Only depends on D.
Associated optimization problem: MinDiv! (problem of
updating).
This is of non-Shannon type if D=squared Euclidean
distance. Then Φ = ‖x− y‖2 − ‖x− y0‖2,
H = −‖x− y0‖2 and D = ‖x− y‖2.

In all examples strategy sets X = Y are involved,
the identity x y x̂ gives the response (in more gen-
eral modeling, X 6= Y is allowed):

Axiom 1 Linking: Φ(x, y) = H(x) + D(x, y) with
D ≥ 0 and D(x, y) = 0 ⇔ y = x̂ .



This is the basic axiom. Invites for two-person zero-
sum games γ(X0) with objective function Φ and
preparation X0 ⊆ X.
Philosophy, features in brief:

X0 is the strategy set for Player I, nature ,
Y is the strategy set for Player II, you!
Player-I value = MaxEnt-value , supx∈X0

infy∈Y Φ(x, y)

= supx∈X0
H(x) = Hmax(X0),

Player-II value = MinRisc-value ,
Rmin(X0) = infY supX0

-value,
Hmax(X0) always≤ Rmin(X0), equilibrium if equal,
Nash conditions (saddlevalue inequalities), a key tool.

Preparations, exponential families, E(·) and opti-
mal strategies (x∗, y∗).
Basic case:
Given X0, associated exponential family defined as:
E(X0) = {y∗|∃h∀x ∈ X0 : Φ(x, y∗) = h}.

(x∗, y∗) optimal if x∗ ∈ X0, y∗ ∈ E(X0) and y∗ = x̂∗



Advanced: Connected with Q: what can we know?
Natural preparations (genus-1 case) are the level sets ,
sets 6= ∅ of the form Lη(h) = {x|Φ(x, η) = h} for
η ∈ Y and h a constant. Define E(η) =

⋂
h E(Lη(h)).

(x∗, y∗) optimal for γ(Lη(h)) if: x∗ ∈ Lη(h), y∗ = x̂∗

and y∗ ∈ E . Pythagorean inequalities hold.

Illustrative “beyond Shannon” example.
Φ = ‖x−y‖2−‖x−y0‖2. Fix η. Then E(η) consists
of hyperplanes with y0 − η as normal. And updating
reduces to standard projection. This and Shannon ex-
amples satisfy axiom of affinity:

Axiom 2 X is convex and Φ affine in its first variable:
For y ∈ Y , α molecular probability measure over X,

Φ
( ∑

x∈X

αxx, y

)
=

∑
x∈X

αxΦ(x, y) .

Leads to important concavity- and convexity results
for entropy, information transmission and divergence.



Part II: Special entropy functions

Think as a physicist, planning experiments:

1: I focus on Truth, belief and experience on the way
to information .
I seek the truth, am restricted by my beliefs and will
know by experience through the data how truth man-
ifests itself to me.
I ask why should not what I see in terms of data de-
pend not only on truth but also on belief? I assume
z = Π(x, y). Here, x, y and z are truth-, belief- and
data instances , objects associated with any particular
situation I may be interested in. Π is the global inter-
actor. It is a characteristic of the world of which I am
a part.

Examples: The classical or Shannon world is char-
acterized by Π(x, y) = x.
A black hole is characterized by Π(x, y) = y. In such
a world, I can only get out what I myself put in.



A Truth (x) Belief (y) Experience (z)
· · · ·
i xi yi zi
· · · ·

2: Will focus on concepts which are independent
of semantic content . Therefore, I apply probabilis-
tic reasoning across semantic differences. This will
also enable quantitative reasoning. Thus, instances
x, y and z in a specific situation will be probability
vectors (xi)i∈A, (yi)i∈A and (zi)i∈A over the alpha-
bet A = {i| · · · } with i’s representing basic events .
I assume that the global interactor acts locally, i.e.
Π(x, y) = (π(xi, yi))i∈A for some real valued func-
tion π defined on [0,1]× [0,1]. This function is the
local interactor or just the interactor .

In Shannon world: π(x, y) = x.
In black hole: π(x, y) = y.



3: The interactor must be sound : π(x, x) = x

for x ∈ [0,1]. I assume it is even consistent , i.e.∑
i∈A zi = 1 with zi = π(xi, yi) for all probability

vectors x and y.

4: Any event I may observe entails a certain effort
κ(yi) which only depends on the belief-value.
κ : y y κ(y) is the descriptor . Clearly, κ(1) = 0

and as normalization condition I take κ′(1) = −1.

5: Description cost , denoted Φ, is the total effort
taking into account the weights with which I will ex-
perience the various basic events:

Φ(x, y) =
∑
i∈A

π(xi, yi)κ(yi) . (1)



6: I will minimize description cost and appeal to the
variational principle that the smallest value is ob-
tained when there is a perfect match between truth
and belief, i.e. when y = x. This is the perfect
match principle . The quantity∑

i∈A
π(xi, yi)κ(yi)−

∑
i∈A

xiκ(xi) (2)

represents my frustration , as it compares the actual
description cost with the smallest possible cost, had
I only known the truth. The perfect match principle
says that frustration disappears, when y = x.
Theoretically, if I knew x = (xi)i∈A, minimal
description cost is what I aim at, I call it entropy :

H(x) = inf
y=(yi)i∈A

Φ(x, y) =
∑
i∈A

xiκ(xi) .a (3)

The quantity (2) I call divergence :

D(x, y) = Φ(x, y)−H(x) . (4)
ato allow a singular case, the infimum should be restricted to
run over probability distributions y with a support which con-
tains the support of x.



Theorem Assuming consistency and suitable reg-
ularity conditions, q = π(1,0) ≥ 0. To each
q ∈ [0,∞[, there is only one interactor and one de-
scriptor which fulfill the conditions imposed. These
functions, πq and κq, are determined by

πq(x, y) = qx + (1− q)y , (5)

κq(y) = ln q
1

y
, (6)

where the q-logarithm is given by

ln qx =

 ln x if q = 1,
x1−q−1

1−q if q 6= 1 .
(7)

Outline of proof: (5) follows by consistency. Then, (6),
follows from variational principle via technique with
Lagrange multipliers, which leads you to the differen-
tial equation

(1− q)κ(x) + xκ′(x) = −1 . (8)

Final step: To show that with (5) and (6) the perfect
match principle holds, follows from (14) below.



The accompanying quantities, description cost, en-
tropy and divergence are denoted Φq, Hq and Dq,
respectively. We find

Φq =
∑
i∈A

πq(xi, yi)κq(yi) , (9)

Hq =
∑
i∈A

xiκq(xi) , (10)

Dq =
∑
i∈A

(
πq(xi, yi)κq(yi)− xiκq(xi)

)
. (11)

Shannon type quantities for q = 1: Kerridge
inaccuracy, Shannon entropy and Kullback-Leibler di-
vergence . For q 6= 1:

Φq =
∑
i∈A

(
q

1− q
xiy

q−1
i + y

q
i −

1

1− q
xi

)
, (12)

Hq =
1

1− q

∑
i∈A

(xq
i − xi) =

1

1− q

∑
i∈A

x
q
i − 1 ,

(13)

Dq =
∑
i∈A

(
q

1− q
xiy

q−1
i + y

q
i −

1

1− q
x

q
i

)
. (14)



In (12) the linearity in x is evident. This is important
as it leads to a relatively easy approach to key opti-
mization problems. In (13) we recognize the family of
Tsallis entropies . For q = 0 (black hole), H0(x) =

n− 1 (n = size of support of x).

In (14) the summands are non-negative. This can
be exploited to give an easy proof of the “q-version”
of the fundamental inequality of information theory:
Dq(x, y ≥ 0 with equality if and only if x = y. This is
valid for any q > 0. Note the pointwise version of the
fundamental inequality :
π(x, y)κ(y) + y ≥ xκ(x) + x. For q = 0, one finds

that D0 ≡ 0. (14)also points to possible extensions
to continuous distributions.

The general formulas (1), (3) and (4) indicate that for
the determination of the quantities involved one needs
to know the interactor π as well as the descriptor κ.
Two facts should be emphasized. Firstly, through the



perfect match principle, the descriptor is uniquely de-
termined from the interactor. Therefore, in principle,
only the interactor needs to be known. Secondly, dif-
ferent interactors may well determine the same de-
scriptor. Thus, knowing only the descriptor, you can-
not determine divergence or description cost. But you
can determine the entropy function.

Outstanding questions: Physical mechanisms behind
interaction, coding interpretations of description cost.
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