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Part I: Information triples, non-probabilistic
modeling

Kolmogorov (=~ 1970): information theory must pre-
cede probability theory and not be based on it.
Claim: For standard tasks, mainly related to optimiza-
tion problems, this may be achieved in a theory op-
erating with description cost & = ®(z,y), entropy
H = H(x) and divergence D = D(xz,y).

Example (Shannon type, pointwise or local form)
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Example (Shannon type, standard (?) accum. form)
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Associated problem: MaxEnt! (model selection!)

Q “adjusted “ ® and H? Then|adjusted entropy> 1!?




Example (change basic model to one with prior)

b = P(x,y) — P(z,y9), H=—D(z,y0)
D =D(x,y).

Then —® is updating gain. This is of Shannon type if
D= KL-divergence. OBS: Only depends on D.
Associated optimization problem: MinDiv! (problem of
updating).

This is of non-Shannon type if D=squared Euclidean
distance. Then ® = ||z — y||? — ||z — yol|?,

H = —|lz — yol|* and D = [lz — y||*.

In all examples strategy sets X = Y are involved,
the identity x ~ x gives the response (in more gen-
eral modeling, X # Y is allowed):

Axiom 1 Linking: ®(x,y) = H(x) + D(x,y) with
D>0and D(z,y) =0& y=2.




This is the basic axiom. Invites for two-person zero-
sum games ~(Xp) with objective function & and
preparation Xg C X.

Philosophy, features in brief:

X Is the strategy set for Player |, nature,

Y is the strategy set for Player Il, you!

Player-l value = MaxEnt-value, sup¢c x, infycy ®(z,y)
= SUPzex, H(z) = Hmax(Xo),

Player-Il value = MinRisc-value,

Rmin(Xo) = infy sup x-value,

Hmax(Xp) always < Rmin(Xp), equilibrium if equal,
Nash conditions (saddlevalue inequalities), a key tool.

Preparations, exponential families, £(-) and opti-
mal strategies (z*, y*).

Basic case:

Given X, associated exponential family defined as:
E(Xp) = {y*|FhvVx € X : P(x,y*) = h}.

(z*,y*) optimal if z* € Xg, y* € £(Xp) and y* = z*




Advanced: Connected with Q: what can we know?

Natural preparations (genus-1 case) are the level sets,
sets = ( of the form L"(h) = {z|®(x,n) = h} for
n € Y and h aconstant. Define £(n) = N, E(L"(h)).

(z*,y*) optimal for v(L"(R)) if: z* € L"(k), y* = x*
and y* € £. Pythagorean inequalities hold.

lllustrative “beyond Shannon” example.

® = ||z —y||% — ||z —yo||?. Fix n. Then £(n) consists
of hyperplanes with yo — n as normal. And updating
reduces to standard projection. This and Shannon ex-
amples satisfy axiom of affinity:

Axiom 2 X is convex and & affine in its first variable:
For y € Y, a molecular probability measure over X,

cb( Z ozxac,y> = Z azP(z,y) .

reX reX

Leads to important concavity- and convexity results
for entropy, information transmission and divergence.



Part Il: Special entropy functions

Think as a physicist, planning experiments:

1: | focus on Truth, belief and experience on the way
to information.

| seek the truth, am restricted by my beliefs and will
know by experience through the data how truth man-
ifests itself to me.

| ask why should not what | see in terms of data de-
pend not only on truth but also on belief? | assume
z = M(x,y). Here, z, y and z are truth-, belief- and
data instances, objects associated with any particular
situation | may be interested in. I is the global inter-
actor. Itis a characteristic of the world of which | am
a part.

Examples: The classical or Shannon world is char-
acterized by M(x,y) = =.

A black hole is characterized by N(x,y) = y. In such
a world, | can only get out what | myself put in.



A | Truth (z) | Belief (y) | Experience (z)

v Ly Yi Zq

2: Will focus on concepts which are independent
of semantic content. Therefore, | apply probabilis-
tic reasoning across semantic differences. This will
also enable quantitative reasoning. Thus, instances
x, y and z in a specific situation will be probability
vectors (x;);ca, (¥i);ca @and (z;);ca over the alpha-
bet A = {i|---} with ¢'s representing basic events.
| assume that the global interactor acts locally, i.e.
N(x,y) = (7(x;,y;));ca for some real valued func-
tion 7 defined on [0, 1] x [0, 1]. This function is the
local interactor or just the interactor.

In Shannon world: 7(x,y) = =.
In black hole: n(z,y) = v.




3: The interactor must be sound: #(z,z) = =
for x € [0,1]. | assume it is even consistent, i.e.
>icA zi = 1 with z; = w(z;,y;) for all probability
vectors x and y.

4: Any event | may observe entails a certain effort
x(y;) which only depends on the belief-value.

k. y n k(y) is the descriptor. Clearly, x(1) = 0
and as normalization condition | take x'(1) = —1.

5: Description cost, denoted &, is the total effort
taking into account the weights with which | will ex-
perience the various basic events:

d(z,y) = > w(wiy)e(y;) - (1)

€A




6: | will minimize description cost and appeal to the
variational principle that the smallest value is ob-
tained when there is a perfect match between truth
and belief, i.e. when y = z. This is the perfect
match principle. The quantity

> w(wg, yi)kr(y) — ) xir(x;) (2)

iCA i€A
represents my frustration, as it compares the actual
description cost with the smallest possible cost, had
| only known the truth. The perfect match principle
says that frustration disappears, when y = x.
Theoretically, if | knew z = (x;);c, Mminimal
description cost is what | aim at, | call it entropy :

H(z) = inf ®(x,y) = Z z;k(z;) .2  (3)
y=(Yi)icA icA
The quantity (2) | call divergence:

D(z,y) = ®(z,y) — H(z). (4)

2o allow a singular case, the infimum should be restricted to
run over probability distributions y with a support which con-
tains the support of x.




Theorem Assuming consistency and suitable reg-
ularity conditions, ¢ = =(1,0) > 0. To each
g € [0, ool, there is only one interactor and one de-
scriptor which fulfill the conditions imposed. These
functions, m; and x, are determined by

mq(z,y) = qr + (1 — q)y, (9)
() = g, ©
where the q-logarithm is given by
n g = { Mela=1 %
=g ifg*=1.

Outline of proof: (5) follows by consistency. Then, (6),
follows from variational principle via technique with
Lagrange multipliers, which leads you to the differen-
tial equation

(1 - @)r(z) +ar'(z) = —1. (8)

Final step: To show that with (5) and (6) the perfect
match principle holds, follows from (14) below.



The accompanying quantities, description cost, en-
tropy and divergence are denoted ®,, H, and D,
respectively. We find

by = Z mq (24, Yi ) kg (Yi) (9)
1€A

Hg = Z Titiq(Z;) (10)
i€A

Dy = X (maCess yidma(y) = wima(a)) . (11
i€A

Shannon type quantities for ¢ = 1: Kerridge
inaccuracy, Shannon entropy and Kullback-Leibler di-
vergence. For g #= 1:

q 1 1
Dy =) (1 iyl Tyl — . 5137;>, (12)
EA — 9 — 4
= Y@ =Yl
ZEA 1_qi€A

(13)

q 1 1
Dy = ( ziyl T4yl — a:q>. (14)
! g;&x 1—¢ " bol-q




In (12) the linearity in = is evident. This is important
as it leads to a relatively easy approach to key opti-
mization problems. In (13) we recognize the family of
Tsallis entropies. For ¢ = 0O (black hole), Ho(x) =
n — 1 (n = size of support of x).

In (14) the summands are non-negative. This can
be exploited to give an easy proof of the “g-version”
of the fundamental inequality of information theory:
Dy (x,y > 0 with equality if and only if x = y. This is
valid for any ¢ > 0. Note the pointwise version of the
fundamental inequality :

m(x,y)k(y) +vy > zx(x) + x.| For g = 0, one finds
that Dg = 0. (14)also points to possible extensions
to continuous distributions.

The general formulas (1), (3) and (4) indicate that for
the determination of the quantities involved one needs
to know the interactor = as well as the descriptor .
Two facts should be emphasized. Firstly, through the



perfect match principle, the descriptor is uniquely de-
termined from the interactor. Therefore, in principle,
only the interactor needs to be known. Secondly, dif-
ferent interactors may well determine the same de-
scriptor. Thus, knowing only the descriptor, you can-
not determine divergence or description cost. But you
can determine the entropy function.

Outstanding questions: Physical mechanisms behind
interaction, coding interpretations of description cost.
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