
Multiple Time Scale Congestion Control for

Self-Similar Network Tra�c 1

Tsunyi Tuan a;2 Kihong Park a;3

aNetwork Systems Lab, Department of Computer Sciences, Purdue University,
West Lafayette, IN 47907, USA

Abstract

Analytical and empirical studies have shown that self-similar tra�c can have a
detrimental impact on network performance including ampli�ed queuing delay and
packet loss rate. Given the ubiquity of scale-invariant burstiness observed across
diverse networking contexts, �nding e�ective tra�c control algorithms capable of
detecting and managing self-similar tra�c has become an important problem.

In this paper, we study congestion control algorithms for improving network
performance|in particular, throughput|under self-similar tra�c conditions. Al-
though scale-invariant burstiness implies the existence of concentrated periods of
contention and idleness, the long-range dependence associated with self-similar traf-
�c leaves open the possibility that correlation structure at larger time scales may
be exploited for performance enhancement purposes.

We construct a 2-level multiple time scale congestion control protocol that exer-
cises congestion control concurrently across two time scales an order of magnitude
apart. The �rst component|acting at the smaller time scale|is a generic linear
increase/exponential decrease feedback congestion control that uses implicit predic-
tion a�orded by feedback to a�ect rate control sensitive to changes in network state
at 20{200ms time scales. The second component|acting at 2{5s time scales|uses
explicit prediction to detect persistent shifts in overall network contention and uses
this information to modulate the aggressiveness exhibited by the �rst component.

We show that cooperative interaction between the two congestion control modules
acting on information at di�erent time scales leads to improved performance vis-
�a-vis the case when the large time scale component is absent. We show that the
improvement factor increases with long-range dependence and we show that as
the number of ows engaging in multiple time scale congestion control (MTSC)
increases, both fairness and e�ciency are preserved.

Key words: Self-Similar Tra�c, Congestion Control, Rate-Based Feedback Control

Preprint submitted to Elsevier Preprint 10 May 1999

1 Introduction

1.1 Motivation

Recent measurements of local-area and wide-area tra�c [8,27,34,41] have shown that network
tra�c exhibits variability at a wide range of time scales. What is striking is the ubiquitousness
of the phenomenon which has been observed in diverse networking contexts, from Ethernet to
ATM, compressed VBR video, and HTTP-based WWW tra�c [8,14,22,41]. Such scale-invariant
variability stands in contrast with traditional models of network tra�c which exhibit burstiness
at short time scales but are essentially smooth at large time scales; i.e., they lack long-range
dependence.

A number of performance studies [1,2,10,28,31] have shown that self-similarity can have a detri-
mental e�ect on network performance leading to increased queueing delay and packet loss rate.
From a queuing theory perspective, a principal distinguishing characteristic of long-range depen-
dent tra�c is that the queue length distribution decays much more slowly|i.e., polynomially|
vis-�a-vis short-range-dependent tra�c sources such as Poisson which possess exponential decay.
In [17,36], the point is advanced that for small bu�er sizes or short time scales, long-range de-
pendence has only a marginal impact on performance. This is, in part, due to a saturation e�ect
that arises when resources are overextended and burstiness associated with short-range depen-
dent tra�c is su�cient|and, in many cases, dominant|in determining queueing and bu�er
overows.

What is still in its infancy is the problem of controlling self-similar network tra�c. By the con-
trol of self-similar tra�c, we mean the problem of modulating tra�c ows such that network
performance including throughput is optimized. Scale-invariant burstiness introduces new com-
plexities into the picture making the task of provisioning quality of service (QoS) while achieving
high utilization signi�cantly more di�cult. First and foremost, scale-invariant burstiness implies
the existence of concentrated periods of high activity and low activity at a wide range of time
scales which adversely a�ects congestion control. Burstiness at �ne time scales is commensurate
with burstiness observed for traditional short-range dependent tra�c. The distinguishing feature
is burstiness at coarser time scales which induces extended periods of either overutilization or
underutilization which degrades overall performance.

On the ip side, long-range dependence|by de�nition|implies the existence of nontrivial corre-
lation structure at larger time scales which may be exploitable for congestion control purposes,
information to which current algorithms are impervious. How to exploit such information e�ec-
tively to improve performance is a nontrivial problem and the subject matter of this study.

1 Supported in part by NSF grant ANI-9714707.
2 Contact author. Tel.: (765) 494{0875; fax.: (765) 494{0739; e-mail: tsunyi@cs.purdue.edu.
3 Additionally supported by NSF grants ANI-9875789 (CAREER), ESS-9806741, and grants from PRF
and Sprint. E-mail: park@cs.purdue.edu.

2

1.2 New Contributions

In this paper, we show that congestion control can be exercised concurrently at multiple time
scales, and by cooperatively engaging information extracted at di�erent time scales, achieve
signi�cant performance gains vis-�a-vis congestion controls that are sensitive to only a single|
in particular, short-range|time scale. We construct a 2-level multiple time scale congestion
control protocol that a�ects congestion control across two time scales more than an order of
magnitude apart. The �rst component|acting at a smaller time scale|is a generic linear in-
crease/exponential decrease feedback congestion control that uses implicit prediction a�orded
by feedback to impart rate control that is sensitive to changes in network state at 20{200ms
time scales. The latter, in turn, is determined by the round trip time (RTT) or latency of the
feedback loop.

The second component|acting at 2{5s time scales|uses explicit prediction to detect persis-
tent changes in the overall network contention level and uses this information to modulate the
aggressiveness exhibited by the �rst component. Modulation is directed at inducing more ag-
gressive bandwidth consumption when network contention is low|i.e., available bandwidth is
large|and inducing conservative bandwidth consumption when the opposite is true. Asymme-
try in the linear increase/exponential decrease control law is a su�cient condition for achieving
stability, ignoring the additional impact that delayed feedback can have on stability [33]. In
[25], it is shown that conservativeness with respect to bandwidth consumption|as implied by
asymmetry|can lead to low resource utilization and this is ampli�ed the longer the feedback
loop or RTT. Increasing the rate or slope of the linear increase phase to reduce the level of
conservativeness, without proper contextual information, can \back�re" due to increased occur-
rence of exponential backo� which can o�set the gains obtained from more aggressive bandwidth
consumption.

The congestion control module acting at the larger time scale is called Selective Aggressiveness
Control (SAC) and it uses predicted information about network state at the 2{5s level to inu-
ence the aggressiveness exerted by the linear increase/exponential decrease feedback congestion
control during its linear increase phase. In particular, when the predicted contention level during
the next 2{5s interval is low, the rate of increase during the linear increase phase is ampli�ed
so as to facilitate more aggressive bandwidth consumption. On the other hand, if the predicted
contention level at the large time scale is high, then the slope of the linear increase phase is
dampened to induce a more conservative bandwidth consumption.

We show that this particular form of cooperative coupling between the two congestion control
modules acting at di�erent time scales is e�ective at exploiting long-range correlation structure,
leading to signi�cant gains in throughput vis-�a-vis the case when the large time scale component
is inactive. We show that the improvement factor increases with long-range dependence. For
short-range dependent tra�c, the large time scale congestion control module has a marginal
e�ect. We also show that as the number of ows engaging in MTSC increases, both fairness and
e�ciency are preserved. The latter is with respect to total throughput achieved across all SAC-

3

controlled connections. Our speci�c form of multiple time scale congestion control is modular
and easily portable to other types of feedback congestion control algorithms, a case in point
being its recent implementation in the context of TCP. With TCP Reno replacing the generic
linear increase/exponential decrease component as the short-time scale congestion control, we
observe similar performance improvements as those attained with generic rate-based congestion
control. Finally, we note that MTSC adds proactivity to feedback congestion controls which are
essentially reactive. The positive e�ect is most pronounced for large RTT control loops.

The rest of the paper is organized as follows. In the next section, we give a brief overview of
self-similar network tra�c and the performance evaluation set-up employed in this paper. In
Section 2.3, we describe the predictability mechanism and its e�cacy at extracting correlation
structure present in long-range dependent tra�c. This is followed by Section 3 where we describe
the multiple time scale congestion control framework and its two speci�c components|generic
linear increase/exponential decrease congestion control and SAC. In Section 4 we show perfor-
mance results of the MTSC framework and demonstrate its e�cacy under di�erent resource
con�gurations, long-range dependence conditions, and when the number of SAC connections
sharing common network resources is varied. We conclude with a discussion of our results and
future work.

2 Preliminaries

2.1 Self-Similar Tra�c: Basic De�nitions

Let (Xt)t2Z+ be a time series which, for example, represents the trace of tra�c ow at a bot-

tleneck link measured at some �xed time granularity. We de�ne the aggregated series X
(m)
i

as

X
(m)
i =

1

m
(Xim�m+1 + � � �+Xim):

That is, Xt is partitioned into blocks of size m, their values are averaged, and i is used to index
these blocks.

Let r(k) and r(m)(k) denote the autocorrelation functions of Xt and X
(m)
i , respectively. Xt is

self-similar|more precisely, asymptotically second-order self-similar|if the following conditions
hold:

r(k) � const � k��; (1)

r(m)(k) � r(k); (2)

for k and m large where 0 < � < 1. That is, Xt is \self-similar" in the sense that the correlation
structure is preserved with respect to time aggregation|relation (2)|and r(k) behaves hyper-

4

bolically with
P1

k=0 r(k) =1 as implied by (1). The latter property is referred to as long-range
dependence.

Let H = 1 � �=2. H is called the Hurst parameter , and by the range of �, 1=2 < H < 1. It
follows from (1) that the farther H is away from 1=2 the more long-range dependent Xt is, and
vice versa. Thus the Hurst parameter acts as an indicator of the degree of self-similarity. A test
for long-range dependence can be obtained by checking whether H signi�cantly deviates from
1=2 or not. A comprehensive discussion of estimation methods can be found in [4,38].

A random variable X has a heavy-tailed distribution if

PrfX > xg � x��

as x!1 where 0 < � < 2. That is, the asymptotic shape of the tail of the distribution obeys
a power law. The Pareto distribution,

p(x) = �k�x���1;

with parameters � > 0, k > 0, x � k, has the distribution function

PrfX � xg = 1� (k=x)�;

and hence is clearly heavy-tailed. It is not di�cult to check that for � � 2 heavy-tailed distribu-
tions have in�nite variance, and for � � 1, they also have in�nite mean. Thus, as � decreases,
a large portion of the probability mass is located in the tail of the distribution.

2.2 Structural Causality

In [32], we show that aggregate tra�c self-similarity is an intrinsic property of networked
client/server systems where the size of the objects (e.g., �les) being transported is heavy-tailed.
In particular, there exists a linear relationship between the heavy-tailedness measure of �le size
distributions as captured by �|the shape parameter of the Pareto distribution|and the Hurst
parameter of the resultant multiplexed tra�c streams. That is, the aggregate network tra�c
that is induced by hosts exchanging �les with heavy-tailed sizes over a generic network environ-
ment running \typical" protocols (e.g., TCP, ow-controlled UDP) is self-similar. Furthermore,
tra�c is more bursty|in the scale-invariant sense|the more heavy-tailed the �le size distribu-
tion. This relationship is shown in Figure 1. The relationship is robust with respect to changes
in network resources (e.g., bandwidth, bu�er capacity), topology, the inuence of cross-tra�c,
and the distribution of inter-arrival times. We call this relationship between the tra�c pattern
observed at the network layer and the structural property of a networked system in terms of its
high-level object sizes structural causality .

Structural causality is of import to self-similar tra�c control since, one, it provides an envi-
ronment where self-similar tra�c conditions are easily facilitated|just simulate a client/server

5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

E
st

im
at

ed
 V

al
ue

 o
f H

Alpha of Filesize Distribution

Base Run 1,000,000 Samples Each

Variance-Time
R/S

(3 - alpha)/2

Fig. 1. Hurst Parameter estimates (R/S and V-T) for � varying from 1.05 to 1.95

network with heavy-tailed object sizes|two, the degree of self-similar burstiness can be in-
timately controlled by the application layer parameter �, and three, the self-similar network
tra�c induced reects the actions and modulating inuence of the protocol stack. The observed
tra�c pattern is a direct consequence of hosts exchanging �les whose transmission, in turn, was
mediated by transport protocols|e.g., TCP, ow-controlled UDP|in the protocol stack. This
provides us with a natural environment where the impact of control actions by a congestion
control protocol can be discerned and evaluated under self-similar tra�c conditions.

2.3 Long-Range Dependent Tra�c and Predictability

We show that correlation structure present in long-range dependent tra�c can be detected on-
line and used to predict future tra�c levels over time scales relevant to congestion control. We
choose a simple, easy-to-implement estimation scheme based on conditional expectation and
use it as a reference for studying congestion control techniques and their e�cacy at exploiting
correlation structure present in long-range dependent tra�c. We emphasize that investigating
optimum prediction|a di�cult problem for long-range dependent tra�c [4]|is not our ob-
jective. In fact, our prediction scheme can be replaced by any other prediction scheme (e.g.,
[3,16,21,39]), and if the latter is superior, this will only amplify the e�cacy of our multiple time
scale congestion control results.

To �x notation, assume we are given a wide-sense stationary stochastic process (�t)t2Z and two
numbers T1; T2 > 0. Let

V1 =
X

i2[t�T1;t)

�i; V2 =
X

i2[t;t+T2)

�i:

We are interested in computing the conditional probability densitity PrfV2 j V1 = ag which
would allow us to predict the future tra�c level during the time interval [t; t + T2) given the
observation a of the recent past [t � T1; t). We employ two further random variables L1, L2

with range [1; m] that perform a certain quantization Lk = Lk(Vk), k = 1; 2. If Lk � 1 then

6

the tra�c level is interpreted as \low" and if Lk � m then it is understood as \high." Thus
the conditional probability density of interest is PrfL2 j L1 = `g, ` 2 [1; m]. A method for
estimating PrfL2 j L1 = `g|o�-line and on-line|is described in the Appendix.

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8
0

0.1

0.2

0.3

0.4

0.5

Traffic Level L1

alpha=1.05, T=0.5sec

Traffic Level L2

R
e

la
tiv

e
 F

re
q

u
e

n
cy

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8
0

0.1

0.2

0.3

0.4

0.5

Traffic Level L1

alpha=1.05, T=1.0sec

Traffic Level L2

R
e

la
tiv

e
 F

re
q

u
e

n
cy

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8
0

0.1

0.2

0.3

0.4

0.5

Traffic Level L1

alpha=1.05, T=5.0sec

Traffic Level L2

R
e

la
tiv

e
 F

re
q

u
e

n
cy

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8
0

0.1

0.2

0.3

0.4

0.5

Traffic Level L1

alpha=1.95, T=0.5sec

Traffic Level L2

R
e

la
tiv

e
 F

re
q

u
e

n
cy

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8
0

0.1

0.2

0.3

0.4

0.5

Traffic Level L1

alpha=1.95, T=1.0sec

Traffic Level L2

R
e

la
tiv

e
 F

re
q

u
e

n
cy

1
2

3
4

5
6

7
8

1

2

3

4

5

6

7

8
0

0.1

0.2

0.3

0.4

0.5

Traffic Level L1

alpha=1.95, T=5.0sec

Traffic Level L2

R
e

la
tiv

e
 F

re
q

u
e

n
cy

Fig. 2. Top Row: Probability densities with L2 conditioned on L1 for � = 1:05. Bottom Row: Probability
densities with L2 conditioned on L1 for � = 1:95.

Figure 2 shows the estimated conditional probability densities for � = 1:05; 1:95 tra�c for
time scales 500ms, 1s, and 5s for the time series corresponding to Figure 1. In the following,
T1 = T2 = 2s and m = 8. For the aggregate throughput traces with � = 1:05|cf. Figure 2
(top row)|the 3-D conditional probability densities can be seen to be skewed diagonally from
the lower left side toward the upper right side. This indicates that if the current tra�c level
L1 is low, say L1 = 1, chances are that L2 will be low as well. That is, the probability mass of
PrfL2 j L1 = 1g is concentrated toward 1. Conversely, the plots show that PrfL2 j L1 = 8g is
concentrated toward 8. Figure 2 (bottom row) shows that conditioning is ine�ective for � = 1:95
tra�c.

2.4 Predictability and Time Scale

An important issue is how time scale a�ects predictability when tra�c is long-range dependent.
Going back to Figure 2 (top row), one subtle e�ect that is not easily discernible is that as
time scale is increased the conditional probability densities PrfL2 j L1 = `g become more
concentrated . Given that PrfL2 j L1 = `g is a function of T1 and T2, we would like to determine
at what time scale predictability is maximized.

7

One way to measure the information content|i.e., in the sense of randomness|of a probability
distribution is to compute its entropy. For a discrete probability density pi, its entropy S(pi) is
de�ned as S(pi) =

P
i pi log 1=pi. In the case of our conditional density PrfL2 j L1 = `g,

S` = �
X
`0

PrfL2 = `0 j L1 = `g logPrfL2 = `0 j L1 = `g:

Entropy is maximal when the distribution is uniform and it is minimal if the distribution is
concentrated at a single point. Since we are given a set of m conditional probability densities
(m = 8), one for each L1 = 1; 2; : : : ; m, we de�ne the average entropy �S as �S =

Pm
`=1 S`=m. The

average entropy remains a function of T1 and T2, �S = �S(T1; T2).

0 1 2 3 4 5 6 7 8 9 10
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Aggregation Level (sec)

E
nt

ro
py

Fig. 3. Average entropy �S(T1) plot for � = 1:05 tra�c as a function of time scale T1.

Figure 3 plots �S(T1; T2) = �S(T1) (recall that T1 = T2) for the � = 1:05 tra�c series as a function
of time scale or aggregation level T1. Entropy is highest for small time scales in the vicinity of
250ms and it drops monotonically as T1 is increased. Eventually, �S(T1) begins to atten out
near the 3{5 second mark reaching saturation, and stays so as time scale is further increased.
We �nd that the \knee" of the entropy curve is in the 1{5 second range. Note that increasing
T1 further to gain small decreases in entropy carries with it an important problem: if prediction
is done over a \too long" time interval, then the information may not be e�ectively exploitable
by various congestion control strategies.

3 Multiple Time Scale Congestion Control

As explicated in Section 1.2, the MTSC framework consists of two congestion control mod-
ules acting at time scales 20{200ms and 2{5s, respectively, which cooperate to a�ect improved
performance. The short time scale component is a generic linear increase/exponential decrease
rate-based congestion control whose sensitivity to changes in network state is determined by the
RTT associated with the feedback loop. The long time scale component|Selective Aggressive-
ness Control (SAC)|uses explicit prediction of network contention levels at 2{5s time scales to

8

modulate the aggressiveness exhibited by the short time scale component. Coupling is achieved
by an aggressiveness parameter at which is used by the generic linear increase/exponential de-
crease congestion control to set its slope during the linear increase phase. The MTSC framework
is depicted in Figure 4.

SAC's modus operandi is to complement and help improve the performance of existing reactive
congestion controls by imparting proactivity . SAC respects the decision made by the underlying
short time-scale congestion control with respect to the directional change of the tra�c rate|
up or down|however, it may choose to adjust the magnitude of change. That is, if, at any
time, the underlying congestion control decides to increase its sending rate, SAC will never
take the opposite action and decrease the sending rate. Instead, what SAC will do is amplify or
diminish the magnitude of the directional change based on its predicted future network state.
In a nutshell, SAC will try to aggressively soak up bandwidth if it predicts the future network
state to be \idle," adjusting the level of aggressiveness as a function of the predicted idleness.

Selective

Aggressiveness

SAC

Feedback Congestion Control

Time Scale N

Time Scale 2

Time Scale 1

Sender

Receiver
Network

Explicit

Prediciton

Explicit

Prediction

.

.

.

.

.

.

Feedback (Implicit Prediction)

Control

.

.

.

.

.

.

.

Fig. 4. Multiple time scale congestion control framework. Information at time scale 2 is used to inuence
the behavior of congestion control at time scale 1. Dashed lines show the potential extensibility of the
framework to three or more time scales.

3.1 Generic Rate-Based Feedback Congestion Control

3.1.1 Linear Increase/Exponential Decrease Congestion Control

Congestion control has been an active area of networking research spanning over two decades
with a urry of work carried out in the late '80s and early '90s [5,6,15,18,23,24,26,29,30,33,35,37].
Gerla and Kleinrock [15] laid down much of the early groundwork and Jacobson [23] has been in-
strumental in inuencing the practical mechanisms that have survived until today. A central part
of the investigation has been the study of stability and optimality issues [5,12,23,24,29,30,33,37]

9

associated with feedback congestion control. A taxonomy for classifying the various protocols
can be found in [42].

More recently, the delay-bandwidth product problem arising from high-bandwidth networks
and quality of service issues stemming from support of real-time multimedia communica-
tion [7,9,11,19,20,40] have added further complexities to the problem. One of the lessons learned
from congestion control research is that end-to-end rate-based feedback control using various
forms of linear increase/exponential decrease can be e�ective, and asymmetry in the control law
needs to be a�ected to achieve stability.

We will employ a simple, generic rate-based feedback congestion control as a reference to help
demonstrate the e�cacy of selective aggressiveness control under self-similar tra�c conditions.
SAC is motivated, in part, by the simple yet important observation put forth in [25] which states
that the conservative nature of asymmetric controls can, in some situations, lead to throughput
smaller than those achieved by a \nearly blind" aggressive control. By applying aggressiveness
selectively|based on predicted future network contention|we seek to o�set some of the cost
incurred for achieving stability.

Let � denote packet arrival rate and let denote throughput. Our generic linear in-
crease/exponential decrease feedback congestion control has a control law of the form 4 :

d�

dt
=

8<
:
�; if d=d� > 0,

�a�; if d=d� < 0,
(3)

where �, a > 0 are positive constants. Thus, if increasing the data rate results in increased
throughput (i.e., d=d� > 0), then increase the data rate linearly. Conversely, if increasing the
data rate results in a decrease in throughput (i.e., d=d� < 0), then exponentially decrease the
data rate. In general, condition d=d� < 0 can be replaced by various measures of congestion.
Di�culties arise because (3), in reality, is a delay di�erential equation|the feedback loop incurs
a time lag|and the sign of d=d� needs to be reliably estimated. These issues can be addressed
using a number of techniques [33].

3.1.2 Unimodal Load-Throughput Relation

One item that needs further explanation is throughput . \Throughput," in the sense of good-
put , can be de�ned in a number of ways depending on the context. They range from reliable
throughput|number of bits reliably transferred per unit time when taking into account reliability
mechanism overhead|to raw throughput|number of bits transferred per unit time|to power
which is throughput divided by delay. Raw throughput, denoted �, is both easy to measure|
just monitor the number of packets, in bytes, arriving at the receiver per unit time|and to
attain. In most contexts, � = �(�) is a monotone increasing function of �, e.g., M/M/1/n.

4 We use continuous notation for expositional clarity. Their discrete counterparts are straightforward.

10

Raw throughput, however, does not adequately discriminate between congestion controls that
achieve a certain throughput without incurring high packet loss and those that do.

For example, achieving reliability using ARQ with �nite receiver- and sender-side bu�ers requires
intricate control and coordination, and high packet loss can exert a severe impact on the e�cient
functioning of such controls. In particular, for a given raw throughput, if the packet loss rate is
high, this may mean that a signi�cant fraction of the raw throughput is taken up by duplicate
packets (e.g., due to early retransmissions) or by packets that will be dropped at the receiver
side due to \fragmentation" and bu�er overow. Thus the reliable throughput associated with
this raw throughput/packet loss rate combination would be low.

How severely packet loss impacts the throughput experienced by an application will depend
on the characteristics of the application at hand. To better reect such costs, we will use a
throughput measure k

k = (1� c)k� (4)

that polynomially penalizes raw throughput � by packet loss rate c, 0 � c � 1, where the level
of severity can be set by parameter k � 0. Thus raw throughput � is a special instance of k
with k = 0. We will measure instantaneous throughput k at the receiver and feed back to the
sender for use in the control law (3). Figure 5 illustrates the relationship between k and � for a
M/M/1/n queueing system which shows that for c > 0 the load-throughput curve k = k(�)
is unimodal . Note that c is a monotone decreasing function of � while � is monotone increasing.
In the case of M/M/1/n and most other network systems, raw bandwidth is upper bounded by
the service rate or link speed|i.e., � � �|and thus most load-throughput functions of interest
(not just (4)) will be unimodal due to the above monotonicity properties.

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut

Sending Rate

k=1

k=2

k=4

k=8

Fig. 5. Unimodal load-throughput curve k = k(�) for M/M/1/n system for k = 1; 2; 4; 8.

11

3.2 Selective Aggressiveness Control

Assuming that future network contention is predictable with su�cient degree of accuracy, there
remains the question of what to do with this information for performance enhancement purposes.
The choice of actions, to a large measure, is constrained by the networking context and what
degree of freedom it allows. In the traditional end-to-end congestion control setting, the network
is a shared resource treated as a black box, and the only control variable available to a ow is
its tra�c rate �.

In this paper, the target mechanism to be improved using predictability is the performance
penalty stemming conservative bandwidth usage during the linear increase phase of linear in-
crease/exponential decrease congestion control algorithms [25]. Feedback congestion control pro-
tocols, including TCP, implement variants of this basic control law due to well-established sta-
bility reasons. In [25], however, it was shown that in the context of TCP Reno the asymmetry
stemming from linear increase after exponential back-o� ends up signi�cantly underutilizing
bandwidth such that, in some situations, a simple non-feedback control was shown to be more
e�ective 5 .

Given that linear increase/exponential decrease is widely used in congestion control protocols
including TCP, we seek to target the linear increase part of such protocols such that when
deemed bene�cial, and only then, a more aggressive bandwidth consumption is facilitated. This
selective application of aggressiveness, when coupled with predictive capability, is aimed at facil-
itating a more e�ective use of bandwidth resulting in improved performance. Without selective,
controlled application of aggressiveness, however, the gain from aggressiveness may be cancelled
or even dominated by its cost|aggressiveness, under high network contention conditions, can
lead to deteriorated performance, even congestion collapse|thus making predictability and its
appropriate exploitation a nontrivial problem. The SAC protocol is composed of two parts,
prediction and application of aggression, and they are described next.

3.2.1 Per-Connection On-Line Estimation of Contention Level

In the end-to-end feedback congestion control context, the two principal problems that a con-
nection faces when estimating future network contention are:

(i) need to estimate \global" network contention using \local" per-connection information,
(ii) need to perform on-line prediction.

First, with respect to requirement (i), since the network is a black box as far as end-to-end
control is concerned, we cannot rely on internal network support such as congestion noti�cation
via router support to reveal network state information. Instead, we need to gleam, in our case,

5 This potential problem was also recognized in Jacobson's seminal paper [23] which, in part, motivated
TCP Tahoe's Slow Start feature.

12

predict future network state using information obtained from a ow's input/output behavior
when interacting with the network. For this to work, two assumptions need to hold in practice.
One, due to the coupling stemmping from sharing of common resources, a connection's individual
throughput when engaging in feedback congestion control such as (3) is correlated with the
aggregate ow accessing the same resources. Two, the aggregate tra�c level, when partitioned
according to the quantization scheme Lk(Vk), is correlated with the contention level at routers
that the aggregate tra�c enters.

Second, with respect to requirement (ii), it turns out that on-line estimation of the conditional
probability density PrfL2 j L1 = `g is easily and e�ciently accomplished using O(1) cost update
operations. On the sender side, SAC maintains a 2-dimensional array or table

CondProb[�][�]

of size m�(m+1), one row for each ` 2 [1; m]. The last column of CondProb, CondProb[`][m+1],
is used to keep track of h`, the number of blocks observed thus far whose tra�c level map to
`, i.e., L1(V1) = `. For each `0 2 [1; m], CondProb[`][`0] maintains the count h`0. Since PrfL2 =
`0 j L1 = `g = h`0=h`, having the table CondProb means having the conditional probability
densities. The estimation procedure for CondProb is described in the Appendix.

3.2.2 Selective Application of Aggressiveness

SAC aims to \expedite" the bandwidth consumption process during the linear increase phase
of linear increase/exponential decrease feedback congestion control algorithms|in our case,
represented by the generic feedback congestion control algorithm (3)|when such actions are
warranted.

The actuation part of the interface between SAC and (3) is de�ned as follows: Let �t denote the
newly updated rate value at time t|by (3)|and let �t0 be the most recently (t0 < t) updated
rate value previous to t.

SAC (actuation interface):

1. If �t > �t0 then update �t �t + at.
2. Else do nothing.

Here, at � 0 is an aggressiveness factor that is determined by SAC based on the current state of
CondProb. Notice that SAC kicks into action only during the linear increase phase of (3), i.e.,
when �t > �t0 . The magnitude of at determines the degree of aggressiveness, and it is deter-
mined as a function of the predicted network state as captured by CondProb and its conditional
probability densities.

At time t, the algorithm used to determine a is as follows: Let St be the aggregate throughput

13

reported by the receiver via feedback over time interval [t� T1; t].

SAC (aggressiveness determination):

1. Let ` = L1(St).
2. Compute �̀0 = E(L2 j L1 = `) =

Pm
`0=1 `

0 PrfL2 = `0 j L1 = `g:
3. Set at = �(�̀0).

Thus, the current tra�c level St is normalized and mapped to the index ` = L1(St) which
is then used to calculate the expectation of L2 conditioned on `, �̀0. The latter is then �nally
used to index into a table �(�̀0) called the aggressiveness schedule. The intuition behind the
aggressiveness schedule �(�) is that if the expected future contention level is low (i.e., �̀0 close to
1) then it is likely that applying a high level of aggressiveness will pay o�. Conversely, if the
expected future contention level is high (i.e., �̀0 near 8) then applying a low level of aggressiveness
is called for. One such schedule is the inverse schedule

�(�̀0) = 1= �̀0:

Other schedules of interest include the threshold schedule with threshold � 2 [1; m] and aggres-
siveness factor �� where a = �� if �̀0 � �, and 0, otherwise.

L1nL2 1 2 3 4 5 6 7 8 E[L2j�] �(�)

1 0.667 0.333 0 0 0 0 0 0 1.3 0.769

2 0.003 0.568 0.306 0.093 0.027 0.003 0 0 2.6 0.384

3 0 0.126 0.468 0.262 0.116 0.023 0.003 0 3.4 0.294

4 0 0.035 0.205 0.368 0.305 0.077 0.201 0 4.2 0.238

5 0 0.003 0.078 0.296 0.356 0.205 0.060 0.002 4.9 0.204

6 0 0 0.012 0.099 0.285 0.418 0.182 0.003 5.7 0.175

7 0 0 0.018 0.079 0.245 0.443 0.213 0.003 5.8 0.172

8 0 0 0 0 0.333 0 0.500 0.167 6.5 0.153

L1nL2 1 2 3 4 5 6 7 8 E[L2j�] �(�)

1 0.155 0.116 0.155 0.233 0.165 0.078 0.087 0.097 3.8 0.263

2 0.043 0.058 0.179 0.272 0.257 0.128 0.054 0.008 4.3 0.232

3 0.023 0.049 0.132 0.306 0.273 0.161 0.054 0.003 4.5 0.222

4 0.020 0.058 0.135 0.274 0.286 0.167 0.055 0.004 4.5 0.222

5 0.012 0.039 0.134 0.273 0.307 0.183 0.044 0.008 4.6 0.217

6 0.017 0.058 0.141 0.243 0.325 0.166 0.044 0.007 4.5 0.222

7 0.008 0.042 0.126 0.211 0.322 0.195 0.088 0.008 4.8 0.208

8 0 0 0.167 0.233 0.233 0.300 0.067 0 4.8 0.208

Table 1
Top: A snapshot of CondProb for � = 1:05, over a 10000s duration. Bottom: An snapshot of CondProb
for � = 1:95.

Table 1 shows the CondProb table for two runs corresponding to � = 1:05 (top) and � = 1:95

14

(bottom) tra�c conditions. The column containing h` has been omitted and the entries show
actual relative frequencies rather than h`0 counts for illustrative purposes. The conditional prob-
ability densities are skewed diagonally for � = 1:05 tra�c whereas they are roughly invariant for
� = 1:95 tra�c. The expected future contention level �̀0 = E(L2 j L1 = `) and inverse aggressive-
ness schedule are shown as separate columns. For � = 1:05 tra�c, the expected future contention
level E[L2j�] varies over a wide range which is a direct consequence of the predictability|i.e.,
skewedness|present in the correlation structure. For � = 1:95 tra�c, however, E[L2j�] is fairly
\at" indicating that conditioning on the present does not aid signi�cantly in predicting the
future.

4 Simulation Results

4.1 Congestion Control Evaluation Set-Up

We use the LBNL Network Simulator, ns (version 2), as the basis of our simulation environment.
ns is an event-driven simulator derived from Keshav's REAL network simulator supporting
several avors of TCP and router packet scheduling algorithms. We have modi�ed ns in order to
model a bottleneck network environment where several concurrent connections are multiplexed
over a shared bottleneck link. A UDP-based unreliable transport protocol was added to the
existing protocol suite, and our congestion control and predictive control were implemented on
top of it.

An important feature of the set-up is the mechanism whereby self-similar tra�c conditions are
induced in the network. One possibility is to have a host inject self-similar time series into
the network. We follow a di�erent approach based on the notion of structural causality (see
Section 2.2) whereby we make use of the fact that in a networked client/server environment
with clients interactively accessing �les or objects with heavy-tailed sizes from servers across
the network leads to aggregate tra�c that is self-similar [32]. Most importantly, this mechanism
is robust and holds when the �le transfers are mediated by transport layer protocols executing
reliable ow-controlled transport (e.g., TCP) or unreliable ow-controlled transport. The sepa-
ration and isolation of \self-similar causality" to the highest layer of the protocol stack allows us
to interject di�erent congestion control protocols in the transport layer, discern their inuence,
and study their impact on network performance. This is illustrated in Figure 6.

Figure 7 shows a 2-server, n-client (n � 33) network con�guration with a bottleneck link con-
necting gateways G1 and G2. The link bandwidths were set at 10Mbps and the latency of each
link was set to 5ms. The maximum segment size was �xed at 1kB for all runs. Some of the
clients engage in interactive transport of �les with heavy-tailed sizes across the bottleneck link
to the servers (i.e., the nomenclature of \client" and \server" are reversed here), sleeping for
an exponential time between successive transfers. Others act as in�nite sources (i.e., they have
always data to send) executing the generic linear increase/exponential decrease feedback conges-

15

Self-Similar Link Traffic

Heavy-Tailed File Size
Distribution

Protocols
Congestion Control

Application
Layer

Transport
Layer

Lower

Application
Layer

Transport
Layer

Lower

modulation

Layers Layers

α

τ

H

causality

Fig. 6. Transformation of the heavy-tailedness of �le size distribution property at the application layer
via the action of the transport layer into its manifestation as self-similar aggregated tra�c at the link
layer.

tion control|with and without SAC|in the protocol stack trying to maximize throughput. For
any reasonable assignment of bandwidth, bu�er size, mean �le request size, and other system
parameters, we found that by either adjusting the number of clients or the mean of the idle time
distribution between successive �le transfers appropriately, any target contention level could be
achieved.

...

C

C

C

G

1

2

n

 1 G 2

S 1

S 2

Fig. 7. Network con�guration with bottleneck link (G1; G2).

In a typical con�guration, the �rst 32 connections served as \background tra�c" transferring
�les from clients to servers where the �le sizes were drawn from Pareto distributions with shape
parameter � = 1:05; 1:35; 1:65; 1:95. As in [32], there was a linear relation between � and the
long-range dependence of aggregate tra�c observed at the bottleneck link (G1; G2) as captured
by the Hurst parameter H. H was close to 1 when � was near 1, and H was close to 1/2 when
� was near 2. The 33rd connection acted as an in�nite source trying to maximize throughput
by running the generic feedback control, with or without SAC. In other settings, the number of
congestion-controlled in�nite sources was increased to observe their mutual interaction and the
impact on fairness and e�ciency. A typical run lasted for 10000 or 20000 seconds (simulated
time) with traces collected at 10ms granularity.

4.2 Per-Connection On-Line Predictability

One of the �rst items to test was estimation of the conditional probability densities PrfL2 j L1g
using the per-connection, on-line method described in Section 3.2.1. We observe the same skewed
diagonal shift characteristics as seen in the o�-line case for � = 1:05 tra�c and the relatively
invariant shape of the probability densities for � = 1:95 tra�c (we omit the 3-D plots). Also,

16

as in the o�-line case, as we increase the time scale (i.e., T1) from 500ms to 1s and higher, for
� = 1:05 tra�c the probability densities become more concentrated thus increasing the accuracy
of predictability. Figure 8 (left) shows the shifting e�ect of the conditional probabilities for
� = 1:05 tra�c via a 2-D projection that shows the marginal densities. Whereas the shifting
e�ect is evident for � = 1:05 tra�c, for � = 1:95 tra�c (Figure 8 (right)) the probability
densities stay largely invariant.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
F

re
qu

en
cy

Throughput Level L1

P(L2|L1=1)
P(L2|L1=3)
P(L2|L1=5)
P(L2|L1=7)

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
F

re
qu

en
cy

Throughput Level L1

P(L2|L1=1)
P(L2|L1=3)
P(L2|L1=5)
P(L2|L1=7)

Fig. 8. Left: Shifting e�ect of conditional probability densities P (L2jL1 = 1) and P (L2jL1 = 8) under
� = 1:05 background tra�c. Right: Shifting e�ect of conditional probability densities P (L2jL1 = 1)
and P (L2jL1 = 8) under � = 1:95 tra�c.

4.3 Performance Measurement of SAC

4.3.1 Incremental Gain of Selective Aggressiveness

Unimodal Throughput Curve In this section, we evaluate the relative performance of
SAC and its predictability gain. We measure the incremental bene�t gained by applying ag-
gressiveness selectively , �rst, by applying it only when the chances for bene�t are highest (i.e.,
�̀0 = E(L2 j L1 = `) = 1 for some ` 2 [1; 8]), then second highest (�̀0 = 2), and so on. Eventually,
we expect to hit a point when the cost aggressiveness outweighs its gain, thus leading to a net
decrease in throughput as the stringency of selectivity is further relaxed.

This phenomenon can be demonstrated using the threshold aggressiveness schedule of SAC (see
Section 3.2.2) where aggressive action is taken if and only if �̀0 � � where � is the aggressiveness
threshold. Figure 9 shows the throughput vs. aggressiveness threshold curve for threshold values
in the range 1 � � � 8 for � = 1:05 tra�c. We observe that the gain is highest when going from
� = 1 to 2, then successively diminishes until it turns to a net loss thereby causing a decrease
in throughput. If � = 8, then this corresponds to the case where aggressiveness is applied at all
times, i.e., there is no selectivity .

Monotone Throughput Curve Although the unimodal, dome-shaped throughput curve
as a function of the aggressiveness threshold is a representative shape, two other shapes|
monotonically increasing or decreasing|are possible depending on the network con�guration.

17

1 2 3 4 5 6 7 8
420

440

460

480

500

520

540

560

580

Aggressiveness Threshold

Th
ro

ug
hp

ut

Fig. 9. Unimodal throughput curve as a function of aggressiveness threshold � for � = 1:05 tra�c.

The shape of the curve is dependent upon the relative magnitude of available resources vs. the
magnitude of aggressiveness as determined by the aggressiveness schedule �(�). If resources are
\plentiful" then aggressiveness is least penalized and it can lead to a monotonically increasing
throughput curve. On the other hand, if resources are \scarce" then aggressiveness is penal-
ized most heavily and this can result in a monotonically decreasing throughput curve. This
phenomenon is shown in Figure 10.

Figure 10 shows the throughput curves under the same network con�guration except that the
available bandwidth is decreased from the leftmost to the rightmost �gure. This is a�ected by
increasing the background tra�c level from 2.5Mbps (left) to 5Mbps (middle) to 7.5Mbps (right).
We observe that the curve's shape transitions from monotone increasing to unimodal dome-
shaped to monotone decreasing. In addition, due to the decrease in available bandwidth, overall
throughput drops as the background tra�c level is increased.

960

980

1000

1020

1040

1060

1080

1100

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t

Aggressiveness Threshold

mean bg traffic 2.5Mbps

600

620

640

660

680

700

720

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t

Aggressiveness Threshold

mean bg traffic 5Mbps

280

300

320

340

360

380

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t

Aggressiveness Threshold

mean bg traffic 7.5Mbps

Fig. 10. Shape of throughput curve as a function of aggressiveness threshold for three levels of back-
ground tra�c 2.5Mbps (left), 5Mbps (middle), and 7.5Mbps (right).

Figure 11 shows the change in the shape of the throughput curve as the aggressiveness schedule
�(�) is shifted (or translated) upwards|i.e., made overall more aggressive|by 0.5, 2.0, 4.0, and
20.0 while keeping everything else �xed. We observe that an overall increase in the magnitude
of aggressiveness can help improve throughput transforming a monotone increasing throughput
curve into a unimodal curve whose maximum throughput has increased. However, as the overall
aggressiveness level is further increased, the cost of aggressiveness begins to outweigh its bene�t
and we observe a downward shift in the unimodal throughput curve.

18

560

580

600

620

640

660

680

700

720

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t

Aggressiveness Threshold

0.5
2.0
4.0
20

Fig. 11. Change in shape of throughput curve as the aggressiveness schedule �(�) is shifted (upwards)
by 0.5, 2.0, 4.0, 20.0.

SAC is designed to operate under all three network conditions �nding a near-optimum through-
put in each case. The most challenging task arises when the network con�guration leads to a
unimodal throughput curve for which �nding the maximum throughput is least trivial. That
is, neither blindly applying aggressiveness nor absteining from it are optimal strategies. SAC's
adaptivity is also useful in nonstationary situations where the network con�guration can shift
from one quasi-static state to another.

4.3.2 Perfect Prediction, Uncertainty, and Aggressiveness

Now that we have shown that selective aggressiveness can help but indiscriminate aggressiveness
can hurt, we seek to understand three further aspects of SAC, one, how much performance is
gained by applying selective aggressiveness vis-�a-vis not applying at all, two, how much per-
formance is lost due to prediction inaccuracies, and three, what is a practical aggressiveness
schedule to use since we cannot assume to know the aggressiveness threshold for which maxi-
mum throughput is achieved.

The practical aggressiveness schedule that we found e�ective is the inverse schedule given by
�(x) = 1=x. That is, the magnitude of aggressiveness is inverse-proportionally diminished as a
function of the expected future tra�c level. To measure the performance loss due to inaccura-
cies arising from using per-connection on-line prediction of future tra�c levels, we observe the
performance of SAC when, instead of using the on-line CondProb table, a perfect knowledge of
future aggregate tra�c is assumed and employed in conjunction with the inverse schedule. Fi-
nally, to compare the net gain of having used a practical version of SAC|in this case, predicted
future using per-connection on-line table and inverse aggressiveness schedule|we observe the
generic linear increase/exponential decrease feedback congestion control without SAC active.

Figure 12 (left) shows the original throughput vs. threshold schedule curve superimposed with
the throughput achieved by using SAC with perfect future knowledge and inverse aggressiveness
schedule (topmost line), using SAC with predicted future and inverse schedule (middle line),
and using the generic linear increase/exponential decrease feedback congestion control without

19

1 2 3 4 5 6 7 8
420

440

460

480

500

520

540

560

580

T
h

ro
u

g
h

p
u

t

Aggressiveness Threshold

Regular Control
Perfect $ Epsilon
Table & Epsilon

1 2 3 4 5 6 7 8
420

440

460

480

500

520

540

560

580

Aggressiveness Threshold

T
h

ro
u

g
h

p
u

t

Regular Control
Perfect $ Epsilon
Table & Epsilon

Fig. 12. Left: The horizontal lines show throughput when di�erent control strategies are employed (top
line: perfect prediction with inverse schedule; middle line: on-line table with inverse schedule; bottom
line: generic linear increase/exponential decrease congestion control without SAC) for � = 1:05 tra�c.
Right: Corresponding throughput plot for � = 1:95 tra�c.

SAC (bottom line). We observe that the generic feedback congestion control performs worst
among the four|we are counting the family of SAC algorithms for the threshold schedule
as one|which is mainly due to the costly nature of exponential backo� when coupled with
conservative linear increase. For our purposes, the absolute magnitudes do not matter so much
as the relative magnitudes which demonstrate a qualitative performance relationship. SAC with
perfect information and inverse schedule achieves the highest throughput (even higher than
the peak threshold schedule throughput) and SAC with predicted future and inverse schedule
achieves a performance level in between. Figure 12 (right) shows the corresponding plots for
� = 1:95 tra�c where a similar ordering relation is observed.

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Aggressiveness Threshold

P
a

ck
e

t
L

o
ss

 R
a

te
 (

p
e

rc
e

n
t)

Regular Control
Perfect Prediction & Epsilon
Table & Epsilon

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Aggressiveness Threshold

P
a

ck
e

t
L

o
ss

 R
a

te
 (

p
e

rc
e

n
t)

Regular Control
Perfect Prediction & Epsilon
Table & Epsilon

Fig. 13. Left: Corresponding packet loss rates for the control strategies shown in Figure 12 for � = 1:05
background tra�c. Right: Corresponding packet loss rates for � = 1:95.

Figure 13 shows the packet loss rates corresponding to the throughput plots shown in Figure 12.
As expected, for the threshold schedule, packet loss rate increases monotonically as the ag-
gressiveness threshold is increased. The generic (or regular) linear increase/exponential decrease
congestion control incurs the least packet loss rate among the controls due to its conservativeness
in the linear increase phase, albeit at the cost of reduced throughput. Comparing Figures 13
(left) and (right) we observe that the overall packet loss rates for � = 1:05 tra�c is higher than

20

that of � = 1:95 tra�c which is expected due to the higher level of self-similar burstiness.

4.3.3 Impact of Long-Range Dependence

The previous results, in addition to demonstrating a speci�c way to utilize correlation structure
in self-similar tra�c, showed that selective aggressiveness when coupled with predictability can
lead to performance improvement above and beyond what a generic linear increase/exponential
decrease feedback congestion control can achieve. The latter is of import since one of the practical
applications of SAC is targeted at improving the performance of existing protocols.

1 2 3 4 5 6 7 8
420

440

460

480

500

520

540

560

580
Performance Improvement, alpha=1.05, L1=L2=2sec

Aggressiveness Threshold

T
hr

ou
gh

pu
t

Regular Control
Table & Epsilon Schedule

20% improvement

1 2 3 4 5 6 7 8
420

440

460

480

500

520

540

560

580
Performance Improvement, alpha=1.95, L1=L2=2sec

T
hr

ou
gh

pu
t

Aggressiveness Threshold

Regular Control
Table & Epsilon Schedule

4% improvement

Fig. 14. Left: Under � = 1:05 tra�c, the performance improvement is about 20% when using SAC with
on-line table and inverse schedule. Right: Under � = 1:95 tra�c, the performance improvement is only
4%.

In this section, we show that the relative performance gain due to selective aggressiveness control
and predictability grows as long-range dependence increases. Figure 14 compares the relative
performance gain stemming from employing predicted inverse schedule SAC for � = 1:05 and
� = 1:95 background tra�c. First, note that the throughput level for the genetic feedback con-
gestion control is higher for � = 1:95 tra�c than � = 1:05 tra�c. This is as expected since
self-similar burstiness is known to lead to degraded performance unless resources are overex-
tended at which point the burstiness associated with short-range dependent tra�c is dominant
in determining queueing behavior. More importantly, we observe that the throughput gain rela-
tive to the generic feedback congestion control is about 20% in the � = 1:05 case vs. about 4%
for the � = 1:95 case. This indicates that self-similar burstiness|although detrimental to net-
work performance, in particular, QoS|possesses structure that can be exploited to dampen its
negative impact. In fact, the more long-range dependent, the more structure there is to exploit
e�ectively.

An important point to note is that we have held the mean of the background tra�c levels for
both � = 1:05 and � = 1:95 constant to achieve comparability. This is a nontrivial matter since
for � = 1:05, the mean tra�c level estimated by using the Pareto distribution will overestimate
the sample mean observed in practice, even if the system is run for 10000 seconds. Figure 15 (left)
shows the predictability gain in terms of throughput achieved for four background tra�c cases

21

� = 1:05; 1:35; 1:65; 1:95. Interestingly, the throughput gain shows a superlinear increase as �
approaches 1 (i.e., becomes more long-range dependent).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

2

4

6

8

10

12

14

16

18

20

22

Alpha

P
er

fo
rm

an
ce

 G
ai

n
(p

er
ce

nt
)

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

P
er

fo
rm

an
ce

 G
ai

n
(p

er
ce

nt
)

Round-Trip Time

Fig. 15. Left: Performance gain due to predictability for � = 1:05; 1:35; 1:65; 1:95 background tra�c.
Right: Performance gain as a function of RTT.

Another positive aspect of MTSC in the context of long-range dependent tra�c is that it adds
proactivity to short time scale feedback congestion control which partly o�sets the negative e�ect
of long time lags in the feedback loop on performance. Figure 15 (right) shows performance gain
(%) as a function of RTT. We observe that the performance gain is ampli�ed with increased
RTT when SAC is active vis-�a-vis when it is not.

4.3.4 Convergence Rate and Performance

The faster the convergence of the on-line conditional probability table, the earlier the conditional
probabilities can be employed for congestion control purposes resulting in higher throughput
gain. Other things being equal, early activation of SAC induces a trade-o� between the bene�t
obtained by applying predictive information for congestion control and the cost of engaging SAC
based on possibly inaccurate conditional probability estimates.

Figure 16 (left) shows the impact of inaccuracies in the conditional probability density esti-
mates on performance. The top graph plots throughput as a function of training time|i.e.,
time spent in estimating the conditional probability densities|when the conditional probabil-
ity table is subsequently �xed and used in a 10000 second throughput measurement run. This
allows us to assess the impact of inaccurate prediction estimates on throughput performance.
As the top graph shows, convergence is rapid after which the incremental gain obtained via
further accuracies saturates. Notice that due to rapid convergence, the net gain in throughput
due to increased prediction accuracy is below 5%. Contrast this with the bottom two graphs
of Figure 16 (left) which show 10000 second throughput measurements when the conditional
probability table used is that of � = 1:95 tra�c (trained over 10000 seconds) and random, re-
spectively. The gap shows that even inaccurate prediction estimates are signi�cantly more useful
than random or otherwise-structured information for performance enhancement purposes.

The fast convergence property can be further explained by Figure 16 (right) which plots the

22

450

460

470

480

490

500

510

520

4000 8000 12000 16000

Th
ro

ug
hp

ut

t

trained
1.95 table

random

1

2

3

4

5

6

7

8

0 4000 8000 12000 16000 20000

E
[L

2]

t

Fig. 16. Left: Throughput as a function of SAC conditional probability table training time. Also shown:
SAC throughput with random and � = 1:95 conditional probability table. Right: Convergence property
of E(L2 j �). Fast convergence to linear order E(L2 jL1 = 1) < E(L2 jL1 = 2) < � � � < E(L2 jL1 = 8).

computed conditional expectation E(L2 j �) as a function of training time. Recall that in both
the threshold and inverse schedules E(L2 j �) (quantized or not)|not the conditional probability
table proper|is used in computing the aggressiveness level. Figure 16 (right) shows that the
functional E(L2 j �) quickly converges to the linear ordering E(L2 jL1 = 1) < E(L2 jL1 = 2) <
� � � < E(L2 jL1 = 8) as would be expected by the skewedness of the 3-D conditional probability
densities. The magnitudes of E(L2 j �), after some undulation, stabilized to �xed values.

The speedy manifestation of the linear ordering property and the convergence of E(L2 j �) to
�xed values leaves open the possibility that a priori conditional probabilities may be used for
predictive purposes which is especially useful for short-lived connections for which per-connection
conditional probability tables are impossible to establish.

4.3.5 Multiple Concurrent SAC Connections

The SAC protocol is designed to run in shared network environments where di�erent connec-
tions compete for available resources. In this section, we investigate the behavior of the SAC
protocol with respect to fairness and e�ciency when multiple connections engage in SAC. The
results are based on the same set-up as in Figure 7 except that we increase the bottleneck link
bandwidth to 20Mbps to accommodate up to 10 SAC connections. The mean tra�c rate of the
�rst 32 connections|i.e., non-SAC background tra�c sources|is kept at 5Mbps. We increase
the number of SAC connections from 1 to 10 (33rd connection and beyond) and observe whether
bandwidth is shared fairly and e�ciently. The latter refers to the question of whether the total
throughput achieved across all SAC connections remains conserved|increased competition can
create overhead and ine�ciencies|as the number of SAC connections is increased.

Figure 17 depicts average per-connection throughput as a function of the aggressiveness threshold
for one (top-left), two (top-right), four (bottom-left), and ten (bottom-right) SAC connections.
Superimposed we also show the throughput achieved by the inverse schedule and generic feed-
back congestion control, respectively. First, we observe that the shape of the throughput curve
changes from monotonically increasing to unimodal to monotonically decreasing as the num-

23

1050

1100

1150

1200

1250

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut

Aggressiveness Threshold

threshold schedule
regular control(bottom)
inverse schedule(top)

760

780

800

820

840

860

880

900

920

940

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut

Aggressiveness Threshold

threshold schedule
regular control(bottom)
inverse schedule(top)

420

430

440

450

460

470

480

490

500

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut

Aggressiveness Threshold

threshold schedule
regular control(bottom)

invere schedule(top)

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut

Aggressiveness Threshold

threshold schedule
regular control(bottom)
inverse schedule(top)

Fig. 17. Average (per-connection) throughput as a function of aggressiveness threshold for multiple
SAC connections. The top horizontal line shows the throughput achieved with the inverse schedule.
The bottom line represents the throughput of the generic linear increase/exponential decrease feedback
congestion control. Top left: single SAC connection; top right: two SAC connections; bottom left: four
SAC connections; bottom right: ten SAC connections.

ber of SAC connections is increased. This is to be expected since, other things being equal,
increasing the number of SAC connections ampli�es the net aggressiveness level since there
is no distributed control or cooperation among the SAC ows to maintain a constant overall
aggressiveness level. Second, since we plot average per-connection throughput, we observe the
per-connection throughput drop accordingly. Third, we observe that the performance of the
threshold schedule eventually deteriorates below that of the generic feedback congestion control
while the performance of the inverse schedule stays at a high level.

Threshold Schedule 1 2 3 4 5 6 7 8

1 connection 1066.1 1080.3 1103.0 1127.4 1150.8 1173.6 1194.9 1218.4

2 connections 1591.7 1617.6 1644.2 1672.7 1698.5 1728.6 1755.4 1776.1

4 connections 1765.5 1845.7 1896.4 1893.8 1877.3 1832.2 1788.8 1712.6

8 connections 1800.3 1750.3 1653.1 1537.6 1376.2 1230.6 1051.7 869.4

10 connections 1748.9 1649.0 1540.2 1417.9 1276.4 1109.2 925.7 743.0

Table 2
Total throughput across all SAC connections for the threshold schedule as the number of SAC connec-
tions is increased.

Table 2 shows the total throughput achieved across all SAC connections for the threshold sched-
ule as the number of SAC connections is increased. For each threshold level, we observe a

24

unimodal change in throughput as the number of connections is increased from 1 to 10 with the
peak occurring earlier the higher the threshold level. This indicates a trade-o� relation whereby,
at �rst, the net increase in aggressiveness due to the increased number of SAC connections leads
to a net increase in total SAC throughput. However, as the number of SAC connections is fur-
ther increased, the ampli�cation of the overall aggressiveness level asserts a negative impact on
throughput eventually yielding a net decrease. A similar phenomenon is observed for the inverse
schedule which is shown in Table 3. The onset of the peak is a function of available resources and
it can be further delayed by decreasing the overall aggressiveness of each connection. Note that
the multiple connection throughput behavior is achieved for the network con�guration shown in
Figure 7 which, due to its uniform link latencies, can be prone to synchronization e�ects [13].

Inverse Schedule 1 conn. 2 conn. 4 conn. 8 conn. 10 conn.

throughput 1152.9 1702.0 1947.7 1676.4 1594.4

Table 3
Total throughput across all SAC connections for the inverse schedule as the number of SAC connections
is increased.

Figure 18 plots the individual throughput achieved by each SAC connection when a total of 10
are present. We observe that fairness, for the network con�guration shown in Figure 7, is well
preserved. As the con�guration becomes less uniform, access discrepancies as with TCP and
other feedback congestion control algorithms are bound to arise which is a generic problem not
speci�c to SAC.

5 Conclusion

In this paper we have shown a multiple time scale congestion control (MTSC) framework that
exercises congestion control concurrently across two time scales|more than an order of magni-
tude apart|to a�ect improved throughput. We have shown that cooperative coupling between
the long time scale component (SAC) and the short time scale component (generic feedback
congestion control) via an aggressiveness parameter is e�ective at achieving signi�cant gains in
throughput. We have shown that relative performance gain is higher the more long-range depen-
dent the underlying network tra�c and the longer the RTT in the feedback loop of the generic
feedback congestion control. We have also shown that fairness and e�ciency are preserved as
the number of SAC connections sharing common network resources is increased.

In just-completed work, we have shown that SAC can be used on top of TCP Reno to a�ect
signi�cant throughput gains. Current work is directed at exploring alternative ways of structur-
ing and implementing the MTSC framework including di�erent forms of coupling and exploiting
correlation structure across multiple time scales.

25

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut

Aggressiveness Threshold

conn 1
conn 2
conn 3
conn 4
conn 5
conn 6
conn 7
conn 8
conn 9

conn 10

Fig. 18. Fair bandwidth access: Individual throughput plot with 10 SAC connections present.

References

[1] A. Adas and A. Mukherjee. On resource management and QoS guarantees for long range dependent
tra�c. In Proc. IEEE INFOCOM '95, pages 779{787, 1995.

[2] R. Addie, M. Zukerman, and T. Neame. Fractal tra�c: measurements, modelling and performance
evaluation. In Proc. IEEE INFOCOM '95, pages 977{984, 1995.

[3] Theodore Anderson. The Statistical Analysis of Time Series. John Wiley & Sons, 1994.

[4] Jan Beran. Statistics for Long-Memory Processes. Monographs on Statistics and Applied
Probability. Chapman and Hall, New York, NY, 1994.

[5] Jean-Chrysostome Bolot and A. Udaya Shankar. Analysis of a uid approximation to ow control
dynamics. In Proc. IEEE INFOCOM '92, pages 2398{2407, 1992.

[6] L. Brakmo and L. Peterson. TCP Vegas: end to end congestion avoidance on a global internet.
IEEE J. Select. Areas Commun., 13(8):1465{1480, 1995.

[7] Imrich Chlamtac and William R. Franta. Rationale, directions, and issues surrounding high speed
networks. Proc. IEEE, 78(1):94{120, 1990.

[8] M. Crovella and A. Bestavros. Self-similarity in world wide web tra�c: Evidence and possible
causes. In Proceedings of the 1996 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, May 1996.

[9] R. Dighe, C. J. May, and G. Ramamurthy. Congestion avoidance strategies in broadband packet
networks. In Proc. IEEE INFOCOM '91, pages 295{303, 1991.

[10] N. G. Du�eld and N. O'Connel. Large deviations and overow probabilities for the general single
server queue, with applications. Technical Report DIAS-STP-93-30, DIAS Technical Report, 1993.

[11] A. E. Eckberg. B-ISDN/ATM tra�c and congestion control. IEEE Network, pages 28{37,
September 1992.

[12] K. Fendick, M. Rodrigues, and A. Weiss. Analysis of a rate-based control strategy with delayed
feedback. In Proc. ACM SIGCOMM '92, pages 136{148, 1992.

26

[13] S. Floyd and V. Jacobson. The synchronization of periodic routing messages. In Proc. ACM
SIGCOMM '93, pages 33{44, 1993.

[14] M. Garret and W. Willinger. Analysis, modeling and generation of self-similar VBR video tra�c.
In Proc. ACM SIGCOMM '94, pages 269{280, 1994.

[15] M. Gerla and L. Kleinrock. Flow control: a comparative survey. IEEE Trans. Commun., 20(2):35{
49, 1980.

[16] G. C. Goodwin and K. S. Sin. Adaptive Filtering, Prediction and Control. Prentice Hall, 1984.

[17] M. Grossglauser and J-C. Bolot. On the relevance of long-range dependence in network tra�c. In
Proc. ACM SIGCOMM '96, pages 15{24, 1996.

[18] Z. Haas and J. Winters. Congestion control by adaptive admission. In Proc. IEEE INFOCOM
'91, pages 560{569, 1991.

[19] Zygmunt Haas. A communication architecture for high-speed networking. In Proc. IEEE
INFOCOM '90, pages 433{441, 1990.

[20] Duke Hong and Tatsuya Suda. Congestion control and prevention in ATM networks. IEEE Network
Magazine, pages 10{16, July 1991.

[21] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(23):359{366, 1989.

[22] C. Huang, M. Devetsikiotis, I. Lambadaris, and A. Kaye. Modeling and simulation of self-similar
variable bit rate compressed video: a uni�ed approach. In Proc. ACM SIGCOMM '95, pages 114{
125, 1995.

[23] Van Jacobson. Congestion avoidance and control. In Proc. ACM SIGCOMM '88, pages 314{329,
1988.

[24] S. Keshav. A control-theoretic approach to ow control. In Proc. ACM SIGCOMM '91, pages
3{15, 1991.

[25] Hyogon Kim. A Non-Feedback Congestion Control Framework for High-Speed Data Networks. PhD
thesis, University of Pennsylvania, 1995.

[26] H. T. Kung, T. Blackwell, and A. Chapman. Credit-based ow control for ATM networks: credit
update protocol, adaptive credit allocation, and statistical multiplexing. In Proc. SIGCOMM '94,
pages 101{114, 1994.

[27] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On the self-similar nature of Ethernet
tra�c (extended version). IEEE/ACM Transactions on Networking, 2:1{15, 1994.

[28] N. Likhanov and B. Tsybakov. Analysis of an ATM bu�er with self-similar (\fractal") input tra�c.
In Proc. IEEE INFOCOM '95, pages 985{992, 1995.

[29] D. Mitra and J. Seery. Dynamic adaptive windows for high speed data networks: theory and
simulations. In Proc. ACM SIGCOMM '90, pages 30{37, 1990.

27

[30] A. Mukherjee and J. Strikwerda. Analysis of dynamic congestion control protocols - a
Fokker-Planck approximation. In Proc. ACM SIGCOMM '91, pages 159{169, 1991.

[31] I. Norros. A storage model with self-similar input. Queueing Systems, 16:387{396, 1994.

[32] K. Park, G. Kim, and M. Crovella. On the relationship between �le sizes, transport protocols, and
self-similar network tra�c. In Proc. IEEE International Conference on Network Protocols, pages
171{180, 1996.

[33] Kihong Park. Warp control: a dynamically stable congestion protocol and its analysis. In Proc.
ACM SIGCOMM '93, pages 137{147, 1993.

[34] V. Paxson and S. Floyd. Wide-area tra�c: the failure of Poisson modeling. In Proc. ACM
SIGCOMM '94, pages 257{268, 1994.

[35] K. K. Ramakrishnan and R. Jain. A binary feedback scheme for congestion avoidance in computer
networks with a connectionless network layer. In Proc. ACM SIGCOMM '88, pages 303{313, 1988.

[36] B. Ryu and A. Elwalid. The importance of long-range dependence of VBR video tra�c in ATM
tra�c engineering: myths and realities. In Proc. ACM SIGCOMM '96, pages 3{14, 1996.

[37] Scott Shenker. A theoretical analysis of feedback ow control. In Proc. ACM SIGCOMM '90,
pages 156{165, 1990.

[38] M. S. Taqqu, V. Teverovsky, and W. Willinger. Estimators for long-range dependence: an empirical
study, 1995. Preprint.

[39] H. L. van Trees. Detection, Estimation and Modulation Theory. John Wiley, 1968.

[40] Y. T. Wang and B. Sengupta. Performance analysis of a feedback congestion control policy under
non-negligible propagation delay. In Proc. ACM SIGCOMM '91, pages 149{157, 1991.

[41] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-similarity through high-variability:
statistical analysis of Ethernet LAN tra�c at the source level. In Proc. ACM SIGCOMM '95, pages
100{113, 1995.

[42] C. Yang and A. Reddy. A taxonomy for congestion control algorithms in packet switching networks.
IEEE Network, pages 34{45, July/August 1995.

A Predictability Set-Up

A.1 O�-Line Estimation

Assume we are given a wide-sense stationary stochastic process (�t)t2Z and two numbers T1; T2 >
0. At time t, we have at our disposal

a =
X

i2[t�T1;t)

qi

28

where qi is a sample path of �t over time interval [t� T1; t). For notational clarity, let

V1 =
X

i2[t�T1;t)

�i; V2 =
X

i2[t;t+T2)

�i:

a may be thought of as the aggregate tra�c observed over the \recent past" [t� T1; t) and V1,
V2 are composite random variables denoting the recent past and near future. We are interested
in computing the conditional probability

PrfV2 = b j V1 = ag (A.1)

for b in the range of V2. For example, if a represented a \high" tra�c volume, then we may be
interested in knowing what the probability of encountering yet another high tra�c volume in
the near future would be.

Assume �t has �nite mean and variance. Let �k = E(Vk), �
2
k = V(Vk), k = 1; 2, where E and

V are the expectation and variance operators, respectively. To make sense of \high" and \low,"
we will partition the range of Vk into m (m = 8) levels

(�1; �k � 3�k); [�k � 3�k; �k � 2�k); [�k � 2�k; �k � �k); [�k � �k; �k);

[�k; �k + �k); [�k + �k; �k + 2�k); [�k + 2�k; �k + 3�k); [�k + 3�k;+1):

We will de�ne two new random variables L1, L2 where

Lk = 1 () Vk 2 (�1; �k � 3�k);

Lk = 2 () Vk 2 [�k � 3�k; �k � 2�k);
...

Lk = 8 () Vk 2 [�k + 3�k;+1):

In other words, Lk is a function of Vk, Lk = Lk(Vk), and it performs a certain quantization.
Thus if Lk � 1 then the tra�c level is \low" relative to the mean, and if Lk � 8, then it is
\high." Although the central limit theorem does not (mathematically) apply here, in practice,
it was observed that the above partition gave a normalized measure of deviation. An alternative
classi�cation which is based on the uniform distribution has been found to be more universally
e�ective.

Returning to (A.1) and prediction, for certain values of T1, T2, we are interested in knowing the
conditional probability densities

PrfL2 j L1 = `g

for ` 2 [1; 8]. If PrfL2 j L1 = 8g were concentrated toward L2 = 8, and PrfL2 j L1 = 1g were
concentrated toward L2 = 1, then this information could be potentially exploited for congestion
control purposes.

29

To estimate PrfL2 j L1 = `g from the aggregate throughput series Xt, we segment Xt into

N =
10000 (sec)

T1 + T2 (sec)

contiguous nonoverlapping blocks of length T1 + T2 (except possibly for the last block), and for
each block j 2 [1; N] compute the aggregate tra�c V1, V2 over the subintervals of length T1, T2.

For `; `0 2 [1; 8], let h` 2 [0; N] denote the total number of blocks such that L1(V1) = ` and let
h`0 2 [0; h`] denote the size of the subset of those blocks such that L2(V2) = `0. Then

PrfL2 = `0 j L1 = `g =
h`0

h`
:

A.2 On-Line Estimation

All that is needed to maintain CondProb is a clock of period 2 which, starting at time t = 0,
goes o� at times

t = T1; T1 + T2; T1 + T2 + T1; T1 + T2 + T1 + T2; : : :

If a feedback packet containing an instantaneous throughput measured at the receiver arrives
during the period

[i(T1 + T2); i(T1 + T2) + T1]; i � 0;

it is added to V1. When the alarm goes o� at t = i(T1 + T2) + T1, V1 is used to compute the
updated mean �1 and standard deviation �1 of V1. This can be done incrementally using O(1)
operations for both mean and standard deviation since variance can be expressed as a sum
Ef(X � E(X))2g = E(X2) � E(X)2. Now ` = L1(V1) is computed using the updated �1, �1,
and CondProb[`][9] is incremented by 1. During interval

[i(T1 + T2) + T1; (i + 1)(T1 + T2)]; i � 0;

a similar operation is performed, however, now, with respect to V2. At the end of the interval,
the updated �2, �2 are computed, and `0 = L2(V2) is computed using the updated mean and
standard deviation. Finally, CondProb[`][`0] is incremented by 1, and V1; V2 are reset to 0 to start
the process anew. The number of operations within a time interval of length T1 + T2 is O(1).

It should be noted that the conditional densities computed from CondProb at time t are approx-
imations to the conditional probability densities computed o�-line for the period [0; t] since in
the on-line algorithm running sums are used to compute �k, �k, k = 1; 2. Thus at time t when
�k, �k are updated, the previous classi�cations made of Vk need not hold under the new Lk since
the latter is a function of �k, �k.

30

Curriculum Vitae

Tsunyi Tuan received the B.S. degree in Mechanical Engineering from the National Tsing-Hua Univer-
sity, Hsinchu, Taiwan in 1990, and the M.S. degree in Electrical Engineering from Columbia University,
New York, in 1994. He is currently working toward the Ph.D. degree in Electrical Engineering at Purdue
University. He has been a teaching assistant in the Mathematics Department and is presently a research
assistant in the Network Systems Lab in the Department of Computer Sciences at Purdue University.
His research interests include congestion control for self-similar network tra�c and its application to
TCP and real-time tra�c management.

Kihong Park received his B.A. from Seoul National University, Korea, and his Ph.D. in Computer

Science from Boston University (1996). Presently, he is an assistant professor of computer science at

Purdue University. His research centers around design and control issues in high-speed multimedia

networks including congestion control, quality of service provision architectures, routing, and the facili-

tation of adaptive, fault-tolerant computing on large-scale distributed systems. He has over 40 technical

publications and has served on several international program committees. He was a Presidential Uni-

versity Fellow at Boston University, is a recipient of the NSF CAREER Award, and is a member of

several professional societies including ACM and IEEE.

31

