
AGGREGATE-FLOW SCHEDULING: THEORY AND PRACTICE

A Thesis

Submitted to the Faculty

of

Purdue University

by

Huan Ren

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2002

ii

To Xin and Eric

iii

ACKNOWLEDGMENTS

I would like to show my sincere gratitude to my advisor Professor Kihong Park for

his guidance during my Ph.D. study. The hundreds of hours that we spent together in

the past four years are still vivid in my memory. His devotion to science, enthusiasm

for perfection, and creative thinking provide an example of researcher that I shall

follow in my life. I thank him not only for giving me copious amounts of insightful

criticism on my research but also for his far-reaching advices on my professionalism

and future career.

I would like to thank Professors Sonia Fahmy, Ness Shroff, and Wojciech Sz-

pankowski for being on my advisory committee. The computer networking seminar

course I took from Professor Fahmy helped me start working on the topic of this

dissertation. Prof. Shroff is a true mentor to his students; I was fortunate to get

many wise advices from him on various subjects throughout my Ph.D. study. Prof.

Szpankowski always encourages students to explore unknown world, and I benefited

greatly from the algorithm analysis course he taught. I also thank Professor Steven

Low at California Institute of Technology for serving on my final examining commit-

tee. He made a long trip to attend my final defense and provided insightful comments

on this dissertation. I thank Dr. Gorman for all his help in the department.

Special thanks should be given to my wife, Xin Liu, for her love, support, encour-

agement, and for being an intelligent colleague as well. The past four and a half years

that we studied together at Purdue are the happiest and most memorable time in my

life. Both of us get our Ph.D. degrees from Purdue with Eric Rucheng Ren as our

another accomplishment. It is her that makes this long journey of pursuing Ph.D. so

enjoyable.

iv

Finally, I would like to thank my parents for their selfless love and support. I also

thank my brother Kun for sharing my experiences, his sense of humor, and being my

soul mate.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

ABSTRACT . xi

1 Introduction . 1

1.1 Motivation . 1

1.2 Key Issues . 2

1.3 Theoretical Contributions . 3

1.4 Implementation . 4

1.5 Related Work . 6

2 Network Architecture . 10

2.1 Overall System Structure . 10

2.2 Basic Definitions . 12

2.3 Per-hop Control . 12

2.3.1 Per-hop Control Components 12

2.3.2 Per-hop Control Properties . 13

2.4 Edge Control . 14

2.4.1 Access Control . 14

2.4.2 End-to-end Control . 15

2.5 User Control . 16

2.5.1 User Utility and Selfishness 16

2.5.2 Noncooperative Game . 17

2.6 Service Provider Control . 18

3 Optimal Aggregate-flow Scheduling . 20

3.1 Optimal Classifiers and Per-hop Control 20

3.1.1 Optimal Per-flow Classification 20

vi

Page

3.1.2 Optimal Aggregate-flow Classification 26

3.1.3 Properties of Optimal Aggregate-flow Classifiers 31

3.1.4 System Optimality and Structural Properties 34

3.2 Game Theoretic Structure . 39

3.2.1 Basic Definitions . 39

3.2.2 Nash Equilibria and Stability Properties 40

3.3 Conclusion . 42

4 Performance Evaluation . 44

4.1 QoS Provisioning Architecture Design 44

4.1.1 Optimal Aggregate-flow Per-hop Control Design 44

4.1.2 End-to-end QoS Control Design 46

4.1.3 Scaling Function . 47

4.1.4 Load Imbalance and Local QoS Responsibility 48

4.2 Performance Results . 50

4.2.1 Simulation Set-up . 50

4.2.2 Service Differentiation . 51

4.2.3 Structural Properties of Optimal Aggregate-flow Per-hop Control 55

4.2.4 The Role of Scaling Function 59

4.2.5 Impact of Burstiness . 61

4.2.6 Dynamics and Convergence 62

4.3 Conclusion . 69

5 System Building and Benchmarking . 70

5.1 System Design . 70

5.1.1 Key issues . 70

5.1.2 Overall Structure . 71

5.1.3 Dynamic Weight Computation 74

5.1.4 User Configuration Interface 75

5.2 System Building Procedure . 75

vii

Page

5.3 Benchmarking Results . 76

5.3.1 QoS Differentiation . 76

5.3.2 Dynamic Environment . 79

5.4 Conclusion . 80

6 Stochastic Modeling and Optimization . 82

6.1 Introduction . 82

6.1.1 Features of Optimal Aggregate-flow Scheduling 83

6.1.2 New Contribution . 84

6.2 Related Work . 86

6.3 System Model . 89

6.3.1 Multi-class Queueing Model 89

6.3.2 Optimal Aggregate-flow Scheduling 91

6.3.3 Conservation Law . 92

6.3.4 Aggregate-flow Performance Space and Open Ball Containment 93

6.4 Structure of Optimal Aggregate-flow Scheduling 94

6.4.1 Main Result . 94

6.4.2 Decomposition . 95

6.4.3 Clustering . 97

6.4.4 Open Ball Scaling . 98

6.5 Complexity of Optimal Clustering . 100

6.5.1 Unconstrained Optimization and Subspace Projection 101

6.5.2 Hardness of One-dimensional Clustering 104

6.6 Conclusion and Discussion . 112

7 Conclusion and Future Work . 114

7.1 Thesis Summary . 114

7.2 Future Work . 115

LIST OF REFERENCES . 117

VITA . 123

viii

LIST OF FIGURES

Figure Page

2.1 Overall QoS provisioning architecture. Network exports per-hop and
edge control, user exercises scalar QoS control (η-control), and service
provider exports QoS cost to user. 11

2.2 Left: Aggregate-flow QoS control affected by two stages of “information
loss” via many-to-one coarsification—at edge and per-hop. Right: η
value in DS field of IP datagram is used by the classifier to select service
class in GPS packet scheduler. 13

2.3 Structure of forward QoS control path. “Lower” path comprised of ad-
mission control, policing/shaping, per-hop control—open-loop control.
“Upper” control path comprised of dynamic η control, pricing, receiver
QoS monitoring, QoS feedback—closed-loop control. 15

3.1 Behavior of reduction classifier . 28

4.1 Structure of reduction classifier for m = L; αk is the service weight
allocated to service class k ∈ {1, . . . , L}. 45

4.2 Left: “Equal spacing” QoS separation achieved by optimal aggregate-
flow classifier when L = 16. Right: Scaling function σ affecting nonuni-
form stretching and contraction. 48

4.3 Structure of reduction classifier with scaling function for m = L; αk is
the service weight allocated to service class k ∈ {1, . . . , L}. 49

4.4 Uniform vs. nonuniform local QoS responsibility distribution to satisfy
30ms end-to-end delay requirement for a given load imbalance. . . . 49

4.5 Benchmark network topology. Left: 2-switch single bottleneck link
shared by n flows. Right: 4-switch multiple bottleneck link caterpillar
topology. 51

4.6 QoS separation achieved by optimal aggregate-flow classifier when L =
16. Left: Packet loss rate. Right: End-to-end delay. 52

4.7 Manifestation of properties (A1) and (A2). End-to-end QoS shaping
as a function of label value η16 of singular user flow. Left: 16 users
(originally each group has one user). Right: 48 users (average group
population size of 3). 53

ix

Figure Page

4.8 Impact of ν on QoS separation for L = 16. Left: QoS exported by
service classes as a function of bottleneck bandwidth when ν = 0.9.
Right: Corresponding plots when ν = 0.1. 54

4.9 Structure of A∗. Left: The change in Nash equilibria as we increase
bottleneck bandwidth for user population with QoS requirement pro-
file (0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 1.0). At 10 Mbps, Nash equilibria
become corner points of A∗. Right: Corresponding landscape for more
stringent user population QoS profile shown in the legend. 56

4.10 Impact of bounded label set size L on QoS exported by the service
classes as a function of bottleneck bandwidth for L=1, 4, 8, 32. . . . 57

4.11 The combined impact of L and ν on QoS shaping. Left: QoS exported
in L service classes as a function of L for ν = 0.5. Right: Corresponding
plot for ν = 0.1. 58

4.12 Impact of L on existence of A∗: minimum bottleneck bandwidth re-
quired to achieve A∗ 6= ∅ as a function of L. 59

4.13 QoS differentiation achieved by optimal aggregate-flow classifier with
scaling function. σ(η) for η ∈ [0, 15]: 1.0, 1.1, 1.2, 10, 11, 12, 100,
110, 120, 500, 550, 600, 1000, 1100, 1200, 2000. Left: Packet loss rate.
Right: End-to-end delay. 60

4.14 Impact of scaling function on system efficiency: minimum bottleneck
bandwidth required to achieve A∗ 6= ∅ as a function of L. 60

4.15 QoS separation achieved by optimal aggregate-flow classifier when L =
16 under VBR traffic. Left: packet loss rate. Right: end-to-end delay. 61

4.16 Impact of finite label set size L on QoS for VBR traffic. Left: L=4;
Right: L=16. 62

4.17 QoS separation achieved by optimal aggregate-flow classifier with scal-
ing function when L = 16 under VBR traffic. σ(η), η ∈ [0, 15]: 1.0, 1.1,
1.2, 10, 11, 12, 100, 110, 120, 500, 550, 600, 1000, 1100, 1200, 2000.
Left: packet loss rate. Right: end-to-end delay. 63

4.18 Time evolution of adaptive label control and end-to-end QoS. Top row:
Evolution of label values shown for three user groups with common QoS
requirements (0.1, 0.3, and 0.5). Bottom row: Corresponding trace of
measured end-to-end QoS for user flows belonging to the three QoS
groups. 64

x

Figure Page

4.19 End-to-end QoS achieved under adaptive label control as a function of
bottleneck bandwidth for successively more stringent QoS requirement
profiles (shown in the legends). 65

4.20 Time evolution of adaptive label control and end-to-end QoS in many-
switch topology (Figure 4.5 (right)) with many flows. Top row: Evo-
lution of label values shown for three user groups with common QoS
requirements (0.1, 0.3, and 0.5). Bottom row: Corresponding trace of
measured end-to-end QoS for user flows belonging to the three QoS
groups. 66

4.21 QoS distribution on multi-hop path with three medium-loaded
switches. Left: Switch loads. Middle: Static QoS distribution. Right:
Dynamical QoS distribution. 67

4.22 QoS distribution on multi-hop path with one heavy-loaded switch and
two light-loaded switches. Left: switch loads. Middle: static QoS
distribution. Right: dynamical QoS distribution. 68

4.23 To satisfy given QoS target, the actual QoS achieved at each switch
with respect to different load imbalance patterns. 69

5.1 Structure of optimal aggregate-flow per-hop control module imple-
mented in Cisco routers. 72

5.2 Network topology of Q-bahn testbed 76

5.3 QoS separation among classes under different load distribution 77

5.4 QoS separation among classes under different congestion level 78

5.5 Q-Bahn experiment report . 81

6.1 Depiction of conservation law hyperplane, per-flow performance space,
and aggregate-flow subspace for an n = 3 and m = 2 optimum schedul-
ing example. 85

xi

ABSTRACT

Ren, Huan. Ph.D., Purdue University, December, 2002. Aggregate-flow Scheduling:
Theory and Practice. Major Professor: Kihong Park.

This dissertation studies providing Quality of Service (QoS) to individual flows

using aggregate-flow scheduling. Our work is carried out on both theoretical and

practical sides.

We present a theoretical framework for reasoning about scalable QoS provisioning

using aggregate-flow scheduling, constrained to be implementable in IP networks.

Our control framework—Scalar QoS Control—generalizes per-hop and edge control

achievable by setting a scalar value in packet header, e.g., the Type of Service (TOS)

field of IP. We study optimal aggregate-flow scheduling problem under the framework

and the properties the optimal solution exhibits which facilitate end-to-end QoS via

the joint action of aggregate-flow scheduling per-hop and per-flow provisioning at the

edge.

We design an optimal aggregate-flow per-hop control algorithm that achieves the

induced optimal aggregate-flow scheduling solution and implement the algorithm in

Cisco routers. We conduct a comprehensive performance evaluation by both simula-

tions and experiments over Q-bahn testbed comprised of Cisco routers running the

implemented optimal aggregate-flow per-hop control. The benchmarking results con-

firm our theoretical framework and analysis, and reveal further quantitative features

of both structural and dynamical properties of the system. Our results, collectively,

show that user-specified services can be efficiently and effectively achieved over net-

works with optimal aggregate-flow per-hop control substrate when coupled with either

open-loop or closed-loop (adaptive label control) edge control.

xii

We generalize our optimal aggregate-flow per-hop control analysis by consider-

ing stochastic input and study optimal aggregate-flow scheduling problem in gen-

eral multi-class queueing systems. We introduce a stochastic framework of optimal

aggregate-flow scheduling, which extends the optimal per-flow scheduling framework

pioneered by Coffman and Mitrani. We show that optimal aggregate-flow schedul-

ing in multi-class G/G/1 systems with work-conserving, non-preemptive and non-

anticipative scheduling disciplines—for which Kleinrock’s conservation law holds—is

NP-hard. This stands in contrast with the quadratic time complexity of optimal

per-flow scheduling and cubic time complexity of optimal aggregate-flow scheduling

in static input environments subject to relative service differentiation. We show that

computational hardness results from the combination of optimal aggregation and

Kleinrock’s conservation law.

1

1 INTRODUCTION

1.1 Motivation

Architecting networks capable of providing scalable, efficient, and fair services to

users with diverse Quality of Service (QoS) requirements is a challenging problem.

The traditional approach uses resource reservation and admission control to provide

both guarantees and graded services to application traffic flows. Analytical tools

for computing and provisioning QoS guarantees [15, 16, 59, 60] rely on overprovi-

sioning coupled with traffic shaping/policing to preserve well-behavedness properties

across switches that implement a form of Generalized Processor Sharing (GPS) packet

scheduling [17]. Scale-invariant burstiness associated with self-similar network traf-

fic [46, 64] limits the shapability of input traffic and restricts reserving bandwidth

that is significantly smaller than the peak transmission rate. This imposes a trade-off

between QoS and resource utilization which limits the achievable degree of utilization

while guaranteeing stringent QoS. For applications needing guaranteed services, the

unconditional protection afforded by per-flow resource reservation and admission con-

trol is a necessity. However, for elastic applications that require QoS-sensitive services

but not guarantees, it would be an overkill to provision QoS using the mechanisms

of per-flow reservation and admission control. In addition to the “service mismatch”,

overhead associated with administering resource reservation and admission control

would impede scalability.

Efforts have been directed at designing network architectures with the aim of

delivering QoS-sensitive services by introducing weaker forms of protection or as-

surance to achieve scalability [8, 12, 18, 50, 55]. The differentiated services frame-

work [3, 12, 37, 55] has advanced a set of building blocks comprised of per-hop and

access point behaviors with the aim of facilitating scalable services through aggregate-

2

flow resource control inside the network and per-flow traffic control at the edge. By

performing a many-to-one mapping from the large space of individual flows to the

much smaller space of aggregate-flow labels, scalability of per-hop control is achieved

at the expense of introducing uncertainty and possible service degradation by flow-

aggregation and aggregate-flow packet scheduling.

1.2 Key Issues

A number of works have studied the behavioral characteristics of specific in-

stances of differentiated services networks. In previous work [8, 9, 63], the authors

introduced aggregate-flow per-hop control mechanisms motivated by game theoretic

considerations—a router performs class-based label switching which emulates user

optimal service class selection with respect to selfish users—without considering the

space of all aggregate-flow per-hop controls which is carried out in this dissertation.

In [52], simplified models of Assured Service [37] and Premium (or Expedited) Ser-

vice [38] are presented and analyzed with respect to their performance when com-

pared with simulations. In [24], an adaptive 1-bit marking scheme is described,

and the resulting bandwidth sharing behavior is demonstrated via simulations when

the priority level is controlled end-to-end. In [18], the authors describe the pro-

portional differentiation model which seeks to achieve robust, configurable service

class separation—i.e., QoS differentiation—with the support of two candidate packet

schedulers. They use simulation to study the behavioral properties. Other related

works include [8, 12, 50, 56].

In spite of these efforts, a comprehensive understanding of the power and limita-

tion of aggregate-flow QoS provisioning is still in its infancy. Little is known about

how to select “good” aggregate-flow per-hop controls—including optimal ones—and

per-flow end-to-end (or edge) controls, and what criteria to apply when designing

these components. Following the divide-and-conquer approach to network design, we

would like to reduce the scalable QoS provisioning problem to subproblems and solve

3

them individually without worrying about the details of other subsystems except

through well-defined interfaces and “black box” function definitions. Although the

same approach is undertaken in this work, we find that there are intimate relation-

ships between the selection of per-hop and end-to-end controls. Thus the key problem

of our study is the formulation and solution of optimal aggregate-flow scheduling for

scalable QoS provisioning with regard to individual user requirements and perfor-

mance.

1.3 Theoretical Contributions

Our theoretical study has three parts. First, we give a general framework of

scalable QoS provisioning using aggregate-flow scheduling where packet labels can

be set from a finite label set and routers provide differentiated treatment of packets

based on the labels enscribed. We define the meaning of optimal per-hop control

within this context and find the optimal solution for aggregate-flow control. We show

that the optimal per-hop control satisfies certain properties—denoted (A1), (A2), and

(B), and defined in Section 2.3—which relate to how label values impact the service

a flow receives at a router. We augment the general result by presenting optimal

solutions when restricting the packet scheduling disciplines to variants of GPS, and

the consequences on the core properties.

Second, we expand the framework by introducing selfish users who can influence

QoS provisioning behavior by regulating the label values assigned to their traffic

streams. Based on the properties exported by the network control—(A1), (A2), and

(B)—we show how a population of selfish users with diverse QoS requirements setting

their packet labels can arrive at a global allocation of resources that is stable (Nash

equilibrium) and efficient (system optimal). We show that even in situations when

network resources are scarce such that no resource allocation—aggregate-flow differ-

entiation, per-flow reservation, or otherwise—can satisfy all users’ QoS requirements,

the system is stable and reaches a Nash equilibrium. We show that the optimal per-

4

hop control is also “optimal” in the noncooperative game context in the sense that

when network resources are configurable such that all users’ QoS requirements can

be satisfied, then there exists a Nash equilibrium that is system optimal.

Third, we generalize our optimal aggregate-flow per-hop control analysis by con-

sidering the impact of stochasticity of the input: arrival processes with general in-

terarrival and service times. We study the stochastic modeling and optimization of

aggregate-flow scheduling in general multi-class queueing systems. We introduce a

stochastic framework of optimal aggregate-flow scheduling, which extends the optimal

per-flow scheduling framework pioneered by Coffman and Mitrani [19, 30, 23, 22, 76].

We show that optimum scheduling in multi-class G/G/1 systems with work con-

serving, non-preemptive and non-anticipative scheduling disciplines—for which Klein-

rock’s conservation law holds—is NP-hard. This stands in contrast with the quadratic

time complexity of optimal per-flow scheduling, and cubic time complexity in static

input environments subject to relative service differentiation. We show that computa-

tional hardness results from the combination of optimal aggregation and Kleinrock’s

conservation law.

The chapters related to theoretical analysis are organized as follows: In Chapter 2

we present a general QoS provisioning architecture using aggregate-flow scheduling.

Chapter 3 studies optimal aggregate-flow per-hop control, and system stability and

efficiency under a non-cooperative game context. In Chapter 6, we discuss the stochas-

tic framework of optimal aggregate-flow scheduling.

1.4 Implementation

In addition to the theoretical analysis, we design an efficient algorithm to achieve

optimal aggregate-flow per-hop control and implement the algorithm in Cisco routers.

We carry out a comprehensive performance evaluation study of QoS provisioning using

optimal aggregate-flow per-hop control by both simulation and benchmarking over a

real network testbed.

5

In Chapter 4, we investigate implementation issues of QoS provisioning using the

optimal aggregate-flow per-hop control derived in Chapter 3, and carry out a perfor-

mance evaluation study by ns simulation. We design a system that implements the

optimal per-hop control and end-to-end control, and propose a practical enhancement

by introducing a scaling function which is applied to the TOS field label value in the

IP header at each router. The scaling function allows the service provider to configure

the per-hop control so as to export customized QoS separation—essential when shap-

ing end-to-end absolute QoS over per-hop relative QoS—commensurate with the QoS

profiles of the service provider’s user base. Using simulation, we show that the scal-

ing function enhances system efficiency in the sense that less bandwidth is needed to

achieve the same QoS requirements. We use simulation to study both the dynamical

and structural properties of aggregate-flow QoS provisioning as they relate to stabil-

ity and optimality. We provide comprehensive and detailed quantitative performance

results and evaluations under aggregate-flow interactions, thus extending, in addition

to complementing, our theoretical results. We demonstrate the QoS shaping prowess

of optimal aggregate-flow per-hop control, QoS separation and efficiency at matching

diverse QoS requirements, the impact—with respect to service resolution and loss of

QoS shaping power—stemming from discrete and bounded label values in TOS field,

the effectiveness of end-to-end adaptive label control over optimal per-hop control,

the dynamical properties of adaptive label control with respect to convergence and

stability, and the QoS distribution across multiple routers on an end-to-end path in

a wide area network.

In Chapter 5, we describe the design and implementation of optimal aggregate-

flow per-hop control in Cisco routers. The system building experience shows that

the optimal per-hop control scheme proposed is practical and implementable. The

overhead brought by optimal per-hop control is small. We also conducted benchmark-

ing over the Q-Bahn testbed which is comprised of Cisco 7206 VXR routers running

the optimal per-hop control. Our benchmarking output confirms the previous results

6

from theoretical analysis and simulation, and demonstrates the scalability of the QoS

provisioning architecture.

Collectively, our results show that optimal aggregate-flow per-hop control is im-

plementable, and user-specified and diverse QoS requirements can be effectively fa-

cilitated over the network with optimal aggregate-flow scheduling substrate.

1.5 Related Work

Early approaches to QoS provisioning use resource reservation and admission con-

trol to provision guaranteed services—deterministic or statistical—with the help of

leaky bucket regulators. Although research abounds [14, 15, 16, 20, 21, 31, 45, 54,

59, 60], analytic tools for computing QoS guarantees rely on shaping of input traffic

to preserve well-behavedness across switches which implement a form of general-

ized processor sharing (GPS), also known as weighted fair queuing [17, 59]. Real-

time constraints of multimedia traffic and the scale-invariant burstiness associated

with self-similar network traffic [46, 61, 67, 85] limit the shapability of input traffic

while at the same time reserving bandwidth that is significantly smaller than the

peak transmission rate. Statistical multiplexing—when employing a small buffer ca-

pacity/large bandwidth resource provisioning policy [64]—can, by an application of

the central limit theorem, yield improved efficiency while achieving predictable per-

formance. However, the statistical guarantee is only approximate, some efficiency

is lost when fitting leaky bucket parameters to self-similar input [73], and second-

order properties—even under bufferless queuing—adversely affect jitter and related

second-order performance measures. Thus QoS and utilization stand in a trade-off

relationship with each other [61, 62] and transporting application traffic over reserved

channels, in general, incurs a high cost.

Aggregate-flow scheduling has been investigated in the noncooperative QoS provi-

sioning context—explicitly for multi-class QoS and implicitly for competitive routing.

In [8, 9, 63], the authors introduced aggregate-flow per-hop packet scheduling mecha-

7

nisms and end-to-end controls motivated by game theoretic considerations—a router

performs class-based label switching which emulates user optimal service class selec-

tion with respect to selfishness—without considering the space of all aggregate-flow

per-hop controls. In [51], the aggregate-flow scheduling scheme is modeled as a multi-

class priority queue, where users are given the freedom to choose the priorities of their

traffic, but are charged accordingly. In [42, 57], the authors study stability and ef-

ficiency properties of a parallel link routing system where selfish users are allowed

to choose which link to send their traffic to, commensurate with their performance

requirements. The QoS experienced in each link is a function of how many users have

selected that link—flow-aggregation—and interpreting each link as a service class (al-

beit without work conservation coupling) yields an aggregate-flow QoS provisioning

system. Several other papers have also addressed the issue of multi-class QoS pro-

visioning in high-speed networks [13, 49, 66, 74, 77]. Some of the works employ a

cooperative framework or place significant computing responsibilities on the part of

the user [49, 74], some investigate the effect of pricing incentives [13], and others

represent flow/congestion control and routing models that only partially address the

quality of service problem [77].

In the differentiated services area, efforts are directed at designing network ar-

chitectures with the aim of delivering service levels with “soft” or weak guarantees

using aggregate-flow—as opposed to per-flow—traffic control [12, 55], with primary

emphasis on scalability. Assured Service [12, 37] and Expedited (or Premium)

Service [38, 55]—two principal proposals adopted by the IETF Diff-Serv Working

Group—affect weak protection through traffic shaping/marking at the edge and dif-

ferentiated packet treatment support from the routers. In both cases, it is assumed

that service level (i.e., QoS) is computed using admission control, and the core task

revolves around providing protection from ill-behaving flows that exceed their con-

tract specifications. This is done through 2-state (in/out) or 3-state marking and

using RIO gateways [12], or through leaky bucket traffic shaping with routers im-

plementing priority queuing [55]. The most challenging problem—how to efficiently

8

compute service level agreements (SLA)—is not addressed within Assured Service and

Expedited Service. It is this problem, phrased in the context of shaping end-to-end

absolute QoS over per-hop relative QoS, that is studied in this dissertation.

Several works have addressed the performance evaluation side of differentiated

services, both quantitatively and qualitatively. In [52], the authors advanced simpli-

fied models of Assured Service and Premium Service and analyzed them with respect

to their performance when compared with simulation-based evaluations. In [47], the

authors investigated enhanced mechanisms that improve the throughput and fairness

properties exhibited by Assured Service. Feng et al. [24] describe an adaptive 1-bit

marking scheme and demonstrate the resulting bandwidth sharing behavior using

simulations when the priority level is controlled end-to-end. In [18], the authors de-

scribe a proportional differentiation model which seeks to achieve robust, configurable

service class separation—i.e., QoS differentiation—with the support of two candidate

packet schedulers. They use simulation to study the behavioral properties.

Some other work has been carried out in formulating resource allocation problems

spanning a number of different domains in the context of microeconomics and game

theory [13, 25, 26, 36, 41, 43, 44, 49, 57, 66, 74, 77, 81, 83]. In Smart Market [50],

pricing—in the form of packets carrying bids—is used to resolve scheduling conflicts

of packets at switches inside a network implementing priority queues. Paris Metro

Pricing [56] provides a framework and argument for discussing the role of service

differentiation through pricing, even if network resources are plentiful. In [34], the

authors study the efficiency properties of RIO which is used as the scheduler in

Assured Service. Although the concerns raised with respect to RIO being an efficient

scheduler are well-founded, the authors’ contribution is restricted to performance

analysis of a packet scheduler and does not relate in an essential way to aggregate-

flow scheduling which is at the heart of differentiated services.

Prior to our stochastic optimal aggregate-flow scheduling framework, optimal per-

flow scheduling with stochastic input has been intensively studied, with focus on char-

acterizing the per-flow performance space satisfying strong conservation laws [76]—a

9

weaker form being Kleinrock’s conservation law [39, 40, 75]—under different assump-

tions on the input and scheduler space. Several other aspects of optimal scheduling, in

contexts relevant to network control, have also been investigated. These include com-

putational complexity of optimal control, optimal clustering under minimum mean-

square error (MMSE) criterion, and job grouping. Section 6.2 provides a more de-

tailed review on previous work related to stochastic optimization of aggregate-flow

scheduling.

10

2 NETWORK ARCHITECTURE

In this chapter, we present a scalable QoS provisioning architecture using aggregate-

flow scheduling. The architecture, Scalar QoS Control, generalizes per-hop and edge

control achievable by setting a scalar value in packet headers, e.g., the TOS field

of IP. Our control framework incorporates assumptions, albeit weak, about selfish

user behavior and service provider behavior. This is necessitated by the essential

role they play in influencing end-to-end QoS, without which an effective evaluation

of aggregate-flow QoS provisioning remains incomplete.

2.1 Overall System Structure

The network system is comprised of four principal components—per-hop control ,

edge control , user control , and service provider control—where the first two make

up the network system proper, and the latter two are incorporated to evaluate the

“goodness” of the first two components. Figure 2.1 depicts the overall system struc-

ture. A user’s traffic flow, upon entering the network, is assigned a label from a set of

L values, e.g., enscribed in the TOS field of IPv4. The routers provide differentiated

treatment of packets based on their enscribed labels, and end-to-end QoS is deter-

mined by the treatment of a user’s flow on all hops along a given path. The label

values are set at the edge on a per-flow basis—either once-and-for-all (open-loop),

or dynamically as a function of network state (closed-loop)—facilitating end-to-end

control as part of edge control. A second component of edge control is access control

which prevents users from arbitrarily assigning labels to their packet flows without

consequences. Access control may be achieved by policing, traffic shaping, and pric-

ing. We assume that the network (in general, service provider) exports a cost to each

user which increases with service quality, or equivalently, with the resources received.

11

The system is completed by incorporating selfish users who can regulate the label

values on their packet streams to satisfy their QoS requirements at least cost, and

a selfish service provider who sets prices—which determine user cost—to maximize

profit.

Pricing
(ISP)

(APP)
Label Contro l

Per−hop

Control

Control

Access

Control
User

E
d

g
e

 C
o

n
tr

o
l

Figure 2.1. Overall QoS provisioning architecture. Network exports per-hop and
edge control, user exercises scalar QoS control (η-control), and service provider

exports QoS cost to user.

The job of the network system proper—per-hop control and edge-control—is to

provide sufficient and efficient network mechanisms such that for a set of users or

traffic flows with diverse QoS requirements, by suitable setting of the packet labels,

user-specified services in the form of target end-to-end QoS can be provided. The

setting of the label value, whether it is done by access control on behalf of a user or

by a user directly, should be powerful enough so that the users’ QoS requirements

can be satisfied without necessitating the engagement of other traffic controls to the

extent possible1. The network control substrate should also promote stability in a

noncooperative network habited by selfish users and service providers, and facilitate

efficient allocation of network resources as an outcome of selfish interactions.

1If an end-to-end delay of 30ms is desired but the route assigned has a propagation latency of 50ms,
then clearly no amount of class-based label switching can achieve the target QoS.

12

2.2 Basic Definitions

Assume there are n flows or users. A user i ∈ [1, n] sends a traffic stream at

average rate λi ≥ 0 (bps). In the following, we will assume λi is given and fixed

(“fixed bandwidth demand”). The case when λi is variable (“variable bandwidth

demand”) is considered separately. Let xi = (xi
1, x

i
2, . . . , x

i
s) denote the vector of

end-to-end QoS rendered to user i. For example, xi
1 may represent mean delay, xi

2

packet loss rate, xi
3 delay jitter (e.g., as measured by some second-order statistic),

and so forth. We assume that all QoS measures are represented such that a smaller

magnitude means better QoS. A packet belonging to user i is enscribed with a scalar

ηi ∈ {1, 2, . . . , L}

taking on L distinct values. Unless otherwise specified, we will use [a, b], for a ≤ b,

to denote the set of integers between a and b. Typically, the number of users is very

large vis-à-vis the range of ηi, i.e., n À L, and per-flow identity—as conveyed by

ηi—is lost as soon as a packet enters the network. Thus by the many-to-one mapping

implied by n > L, aggregate-flow QoS control is imposed on per-hop behavior and

executed per-hop at routers on an end-to-end path. In our implementation design

(Chapter 4, 5) we use a number of bits in the DS field of IPv4 (and IPv6) to carry

the η value, i.e., Diff-Serv Codepoint (DSCP).

2.3 Per-hop Control

2.3.1 Per-hop Control Components

Per-hop control consists of a classifier and a packet scheduler . We assume a GPS

packet scheduler with m service classes and service weights αk ≥ 0,
∑m

k=1 αk = 1,

for an output port whose link bandwidth µ is shared in accordance with the ser-

vice weights. It is not necessary to have GPS as the underlying packet scheduling

discipline—e.g., priority queues, multiple copies of RED with different thresholds

are alternatives—but we will show that GPS has certain desirable properties when

13

considering the problem of selecting an optimal aggregate-flow per-hop control for

differentiated services. An important component is the classifier which is given by

a map ξ : [1, n] → [1,m]. That is, n flows—effectively L (or less) flows from the

router’s perspective since packets are scheduled by their label values only—routed to

the same output port on a switch are mapped to m service classes. For aggregate-flow

control, n > L and L ≥ m. Thus

n > L ≥ m,

and if L > m, this leads to a further aggregation per-hop in addition to the many-

to-one mapping exercised at the edge due to n > L. For some choice of classifier

and packet scheduler, the QoS received by flow i ∈ [1, n] at a switch is determined—

explicitly or implicitly—by a performance function xi, xi = xi(η,λ), where η =

(η1, . . . , ηn) and λ = (λ1, . . . , λn). Flow i’s performance xi(η,λ) is induced by the

performance function of the service class that flow i is mapped to by ξ. When the

traffic rate λ is fixed, we will omit it from the argument list.

1

3

n

2

n−1

.
 .

 .

1
2

L

1
2

m

.
.

.

E
dg

e

C
la

ss
ifi

er

Per−Hop

. .
 .

G
P

S

1
η

.

 .

.

DS

DS

DS

η
2

η
n

.
.

.

1

2

m

1
α

2
α

m
α

µ

C
la

ss
if

ie
r

1

2

n

GPS

Figure 2.2. Left: Aggregate-flow QoS control affected by two stages of “information
loss” via many-to-one coarsification—at edge and per-hop. Right: η value in DS
field of IP datagram is used by the classifier to select service class in GPS packet

scheduler.

2.3.2 Per-hop Control Properties

There are three properties of the per-hop control, listed below, which are of interest

and deemed desirable from a QoS control perspective. Let ei = (0, . . . , 0, 1, 0, . . . , 0)

14

denote the unit vector whose i’th (i ∈ [1, n]) component is 1, and 0, otherwise. In

the following, i ∈ [1, n] refers to the end user, and xi(·) denotes the individual user’s

performance function. The properties are:

(A1) for each flow i and configuration η, xi(η + ei) ≤ xi(η) and xi(η − ei) ≥ xi(η);

(A2) for any two flows i 6= j and configuration η, xj(η+ei) ≥ xj(η) and xj(η−ei) ≤
xj(η);

(B) for two flows i 6= j and configuration η, ηi ≥ ηj implies xi(η) ≤ xj(η).

In the definitions, the range of η is such that the perturbations remain in the n-

dimensional lattice, i.e., η + ei,η − ei ∈ [1, L]n. Property (A1) states that, other

things being equal, increasing the label value of flow i improves the QoS received

by flow i (recall that “small” means “better” QoS in our representation). Property

(A2) states that increasing ηi will not increase the QoS received by any other flow j.

Property (B) states that if flow i has a higher η value than flow j, then the QoS it

receives is superior to that of flow j. We call property (B) the differentiated service

property. Note that (B) has the immediate consequence xi(η) = xj(η) ⇔ ηi = ηj.

Thus there is no absolute, a priori, QoS level attached to the ηi values. It is the

magnitude of ηi—relative to other flows’ label values—that will determine the QoS

received by a flow i. We will show that the three properties, collectively, facilitate

effective QoS differentiation and control via η control—i.e., scalar QoS control—and

furthermore, allow selfish users to share resources efficiently when setting their η

values commensurate with their QoS requirements.

2.4 Edge Control

2.4.1 Access Control

The properties exported by per-hop control—if satisfied—are not sufficient by

themselves to render end-to-end QoS commensurate with user requirements. End-to-

end (or edge) control complements per-hop control by setting the value of η per-flow

15

in accordance with user needs. We assume that the network exercises access control

at the edge such that users are not permitted to assign η values to their packets at

will—if every user assigns the maximum η value L to their flows, then QoS control

via η loses its meaning (degenerates to FIFO-based best-effort service by property

(B)). This can be done by performing per-flow policing, traffic shaping, or assigning

costs via pricing. Open-loop control is used in the Assured Service and Expedited

Service instantiations of differentiated services—also called absolute differentiated

services [18]—and is generally suited for short-lived flows for which feedback control,

when subject to long round-trip times (RTT), is ineffective. Figure 2.3 depicts the

overall structure of the end-to-end control framework.

G
P

S

C
la

ss
ifi

e
r

G
P

S

C
la

ss
ifi

e
r

P
o

lic
in

g
P

ri
ci

n
g

A
d

m
is

si
o

n
C

o
n

tr
o

l

Q
o

S
 M

e
te

r

Q
o

S
 M

o
n

ito
r

. . .

G
P

S

C
la

ss
ifi

e
r

T
ra

ff
ic

 M
e

te
r

C
o

n
tr

o
l

η

Accounting Loop

Sender Receiver

Feedback Loop (User Control)

Network Control

Per−flow Control Aggregate−flow Control Per−flow Control

η

Figure 2.3. Structure of forward QoS control path. “Lower” path comprised of
admission control, policing/shaping, per-hop control—open-loop control. “Upper”

control path comprised of dynamic η control, pricing, receiver QoS monitoring, QoS
feedback—closed-loop control.

2.4.2 End-to-end Control

Our framework (also referred to as relative differentiated services in [18]) allows

end-to-end control to dynamically adjust the η value in accordance with a user’s QoS

needs. Properties (A1), (A2), and (B) admit to composability in a WAN environment

where a user’s traffic flow goes through several hops along an end-to-end path. That

is, if a property holds for any single per-hop control, it also holds for a sequence of

16

per-hop controls in a network of switches when viewed as implementing a composite

performance function2. An end-to-end control of the form

ηi(t + τ) =

ηi(t) + 1, if xi > θi,

ηi(t) − 1, if xi < θi,

ηi(t), otherwise,

(2.4.1)

where θi represents user i’s QoS requirement vector—i.e., expressed as a threshold

with delay less than θi
1, packet loss rate less than θi

2—and τ > 0 represents the next

update, is asymptotically stable with respect to a single user3. Properties (A2) and

(B) reflect the resource-boundedness property of a router, and come into play when

considering a collection of selfish users engaged in end-to-end scalar QoS control, and

the dynamics this induces as a result of interaction.

2.5 User Control

2.5.1 User Utility and Selfishness

User i’s QoS requirement can be represented by a utility function Ui which has

the form Ui(λi,x
i, pi) where λi is the traffic rate, xi the end-to-end QoS received, and

pi the unit price charged by the service provider. The total cost to user i is given by

piλi. We assume that Ui satisfies the monotonicity properties4

∂Ui/∂λi ≥ 0, ∂Ui/∂xi ≤ 0, and ∂Ui/∂pi ≤ 0. (2.5.1)

Other things being equal, an increase in the traffic rate is favorably received by a

user, so is an improvement in QoS, but an increase in the price charged by the

service provider has a detrimental effect on user satisfaction. These are minimal,

2In general, under flow conservation for (A1) and (A2), or certain packet loss dominance conditions.
3This assumes a total order on the union of reachable and required QoS vectors. See [10] for a
discussion of QoS ordering.
4Ui need not be differentiable, nor even be continuous. We use continuous notation here for nota-
tional clarity; monotonicity is the only property required.

17

weak requirements on the qualitative form of user utility. If η control is allowed

to be exercised by the user, then a selfish user i can be defined as performing the

self-optimization

max
ηi∈[1,L]

Ui(λi,x
i, pi) (2.5.2)

where ηi influences user i’s utility Ui via its effect on the QoS received xi. We

assume pi(x
i) is a monotone (nonincreasing) function of xi which corresponds to the

price function exported by the service provider. A slightly different formulation of

selfish, “cost-conscious” user behavior is obtained by the constrained optimization

formulation

min
ηi

λipi(x
i) (2.5.3)

subject to xi ≤ θi

where θi is user i’s QoS requirement vector. Thus the user wants to minimize cost—

i.e., achieve efficient resource allocation—while satisfying her QoS requirements.

Threshold utilities expressed as bounds on the QoS received is a useful means of

representing and conveying a user’s QoS requirement—delay less than 33ms, packet

loss rate less 10−4, jitter less than 3ms, and so forth. The user is asked to convey

her QoS preference as a quantifiable threshold when interacting with the network

system (e.g., through a Web browser interface) which is employed in some practical

systems [53].

2.5.2 Noncooperative Game

User i’s QoS is influenced by the actions (ηj values) of other users j 6= i via xi =

xi(η) as captured by properties (A2) and (B). If all users engage in self-optimization,

this leads to a noncooperative game. The first point-of-interest is stability . In a

noncooperative game, a configuration η = (η1, . . . , ηn) which determines the global

QoS allocation is stable if no user, under (unilateral) selfish actions, can improve her

18

utility from that achieved at η. More precisely, η is a stable configuration or Nash

equilibrium if for all users i ∈ [1, n],

Ui(λi, x
i(η + c ei), pi(η + c ei)) ≤ Ui(λi, x

i(η), pi(η)) (2.5.4)

for all c ∈ Z such that ηi + c ei ∈ [1, L]. Since all users are stuck at η with respect

to selfish moves, the system finds itself at an impasse, i.e., rest point. A similar

characterization holds for (2.5.3). Existence of Nash equilibria and their efficiency

properties are of import since they characterize the behavioral aspect of a differenti-

ated services network when put into action in a noncooperative environment such as

the Internet. We will show that the global resource allocation properties in a nonco-

operative network environment are intimately tied to the properties exported by the

per-hop control.

2.6 Service Provider Control

For a single router shared by flows i and j, the only pricing constraint we impose

is

xi ≤ xj ⇒ pi ≥ pj. (2.6.1)

That is, the better the QoS received at a shared resource (i.e., router), the higher the

per unit flow cost charged to the user receiving superior QoS. Since xi ≤ xj if, and

only if, the relative resources (in the present framework, bandwidth) allocated to flow

i are greater than that of flow j, relation (2.6.1) just says that the more resources

a flow consumes—thus receiving superior QoS—the higher the cost it incurs vis-à-

vis a flow that consumes comparatively fewer resources. Relation (2.6.1), due to its

generality, leaves open the degree of freedom of setting the magnitude of the prices

which we assume is under the control of a service provider. The service provider

can be treated as yet another player in the game—assigned the index zero—and, if

selfish, will try to maximize her individual utility U0. U0 is assumed to have the form

of revenue minus cost (i.e., profit) given by U0(η,λ) =
∑n

i=1 λipi(x
i) − Cost0 where

Cost0 is the total cost incurred by the service provider in delivering the services. The

19

service provider exports a price function p = p(x) where p(·) is monotone decreasing

in x. Thus a selfish service provider performs the self-optimization

max
p(·)

n∑
i=1

λipi(x
i) (2.6.2)

assuming fixed Cost0. “Closing” the system by incorporating the actions of a selfish

ISP leads to a (n + 1)-player noncooperative game.

20

3 OPTIMAL AGGREGATE-FLOW SCHEDULING

In this chapter, we present a theoretical framework for reasoning about aggregate-

flow QoS provisioning, constrained to be implementable in IP networks. We develop

a theory of optimal aggregate-flow per-hop control and the properties they exhibit

which facilitate end-to-end QoS via the joint action of aggregate-flow control per-

hop and per-flow control at the edge. We also study the stability and efficiency

properties of the overall network system when users are allowed to influence the

choice of scalar values in the DS field at the edge, and service providers export costs

to users commensurate with the QoS received. The results in this chapter are also

published in [68, 69].

3.1 Optimal Classifiers and Per-hop Control

We take a reductionist approach to optimal aggregate-flow per-hop control by first

defining what optimal per-flow control is when packets are enscribed with a value from

L possible choices. Aggregate-flow control can then be viewed as an approximation to

the QoS achieved by per-flow control in a well-defined sense. Comparability between

aggregate-flow and per-flow control is facilitated by the fact that, even in aggregate-

flow control, an end user’s QoS remains well-defined, and the loss in power due to

coarseness affected by flow aggregation can be exactly quantified.

3.1.1 Optimal Per-flow Classification

Consider the per-flow control or classifier problem for n users who choose packet

labels from integer set [1, L]. Technically, per-flow classification means n = m (each

flow’s service can be individually configured), and L is either greater or smaller than

21

n. In general, the range L may be finite or unbounded, and the variable ηi discrete

or continuous. The influence of boundedness and discreteness can be subtle, and its

effect is shown in Section 3.1.4 with respect to system optimality where we quantify

the negative performance impact of boundedness and discreteness affected by loss

of resolution. When n users mark their flows with a value ηi ∈ [1, L] drawn from

the metric space [1, L] with property (A1) satisfied—larger ηi values, other things

being equal, result in a greater apportionment of resources and thus better QoS—ηi

can be viewed as codifying a user’s QoS or resource demand with respect to some

measurement unit. For example, ηi may represent bandwidth demand in units of

Mbps. If network resources are infinite, then a flow’s request can be satisfied based

on the ηi value specified, without consideration of the needs specified by other flows

(except, possibly, for pricing issues). That is, independence or decoupling holds. If,

on the other hand, resources are finite—an OC-12 link is shared among bandwidth

insensitive users—then, in general, the users’ collective resource demand may exceed

the available bandwidth. In the presence of such resource contention, a conflict

resolution scheme is needed, including the criteria by which resource allocation is

decided.

Assume available bandwidth is normalized such that total available bandwidth

is µ = 1. First, assume ηi ∈ R+ is a continuous variable over the suitable real

interval [0, 1], expressing user i’s normalized bandwidth demand per unit flow . Let

α = (α1, . . . , αn) with αi ≥ 0,
∑n

k=1 αk = 1, represent the fraction of resources

apportioned by the per-flow classifier to i ∈ [1, n], and let ωi = αi/λi denote the

fraction of resources allocated to i per unit flow. Under the above semantics , given

η (and λ), the optimization

min
α

n∑
i=1

(ηi − ωi)
2 (3.1.1)

measures the “goodness” of a resource allocation ω with respect to users’ codified

needs η in the mean-square sense1. Since (3.1.1) penalizes by the difference error, the

relative importance of higher ηi values is preserved, and resources are apportioned

1The generalization to other norms is treated separately.

22

accordingly. For general ηi ∈ R+, including the discrete and bounded case ηi ∈
{1, . . . , L} which is of special interest, define the normalization

η̂i =

ηi−ηmin

ηmax−ηmin
, if ηmax 6= ηmin,

1, otherwise,

(3.1.2)

where ηmin, ηmax are the minimum and maximum values of {η1, η2, . . . , ηn}, respec-

tively. Note that η̂i ∈ [0, 1], and unless all ηi values are equal, η̂min = 0 and η̂max = 1.

Let ω̂i denote the normalization of ωi via (3.1.2). Given η, the optimization corre-

sponding to (3.1.1) is

min
α

n∑
i=1

(η̂i − ω̂i)
2. (3.1.3)

(3.1.3) realizes the same semantics as (3.1.1), however, generalized by the function or

“code” (it is not 1-1) given by (3.1.2) to ηi values not restricted to the real unit interval

[0, 1]. If L is bounded, then the 1-1 function η̂i = ηi/L achieves a similar purpose.

(3.1.3) possesses the same desirable properties as (3.1.1), which are characterized by

the following two results.

Proposition 3.1.4 (Optimal Per-flow Classifier) Given η, λ ∈ Rn
+, the com-

plete solution set to (3.1.3) is

αi = (1 − ν)
λiη̂i∑n

j=1 λj η̂j

+ ν
λi∑n

j=1 λj

, i ∈ [1, n], (3.1.5)

where 0 ≤ ν ≤ 1 is a parameter which defines a continuous family of solutions.

Proof. (i) First we show that any α given by (3.1.5) is an optimal solution to (3.1.3).

To achieve this, we just need to show that such α satisfies η̂i = ω̂i for i ∈ [1, n].

(a) If ηmax = ηmin, then η̂i = 1, i ∈ [1, n]. From (3.1.5), we have

αi = (1 − ν)
λi∑n

j=1 λj

+ ν
λi∑n

j=1 λj

=
λi∑n

j=1 λj

, i ∈ [1, n] ,

and

ωi =
αi

λi

=
1∑n

j=1 λj

, i ∈ [1, n] .

23

Since ω1 = · · · = ωn, we get ω̂i = 1, i ∈ [1, n], which means η̂i = ω̂i, i ∈ [1, n].

(b) If ηmax 6= ηmin, then η̂min = 0, and η̂max = 1. From (3.1.5), we have

ωi =
αi

λi

=
(1 − ν) η̂i∑n

j=1 λj η̂j

+
ν∑n

j=1 λj

, i ∈ [1, n] ,

and

ωmin =
ν∑n

j=1 λj

, ωmax =
1 − ν∑n
j=1 λj η̂j

+
ν∑n

j=1 λj

.

Because ω̂min 6= ω̂max, from (3.1.2),

ω̂i =
ωi − ωmin

ωmax − ωmin

, i ∈ [1, n] . (3.1.6)

Substitute ωi, ωmin and ωmax in (3.1.6), we will get ω̂i = η̂i, i ∈ [1, n].

(ii) Next we show that (3.1.5) represents a complete solution set for (3.1.3). Sup-

pose α′ = (α′
1, · · · , α′

n) is an optimal solution to (3.1.3). We will find some ν ′,

0 ≤ ν ′ ≤ 1 such that

α′
i = (1 − ν ′)

λiη̂i∑n
j=1 λj η̂j

+ ν ′ λi∑n
j=1 λj

, i ∈ [1, n] .

From the first part of the proof, we have seen that some α1, · · · , αn can achieve

η̂i = ω̂i. Since α′
1, · · · , α′

n is an optimal solution to (3.1.3), η̂i = ω̂′
i.

(a) If ηmax = ηmin, then η̂i = 1, and ω̂′
i = 1, i ∈ [1, n]. We have

α′
1

λ1

= · · · =
α′

n

λn

,

and

α′
1 + · · · + α′

n = 1 .

By solving the above two equations, we can get

α′
i =

λi∑n
j=1 λj

.

In (3.1.5), let ν ′ = c, 0 ≤ c ≤ 1, then we get the same α′
1, · · · , α′

n.

24

(b) If ηmax 6= ηmin, then ω̂′
min = η̂min = 0, and ω̂′

max = η̂max = 1. Thus ω′
max >

ω′
min. We have

ω′
i − ω′

min

ω′
max − ω′

min

= η̂i , i ∈ [1, n] , (3.1.7)

and

ω′
1λ1 + · · · + ω′

nλn = 1 . (3.1.8)

From (3.1.7) and (3.1.8), we can represent ω′
i, i ∈ [1, n], as

ω′
i = ω′

min + η̂i

1 − ω′
min

∑n
j=1 λj∑

η̂jλj

.

Therefore,

α′
i = ω′

minλi + (1 − ω′
min

n∑
j=1

λj)
η̂iλi∑
η̂jλj

.

In (3.1.5), let ν ′ = ω′
min

∑n
j=1 λj, then we get the same α′

1, · · · , α′
n.

We shall show 0 ≤ ν ′ ≤ 1. ν ′ = ω′
min

∑n
j=1 λj ≥ 0 because ω′

min ≥ 0. On the other

hand, since ω′
min < ω′

max,

ω′
min

n∑
j=1

λj <
n∑

j=1

ω′
jλj = 1.

¥

The parameter ν, which stems from the dimension reduction associated with (3.1.2),

has an appealing interpretation. The second term in (3.1.5) corresponds to the pro-

portional share achieved by FIFO scheduling, whereas the first term corresponds to

proportional share of the corresponding virtual flows λiη̂i, which are the original flow

rates weighted by their relevancy variable η̂i derived from ηi. Thus, if ν = 1, then

the per-hop control effectively ignores the label values and behaves as a FIFO queue.

If ν = 0, then the router acts like a GPS scheduler with service weights given by the

first term. For any other value of ν, (3.1.5) represents a convex combination of the

two behavioral modes.

25

Proposition 3.1.9 (Per-flow Classifier Properties) The optimal per-flow clas-

sifier given in (3.1.5) satisfies properties (A1), (A2), and (B).

Proof. Denote the normalization of η by η̂i(η), i ∈ [1, n], and the normalization

of η + ei by η̂i(η + ei), i ∈ [1, n]. Similarly, we use notations ωi(η) and ωi(η + ei),

i ∈ [1, n], to denote resources decided by η and η + ei.

(i) Property (A1). Consider ωi = αi

λi
. Rewrite (3.1.5) as

ωi =
(1 − ν)∑n
j=1 λj(

η̂j

η̂i
)

+
ν∑n

j=1 λj

.

Because η̂i(η + ei) ≥ η̂i(η) and η̂j(η + ei) ≤ η̂j(η) for j 6= i,
η̂j(η+ei)

η̂i(η+ei)
≤ η̂j(η)

η̂i(η)
,

j ∈ [1, n]. Hence, ωi(η + ei) ≥ ωi(η). Furthermore, xi is a monotone function of ωi,

so xi(η + ei) ≤ xi(η). Similarly, we will get xi(η − ei) ≥ xi(η).

(ii) Property (A2). Consider ωj =
αj

λj
, j 6= i.

(a) If ηi 6= ηmax, rewrite (3.1.5) as

ωj =
(1 − ν)η̂j

λiη̂i +
∑

k 6=i λkη̂k

+
ν∑n

k=1 λk

.

Because ηi 6= ηmax, η̂i(η + ei) ≥ η̂i(η), and η̂k(η + ei) = η̂k(η) for k 6= i. Hence,

ωj(η + ei) ≤ ωj(η);

(b) If ηi = ηmax, then rewrite (3.1.5) as

ωj =
(1 − ν)

λi(
η̂i

η̂j
) +

∑
k 6=i λk(

η̂k

η̂j
)

+
ν∑n

k=1 λk

.

Because ηi = ηmax for configuration η, ηi + 1 = ηmax for configuration η + ei. By

(3.1.2), η̂i(η+ei)
η̂j(η+ei)

≥ η̂i(η)
η̂j(η)

, and η̂k(η+ei)
η̂j(η+ei)

= η̂k(η)
η̂j(η)

, k 6= i. Hence, ωj(η + ei) ≤ ωj(η).

Therefore, in both cases, ωj(η +ei) ≤ ωj(η). From the monotonicity of xi, we get

xj(η + ei) ≥ xj(η). Similarly, we can also get xj(η − ei) ≤ xj(η).

(iii) Property (B). For i 6= j, ηi ≥ ηj implies η̂i ≥ η̂j. By (3.1.5), ωi ≥ ωj if

η̂i ≥ η̂j. Hence xi(η) ≤ xj(η). ¥

26

3.1.2 Optimal Aggregate-flow Classification

With the semantic set-up of optimal per-flow classification, let us consider the

aggregate-flow classifier problem where n > m. The original aggregate-flow classifier

problem, n > L = m, is subsumed by the more general set-up where L can take on

any value. From a QoS provisioning perspective, the ultimate goal of a differenti-

ated services network comprised of aggregate-flow per-hop controls is the provision-

ing of end-to-end QoS commensurate with each user’s needs. Aggregate-flow control,

whether it has many or few labels, must service n flows using m < n service classes

which results in a reduced ability to effectively shape end-to-end QoS with respect

to the performance criterion (3.1.3) when compared to per-flow control. That is, the

minimum value of (3.1.3) achieved by optimal per-hop control is smaller than that of

optimal aggregate-flow control. This is a consequence of a more general result given

by Proposition 3.1.12.

We give a formal definition of aggregate-flow per-hop control. An aggregate-flow

per-hop control with parameter (m,n) is a function

Φm,n : (η,λ) 7→ (ξ, α̃), (3.1.10)

where ξ : [1, n] → [1,m] is the classifier and α̃ = (α1, . . . , αm) is the vector of

service weights assigned to the m service classes. With respect to end users, Φm,n

induces—explicitly or implicitly—a performance function ϕi
m,n for each user i ∈ [1, n]

ϕi
m,n : (η,λ) 7→ αi, (3.1.11)

where αi = ϕi
m,n(η,λ) ≥ 0 is user i’s share of the bandwidth allocated by Φm,n.

Since the traffic rate λ is fixed, we will omit it from the argument list. The two-stage

interpretation of aggregate-flow per-hop control is depicted in Figure 2.2.

The resource share received by individual flows under Φm,n can be computed as

follows. Let

Uk = {i ∈ [1, n] : ξ(i) = k}, k ∈ [1,m],

27

be the partition of [1, n] induced by ξ. For i ∈ Uk, set αi such that
∑

i∈Uk
αi = αk,

and αi/λi = constant. This is the share received by user i ∈ [1, n].

Proposition 3.1.12 (Service Class Monotonicity) Let Φm,n be an aggregate-

flow per-hop control, and let Sm = {α : ϕm,n(η) = α for some η}. Then (3.1.3)

achieves a smaller value with more service classes, i.e., for all m′ satisfying m + 1 ≤
m′ ≤ n, {

min
α∈Sm′

n∑
i=1

(η̂i − ω̂i)
2
}

≤
{

min
α∈Sm

n∑
i=1

(η̂i − ω̂i)
2
}

.

Proof. Let Φm,n be an arbitrary but fixed m-class aggregate-flow per-hop control.

Because m + 1 ≤ n, under Φm,n there exists a service class k that receives more

than one flows. Construct an (m + 1)-class aggregate-flow per-hop control Φm+1,n

as follows: Φm+1,n takes same class mapping and weight assignment as Φm,n except

dividing class k into two classes k1, k2 with weight αk1 , αk2 satisfying

αk1 + αk2 = αk,
αk1∑

i∈Uk1
λi

=
αk2∑

i∈Uk2
λi

.

We have

ϕi
m,n(η) = ϕi

m+1,n(η), i ∈ [1, n].

Thus any α ∈ Sm can be achieved by some Φm+1,n. Therefore, Sm ⊆ Sm+1 ⊆ · · · ⊆ Sn,

and the proposition follows. ¥

Consider a special type of aggregate-flow per-hop control Φm,n—called Reduction

Classifier—whose behavior is completely determined by its classifier ξ : [1, n] →
[1,m], in the following sense. On input (η,λ), Φm,n behaves as shown in Figure 3.1: It

reduces the n user problem to an m user per-flow classification problem by aggregation

of component flows and centroid computation, then solves the reduced problem by

applying the optimal per-flow classification solution.

28

Φm,n(η,λ):

1. Compute λk =
∑

i∈Uk
λi for each k ∈ [1,m].

2. Compute η̂k for k ∈ [1,m] as follows,

η̂k =

0, if ∃i ∈ Uk, η̂i = 0;

1, if ∃i ∈ Uk, η̂i = 1;∑
i∈Uk

η̂i/|Uk|, otherwise.

3. Use per-flow optimal solution (Proposition 3.1.4) with new input

η̃ = (η̂1, . . . , η̂m), λ̃ = (λ1, . . . , λm), to solve the reduced per-flow

classifier problem consisting of m superusers.

Figure 3.1. Behavior of reduction classifier

Theorem 3.1.13 (Reduction Classifier) Let Φm,n be a reduction classifier rep-

resented by its classifier ξ. Then Φm,n is an optimal aggregate-flow per-hop control,

i.e., satisfies (3.1.3) if, and only if, ξ is a solution to

min
ξ′

∑
k∈[1,m]

∑
i∈Uk

(η̂i − η̂k)2 (3.1.14)

where the minimum ranges over all reduction classifiers ξ′.

Proof. Let Φm,n be an aggregate-flow per-hop control. Let ω̃ = (ω1, · · · , ωm) where

ωk = αk/λk, k ∈ [1,m]. We have ωi = ωξ(i) and ω̂i = ω̂ξ(i). Thus Φm,n is the optimal

solution to (3.1.3) if and only if Φm,n satisfies

min
(ξ,α̃)

∑
k∈[1,m]

∑
i∈Uk

(η̂i − ω̂k)2.

For a reduction classifier, α̃ = (α1, . . . , αm) is computed by optimal per-flow

classification with input η̃ = (η̂1, . . . , η̂m), thus η̂k = ω̂k, k ∈ [1,m]. Hence the

29

theorem holds if we can show that in an optimal aggregate-flow per-hop control, The

weight αk of service class k, k ∈ [1,m] is computed as

ω̂k =

0, if ∃i ∈ Uk, η̂i = 0;

1, if ∃i ∈ Uk, η̂i = 1;∑
i∈Uk

η̂i/|Uk|, otherwise.

(3.1.15)

We will prove the above by contradiction.

(i) For class k, if ∃i∗ ∈ Uk, η̂i∗ = 0, then (3.1.15) indicates that ω̂k = 0. Suppose

ω̂k 6= 0. Then ∃j 6= k, ω̂j = 0. We will construct another aggregate-flow per-hop

control Φ′
m,n with same (ω̂1, · · · , ω̂m) but different ξ′ as follows: For flow i∗, ξ′(i∗) = j;

For any other flow i 6= i∗, ξ′(i) = ξ(i). We have (η̂i∗ − ω̂k)2 > 0, and (η̂i∗ − ω̂j)2 = 0.

Therefore,

m∑
j=1

∑
i∈U ′

j

(η̂i − ω̂j)2 <

m∑
k=1

∑
i∈Uk

(η̂i − ω̂k)2,

which is contradictory to the optimality of Φm,n.

(ii) For class k, if ∃i∗ ∈ Uk, η̂i∗ = 1, then (3.1.15) indicates that ω̂k = 1. This case

can be proved by a similar argument as in (i).

(iii) For class k, if ∀i ∈ Uk, η̂i 6= 0 and η̂i 6= 1, then(3.1.15) indicates that ω̂k =∑
i∈Uk

η̂i/|Uk|. Suppose ω̂k 6= ∑
i∈Uk

η̂i/|Uk|. By (i), ∃k1 6= k, ω̂k1 = 0 since ∀i ∈
Uk, η̂i 6= 0; similarly, we know ∃k2 6= k, ω̂k2 = 1. Therefore, we can construct another

aggregate-flow per-hop control Φ′
m,n with same ξ but different ω̃′ = (ω(1), · · · , ω(m))

as follows: For j 6= k, ω̂(j) = ω̂j; For j = k, ω̂(j) =
∑

i∈Uk
η̂i/|Uk|. By the property of

mean square, we have ∑
i∈Uk

(η̂i − ω̂(k))2 <
∑
i∈Uk

(η̂i − ω̂k)
2,

and hence

m∑
k=1

∑
i∈Uk

(η̂i − ω̂(k))2 <

m∑
k=1

∑
i∈Uk

(η̂i − ω̂k)2,

which is contradictory to the optimality of Φm,n. ¥

30

Theorem 3.1.13 shows that an optimal aggregate-flow classifier must be a reduction

classifier, and furthermore, it must efficiently cover—in the mean-square sense—the

set of label values {η̂1, η̂2, . . . , η̂n} using m centroids {η̂1, . . . , η̂m}. Thus optimal

aggregate-flow per-hop control is a clustering or classification problem in the statistical

classification sense.

A classifier ξ is well-formed (also called a grouping) if the three conditions ηi < ηj,

ξ(i) = ξ(j), and ηi ≤ ηk ≤ ηj jointly imply ξ(k) = ξ(i). Thus if two different

label values are mapped to the same service class, then all η values “sandwiched”

in-between must be mapped to the same service class. ξ can be represented by well-

formed parentheses on the totally ordered set η1 ≤ η2 ≤ . . . ≤ ηn, where adjacent

values are grouped into the same partition except, possibly, at boundaries.

Theorem 3.1.16 (Grouping) An optimal aggregate-flow classifier is well-formed.

Proof. Let Φm,n be an optimal aggregate-flow per-hop control with classifier ξ and

weight vector α̃ = (α1, · · · , αm). We will first prove that ξ is well-formed in η̂-space

by contradiction.

Suppose η̂l1 < η̂l2 , ξ(l1) = ξ(l2) = k and ∃l, η̂l1 ≤ η̂l ≤ η̂l2 and ξ(l) = k′, k′ 6= k.

For class k, let η̂k
min and η̂k

max be the minimum and maximum value of η̂i for all i ∈ Uk,

and let ikmin and ikmax be the indices of η̂k
min and η̂k

max. We also use similar notations

for class k′. Clearly η̂k′
min ≤ η̂l ≤ η̂l2 ≤ η̂k

max. We then construct another aggregate-

flow per-hop control Φ′
m,n with classifier ξ′ and corresponding ω̂′ = (ω̂(1), · · · , ω̂(m))

as follows:

(i) Suppose ω̂k = ω̂k′
. Because η̂l1 < η̂l2 , either η̂l1 6= ω̂k or η̂l2 6= ω̂k. Suppose

η̂l1 6= ω̂k. Let U ′
k = Uk ∪ Uk′ − {l1}, ω̂(k) = ω̂k and U ′

k′ = {l1}, ω̂(k′) = η̂l1 .

(ii) Suppose ω̂k < ω̂k′
. For class k and k′, do the following:

(a) If η̂k′
min ≤ ω̂k, then U ′

k = Uk ∪ {ik′
min}, ω̂(k) = ω̂k and U ′

k′ = Uk′ − {ik′
min},

ω̂(k′) = ω̂k′
.

(b) If ω̂k′ ≤ η̂k
max, then U ′

k = Uk − {ikmax}, ω̂(k) = ω̂k and U ′
k′ = Uk′ ∪ {ikmax},

ω̂(k′) = ω̂k′
.

31

(c) If ω̂k < η̂k′
min, η̂k

max < ω̂k′
, and η̂k′

min < η̂k
max, then U ′

k = Uk ∪ {ik′
min} − {ikmax},

ω̂(k) = ω̂k and U ′
k′ = Uk′ ∪ {ikmax} − {ik′

min}, ω̂(k′) = ω̂k′
.

(d) If ω̂k < η̂k′
min, η̂k

max < ω̂k′
, and η̂k′

min = η̂k
max, then compare |η̂k

max − ω̂k| and

|η̂k′
min − ω̂k′|. If |η̂k

max − ω̂k| ≤ |η̂k′
min − ω̂k′|, U ′

k = Uk ∪ {ik′
min}, ω̂(k) = ω̂k when ω̂k = 0,

ω̂(k) =
∑

i∈U ′
k
η̂i/|U ′

k| when ω̂k 6= 0, and U ′
k′ = Uk′ − {ik′

min}, ω̂(k′) = ω̂k′
when ω̂k′

= 1,

ω̂(k′) =
∑

i∈U ′
k′

η̂i/|U ′
k′ | when ω̂k′ 6= 1; If |η̂k

max − ω̂k| ≥ |η̂k′
min − ω̂k′|, U ′

k = Uk − {ikmax},
ω̂(k) = ω̂k when ω̂k = 0, ω̂(k) =

∑
i∈U ′

k
η̂i/|U ′

k| when ω̂k 6= 0, and U ′
k′ = Uk′ ∪ {ikmax},

ω̂(k′) = ω̂k′
when ω̂k′

= 1, ω̂(k′) =
∑

i∈U ′
k′

η̂i/|U ′
k′ | when ω̂k′ 6= 1.

(iii) ω̂k > ω̂k′
. Similar to (ii).

In each of the above cases, U ′
j = Uj and ω̂(j) = ω̂j for all class j with j 6= k and

j 6= k′. We have∑
i∈U ′

k

(η̂i − ω̂(k))2 +
∑
i∈U ′

k′

(η̂i − ω̂(k′))2 <
∑
i∈Uk

(η̂i − ω̂k)2 +
∑
i∈Uk′

(η̂i − ω̂k′
)2. (3.1.17)

Hence

m∑
j=1

∑
i∈U ′

j

(η̂i − ω̂(j))2 <

m∑
j=1

∑
i∈Uj

(η̂i − ω̂j)2, (3.1.18)

which is contradictory to the hypothesis that Φm,n is optimal. Therefore ξ is well-

formed in η̂-space. Because ηi ≤ ηj ⇔ η̂i ≤ η̂j, ξ is also well-formed in η-space. ¥

Thus, aggregate-flow per-hop control is, mathematically, an optimal clustering

problem. Unlike its many brethren in higher dimensions that are, with few exceptions,

NP-complete [28], the clustering problem given by (3.1.14) in Theorem 3.1.13 has a

poly-time algorithm; e.g., it can be solved by dynamic programming. When L = m—

the practically relevant case where there are as many labels as service classes—optimal

aggregate-flow classification has a linear time algorithm.

3.1.3 Properties of Optimal Aggregate-flow Classifiers

Although optimal per-flow classifiers satisfy properties (A1), (A2), and (B), the

same is not necessarily true of optimal aggregate-flow classifiers.

32

Theorem 3.1.19 (Aggregate-flow Classifier Properties) An optimal

aggregate-flow per-hop control satisfies property (B), but need not satisfy properties

(A1) and (A2).

Proof. Let Φm,n be an optimal aggregate-flow per-hop control.

(i) Property (B). Consider two flows i 6= j and ηi ≥ ηj. Let k1 = ξ(ηi) and

k2 = ξ(ηj). Since an optimal aggregate-flow classifier is well-formed. ηi ≥ ηj implies

η̂k1 ≥ η̂k2 . Thus ω̂k1 ≥ ω̂k2 . Therefore, ωi ≥ ωj and property (B) follows.

(ii) Property (A1). Property (A1) does not necessarily hold. Given η′ = η + ei,

let ξ′ be the classifier and α̃′ = (α(1), · · · , α(m)) be the weight vector computed by

Φm,n. Property (A1) requires ω′
i ≥ ωi. If ξ = ξ′, then η̂ξ′(i) ≥ η̂ξ(i). Thus ω′

i ≥ ωi.

However, if ξ 6= ξ′, i.e. the change of ηi leads to “regrouping”, then it is possible that

ω′
i < ωi. Here is an example.

Let n = 5, m = 3. Let λ = (1, 10, 1, 1, 1), η = (0, 2, 4, 6, 9), and η′ = η + e4 =

(0, 2, 4, 7, 9). The results of Φm,n for (λ,η) are: η̂ = (0, 2
9
, 4

9
, 6

9
, 1), U1 = {1, 2},

U2 = {3, 4}, U3 = {5}, and ω̃ = (0, 5
19

, 9
19

); The results of Φm,n for (λ,η′) are:

η̂′ = (0, 2
9
, 4

9
, 7

9
, 1), U ′

1 = {1}, U ′
2 = {2, 3}, U ′

3 = {4, 5}, and ω̃′ = (0, 1
17

, 3
17

). For user

4, ξ(4) = 2, ξ′(4) = 3, and ω4 = ω2 = 5
19

, ω′
4 = ω(3) = 3

17
, Thus ω′

4 < ω4.

(iii) Property (A2). Property (A2) does not necessarily hold. Given η′ = η +ei,

let ξ′ be the classifier and α̃′ = (α(1), · · · , α(m)) be the weight vector computed by

Φm,n. Property (A2) requires ∀j 6= i, ω′
j ≤ ωj. Following is a counterexample.

Suppose ξ(i) = k and ∀j ∈ Uk, η̂j 6= 0 and η̂j 6= 1. As shown in the proof of

Theorem 3.1.13, ω̂k =
P

j∈Uk
η̂j

|Uk| . If ξ′ = ξ, and η̂′
i 6= 1, then ξ′(i) = k and ω̂(k) =

P
j∈U′

k
η̂′

j

|U ′
k|

= ω̂k +
η̂′

i−η̂i

|Uk| . Because η̂′
i > η̂i, ω̂(k) > ω̂k. Therefore ∀j ∈ Uk, ω′

j > ωj. ¥

Property (A2) is more subtle than (A1) and (B), but of import in influencing the sta-

bility and dynamical structure of noncooperative networks built on top of aggregate-

flow scheduling.

Proposition 3.1.20 (Classifier Properties with m = L) An optimal aggregate-

flow per-hop control with parameters m = L satisfies properties (A1), (A2), and (B).

33

Proof. Let ΦL,n be an optimal aggregate-flow per-hop control with parameter m = L.

Given λ and η, because ηi, i ∈ [1, n], ranges over [1, L], ξ is computed as:

ξ(i) = ηi, η̂ξ(i) = η̂i, i ∈ [1, n], (3.1.21)

and α̃ is computed as:

αk = (1 − ν)
λkη̂k∑L
l=1 λlη̂l

+ ν
λk∑L
l=1 λl

, k ∈ [1, L]. (3.1.22)

From (3.1.21) and (3.1.22), we can derive user’s share of bandwidth allocated by ΦL,n:

αi = αξ(i) λi

λξ(i)
= (1 − ν)

λiη̂i∑n
j=1 λj η̂j

+ ν
λi∑n

j=1 λj

, i ∈ [1, n]. (3.1.23)

Compare (3.1.23) with (3.1.5), we can see that ΦL,n is equal to an optimal per-flow

classifier. According to proposition (3.1.9), ΦL,n satisfies properties (A1), (A2), and

(B). ¥

The next result shows that the optimal aggregate-flow per-hop control with m = L

not only differentiates services among classes, i.e. satisfying property (B), but also

preserves an even, uniform QoS separation: the performance difference (in terms of

bandwidth per unit flow) between flows is proportional to their η value difference.

Proposition 3.1.24 (QoS Separation with m = L) Let ΦL,n be an optimal

aggregate-flow per-hop control with parameters m = L. Given input η and λ, for

all i, j ∈ [1, n],

ωi − ωj = c (ηi − ηj) (3.1.25)

where c is a constant only depending on η and λ.

Proof. (i) If ηmax = ηmin, then ∀ i, j ∈ [1, n], ηi = ηj and ωi = ωj. Thus (3.1.25) is

satisfied. (ii) If ηmax 6= ηmin, we have

ωi = (1 − ν)
η̂i∑n

k=1 λkη̂k

+
ν∑n

k=1 λk

, i ∈ [1, n].

34

Hence,

ωi − ωj = (1 − ν)
η̂i − η̂j∑n
k=1 λkη̂k

= (1 − ν)

ηi−ηmin

ηmax−ηmin
− ηj−ηmin

ηmax−ηmin∑n
k=1 λk

ηk−ηmin

ηmax−ηmin

=
1 − ν∑n

k=1 λk(ηk − ηmin)
(ηi − ηj), i, j ∈ [1, n].

¥

The L = m constraint advanced by Proposition 3.1.20 and Proposition 3.1.24 co-

incides with practical considerations that derive from an implementation perspective.

For example, assuming four bits from the TOS field in IPv4 are used to encode the

label set {a, a + 1, . . . , a + 15} for some a ≥ 0, then we may configure 16 service

classes at routers, one for each of the 16 possible label values. The classifier results

and properties for fixed service weights are treated separately.

3.1.4 System Optimality and Structural Properties

To satisfy user i’s QoS requirement θi, the per-hop control—whatever its specific

form—must apportion a fraction α∗
i ≥ 0 of the available bandwidth. Let α∗

i denote

the minimal such bandwidth. We find it more convenient to work in the service

weight space {α : α ≥ 0 and
∑n

i=1 αi ≤ 1}. We use ϕi(·) to denote the performance

function corresponding to xi(·) which allocates—explicitly or implicitly—a service

weight to user i for a given input η.

Given per-hop control Φm,n, let A represents the set of configurations where all

users’ QoS requirements are satisfied, i.e.

A∗ = {η : ϕi(η) ≥ α∗
i , i ∈ [1, n]}.

A configuration η is system optimal if η ∈ A∗, and for all η′ 6= η, ϕ(η′) > ϕ(η)

does not hold. In a system optimal configuration, the users’ QoS requirements are

met while expending the minimal amount of resources. In an overloaded system, i.e.,

35

∑n
i=1 α∗

i > 1, by definition, there cannot exist a way of allocating network resources

such that all users’ QoS requirements are satisfied.

We turn our focus to characterizing the case when A∗ is nonempty under opti-

mal aggregate-flow per-hop control. The next result is the only general result that

holds from property (B) without exploiting further features of optimal aggregate-flow

classifier solutions.

Proposition 3.1.26 (Diagonal Inclusion) Let D = {η : ηi = ηj for all i, j ∈
[1, n]}. For all per-hop control Φm,n satisfying (B), if α∗

i ≤ λi/
∑n

j=1 λj for all users

i ∈ [1, n], then D ⊆ A∗.

Proof. For any η ∈ D, ηi = ηj, for all i, j ∈ [1, n]. By property (B), ηi = ηj implies

ωi = ωj. We have α1

λ1
= α2

λ2
= · · · = αn

λn
, and

∑n
i=1 αi = 1. Thus αi = λiPn

j=1 λj
, which

means αi ≥ α∗
i , i ∈ [1, n]. Therefore, η ∈ A and D ⊆ A. ¥

Note that α∗
i ≤ λi/

∑n
j=1 λj for all i ∈ [1, n] implies that

∑
i∈[1,n] α

∗
i ≤ 1. Next, we

find weaker conditions for A∗ 6= ∅, and characterize the loss of power resulting from

having a bounded, discrete label set {1, 2, . . . , L}. To achieve this, we utilize the

properties of the optimal aggregate-flow classifier solution for L = m. First, consider

the case when ηi ∈ R+ for all i ∈ [1, n], and n = m. The case of interest, η ∈ [1, L]n

in the aggregate-flow case can be analyzed by relating it to the unrestricted case.

Theorem 3.1.27 (Unrestricted Intersection) Assume ηi ∈ R+ for all i ∈ [1, n].

Let n = m, and let ξ be the optimal per-flow classifier. Then A∗ 6= ∅ if, and only if,

(a) ∃ i ∈ [1, n] such that α∗
i ≤ νλi/

∑n
j=1 λj, and

(b)
∑n

j=1 max{α∗
i , νλi/

∑n
j=1 λj} ≤ 1.

Proof. (i) First we show that A 6= ∅ when both (a) and (b) are satisfied. Given

α∗ = (α∗
1, · · · , α∗

n) satisfying (a) and (b), we will construct an η such that ϕi(η) ≥ α∗
i ,

i ∈ [1, n]. Let α′
i = max{α∗

i , ν λiPn
j=1 λj

}, i ∈ [1, n]. Because of (b),
∑n

i=1 α′
i ≤ 1. We

construct η as ηi =
α′

i

λi
− νPn

j=1 λj
, i ∈ [1, n]. ηi ≥ 0 since α′

i ≥ ν λiPn
j=1 λj

, i ∈ [1, n].

36

We need to check whether ϕi(η) ≥ α∗
i , i ∈ [1, n]. Because of (a), we get ηmin = 0.

Hence η̂i = ηi

ηmax
. Using (3.1.5), we have:

αi = (1 − ν) λiη̂iPn
j=1 λj η̂j

+ ν λiPn
j=1 λj

= (1 − ν)
1

ηmax
λi(

α′
i

λi
− νPn

j=1
λj

)

1
ηmax

Pn
j=1 λj(

α′
j

λj
− νPn

l=1
λl

)
+ ν λiPn

j=1 λj

= (1 − ν)
α′

i−ν
λiPn

j=1
λj

Pn
j=1 α′

j−ν
+ ν λiPn

j=1 λj

≥ (1 − ν)
α′

i−ν
λiPn

j=1
λj

1−ν
+ ν λiPn

j=1 λj

= α′
i.

(ii) Second we show that A = ∅ when either (a) or (b) are violated.

(a) Suppose ∀i ∈ [1, n], α∗
i > ν λiPn

j=1 λj
. Pick any η ∈ Rn

+, we have η̂min = 0.

Suppose η̂k = η̂min, then according to (3.1.5), αk = ν λkPn
j=1 λj

and αk < α∗
k. Therefore

A = ∅.
(b) Suppose

∑n
i=1 max{α∗

i , ν λiPn
j=1 λj

} > 1. We can show A = ∅ by contradiction.

Suppose A 6= ∅, then ∃η, αi = ϕi(η) ≥ α∗
i for i ∈ [1, n]. By (3.1.5), αi ≥ ν λiPn

j=1 λj

for i ∈ [1, n]. Therefore, αi ≥ max{α∗
i , ν λiPn

j=1 λj
}. Because

∑n
i=1 αi = 1, we get∑n

i=1 max{α∗
i , ν λiPn

j=1 λj
} ≤ 1, which is contradictory to our hypothesis. ¥

Here ν ≥ 0 is the solution parameter of the optimal per-flow classifier which de-

termines how much proportional sharing to inject in the service weight allocation

(ν = 1 degenerates per-hop control to FIFO). Theorem 3.1.27 is a tight characteriza-

tion of A∗’s nonemptiness in the unrestricted case where properties (a) and (b) stem

from the particular form of the optimal per-flow classifier solution given by Proposi-

tion 3.1.4. Note that as ν → 0, (b) becomes
∑n

j=1 α∗
i ≤ 1 which is the weakest possible

condition for nonemptiness of A∗. The next result is an immediate consequence of

Theorem 3.1.27.

Corollary 3.1.28 (Empty Restricted Intersection) If A∗ = ∅ in the unre-

stricted case, then A∗ = ∅ in the restricted case where ηi ∈ {1, 2, . . . , L} for all

i ∈ [1, n], and L < ∞.

37

The aggregate-flow and per-flow cases with respect to nonemptiness of A∗ can be

related by the next result which is a consequence of Theorem 3.1.20.

Proposition 3.1.29 (Per-flow and Aggregate-flow Relation) Let ηi ∈
{1, 2, . . . , L} for all i ∈ [1, n], and L < ∞. A∗ 6= ∅ for optimal per-flow per-hop

control (i.e., n = m) if, and only if, A∗ 6= ∅ for optimal aggregate-flow per-hop

control with m = L.

Proof. By the proof of Proposition 3.1.9, the optimal aggregate-flow per-hop control

with m = L is equivalent to the optimal per-flow per-hop control. ¥

Given the relationship of nonemptiness of A∗ between the per-flow and aggregate-

flow case under ηi ∈ {1, 2, . . . , L}, what remains is a quantitative characterization of

the loss of power due to discreteness and boundedness of the label set [1, L] in the

aggregate-flow case.

Theorem 3.1.30 (Loss of Power due to Restriction) Let L = m < n. For

optimal aggregate-flow per-hop control ΦL,n, if there exists γ = (γ1, γ2, . . . , γn) with

γmin = 0, γmax = 1, 0 ≤ γi ≤ 1, such that

(1 − ν)
λiγi∑n

j=1 λjγj

+ ν
λi∑n

j=1 λj

≥ α∗
i +

1 − ν

L − 1

λi∑n
j=1 λjγj

(3.1.31)

for all i ∈ [1, n], then A∗ 6= ∅.

Proof. Given user’s resource requirement α∗ = (α∗
1, · · · , α∗

n), Let ΦL,n be an m =

L optimal aggregate-flow per-hop control with classifier ξ and weight vector α̃ =

(α1, · · · , αL). If there exists γ = (γ1, · · · , γn) with γmin = 0, γmax = 1, 0 ≤ γi ≤ 1

that satisfies (3.1.31), then we have

(1 − ν)
λi(γi − 1

L−1
)∑n

j=1 λjγj

+ ν
λi∑n

j=1 λj

≥ α∗
i , i ∈ [1, n].

Without loss of generality, suppose γ1 = γmin = 0, γn = γmax = 1. Define

D = {η̂ : η̂1 = 0, γi − 1

L − 1
≤ η̂i ≤ γi for i ∈ [2, n − 1], η̂n = 1}.

38

Then for all η̂ ∈ D, we have

(1 − ν)
λiη̂i∑n

j=1 λj η̂j

+ ν
λi∑n

j=1 λj

≥ (1 − ν)
λi(γi − 1

L−1
)∑n

j=1 λjγj

+ ν
λi∑n

j=1 λj

≥ α∗
i .

Construct η∗ = (η∗
1, · · · , η∗

n) as follows:

η∗
i = b(L − 1)γi + 1c, i ∈ [1, n].

Then η̂∗ ∈ D. Hence ϕi(η∗) ≥ α∗
i , i ∈ [1, n]. Therefore, A 6= ∅. ¥

The left-hand-side of inequality (3.1.31) just denotes a valid service weight vector

with respect to the optimal aggregate-flow classifier. The second term in the right-

hand-side of (3.1.31) of Theorem 3.1.30 quantifies the loss of power due to coarseness.

If L → ∞, then the loss-of-power term drops out. In practice, L is a small finite

value (e.g., using 4 bits in the precedence field of IP, L = 16). The next result shows

that n À L—the raison d’etre of aggregate-flow control—facilitates tightness of the

bound.

Corollary 3.1.32 (Nonempty Discrete Intersection) Under the same condi-

tions as Theorem 3.1.30, let di = b(L − 1)γic, i ∈ [1, n]. Then, A∗ 6= ∅ if for all

i ∈ [1, n],

(1 − ν)
λiγi∑n

j=1 λjγj

+ ν
λi∑n

j=1 λj

≥ α∗
i + (1 − ν)

λi∑L−1
k=1 k

∑
j:dj=k λj

. (3.1.33)

Proof. We have

L−1∑
k=1

k
∑

j:dj=k

λj =
n∑

j=1

djλj ≤ (L − 1)
n∑

j=1

λjγj.

Hence,

(1 − ν)
λi∑L−1

k=1 k
∑

j:dj=k λj

≥ 1 − ν

L − 1

λi∑n
j=1 λjγj

.

Therefore, if (3.1.33) holds, then (3.1.31) holds and A∗ 6= ∅. ¥

For n À L, we can expect λiPL−1
k=1 k

P
j:dj=k λj

¿ 1, and (3.1.31) gives a tight bound on

the existence condition of system optimal configurations.

39

3.2 Game Theoretic Structure

The roadmap of the game theoretic results is as follows. First, we derive stability

properties—existence of Nash equilibria and their structure—and dynamics of the

noncooperative QoS provision game when users are allowed to set their η values end-

to-end. Second, we show efficiency properties with respect to system optimality, in

particular, when Nash equilibria are system optimal.

3.2.1 Basic Definitions

In Section 3.1.4, we use α∗
i to denote the minimal bandwidth needed to satisfy

user i’s QoS requirement. We call the pair (η,η′) of control vectors a selfish move of

user i ∈ [1, n] with respect to α∗
i if η′ = η ± ei, and the following two conditions are

satisfied:

(i) ϕi(η) < α∗
i implies η′ = η + ei and ϕi(η′) > ϕi(η);

(ii) ϕi(η) > α∗
i implies η′ = η − ei and α∗

i ≤ ϕi(η′) < ϕi(η).

Thus an “unhappy” user tries to improve his happiness by increasing ηi, while an

“overly” satisfied user tries to reduce the satisfaction level to match his actual needs.

We call a pair of control vectors (η,η′) a concurrent selfish move (in the negative

direction) if for some J ⊆ [1, n], η = η−∑
i∈J ei, and (η,η− ei) is a selfish move for

all i ∈ J . An analogous definitions holds for concurrent selfish moves in the positive

direction. We will sometimes refer to selfish moves as sequential selfish moves to

distinguish from concurrent ones. The definition of selfish move describes an efficient

or cost conscious user who only consumes just enough resources to satisfy her QoS

needs.

For user i, let Ai = {η : ϕi(η) ≥ α∗
i }. Thus Ai represents the set of configuration

where user i’s QoS requirement is satisfied. We have

A∗ =
n⋂

i=1

Ai,

40

since all users’ QoS requirements are satisfied at η ∈ A∗. η ∈ A∗ is a corner point of

A∗ if the set of selfish moves from η is empty.

3.2.2 Nash Equilibria and Stability Properties

We present the dynamical properties of the noncooperative QoS provision game

when A∗ exists (i.e., is nonempty) and η ∈ A∗.

Proposition 3.2.1 (Projection) For user i and configuration η ∈ Ai, let

Mi(η) = {η′ : η′
i = ηi, and η′

j ≤ ηj for j 6= i}. Then Mi(η) ⊆ Ai.

Proof. Let η′ ∈ Mi(η). By property (A2), η1 = (η′
1, η2, . . . , ηi, . . . , ηn) ∈ Ai. By a

second application of (A2) to η1, η2 = (η′
1, η

′
2, η3, . . . , ηi, . . . , ηn) ∈ Ai. By a repeated

application of (A2), the procedure eventually yields η′ where membership in Ai is

preserved at every step. ¥

Proposition 3.2.1 is a consequence of property (A2) of the per-hop control. We can

use Proposition 3.2.1 and property (A1) to show a closure property of A∗.

Lemma 3.2.2 (Closure) A∗ is closed under selfish moves, sequential and concur-

rent. That is, for η ∈ A∗ and any subset of users J ⊆ [1, n] such that (η,η − ei) is

a selfish move for all i ∈ J ,

η −
∑
i∈J

ei ∈ A∗.

Proof. First, note that closure with respect to sequential selfish moves is a special

case of closure with respect to concurrent selfish moves. We will show the lemma for

the sequential case and then use it to prove the general case.

(i) Sequential case. Let i be such that η − ei or η + ei /∈ A∗. By property (A1),

ϕi(η − ei) ≤ ϕi(η),

hence this contracts (η,η − ei) being a selfish move. A similar argument holds for

η + ei.

41

(ii) Concurrent case. Let η′ = η−∑
i∈J ei ∈ A∗. For any i ∈ [1, n], we will show

that η′ ∈ Ai. First, assume i /∈ J . By η ∈ Ai and Proposition 3.2.1, Mi(η) ⊆ Ai.

But by the definition of concurrent selfish move η′ ∈ Mi(η). which proves the first

case. Assume i ∈ J . By Proposition 3.2.1, Mi(η − ei) ⊆ Ai. Since η′ ∈ Ai, this

completes the proof. ¥

Thus selfish users, even when making simultaneous selfish changes to their η values,

cannot escape from the set A∗ where their QoS requirements are all satisfied, some

more than necessary.

A concurrent selfish move, with respect to users in J ⊆ [1, n] and intersection set⋂
i∈J Ai, can be represented by a subset of J ′ ⊆ J that shows the users making a

move since selfish moves within
⋂

i∈J Ai can only occur in the downward direction.

Theorem 3.2.3 (Monotone Convergence) Any initial configuration η ∈ A∗

converges to a corner point of A∗ under selfish moves, sequential or concurrent.

Proof. Consider η′ = η − ∑
i∈J ei where J ⊆ [1, n] represents a concurrent selfish

move. By definition of selfish move, we have η′
i < ηi for all i ∈ J . By closure of A∗

(Lemma 3.2.2) and boundedness of η′
i by α∗

i , after a finite number of applications of

concurrent selfish moves, no selfish move will be possible. The configuration reached,

by definition, is a corner point of A∗. ¥

Thus a corner point of A∗ is a fixed point under the dynamics of selfish moves within

A∗, from which users cannot escape by selfish actions due to closure. Theorem 3.2.3

also shows that A∗ always possesses a corner point, not necessarily unique.

A corner point η represents an efficient allocation of resources for all users in the

sense that each user i’s QoS requirement is satisfied by η, i.e., α∗
i = ϕi(η) ≥ α∗

i .

Furthermore, any incremental action by i will either violate his QoS requirement or

increase the apportioned resources beyond what is needed to satisfy the user’s QoS

requirement. We will show that a nonincremental action by user i will have the same

consequences (Theorem 3.2.4). If ϕi(η) = α∗
i then η is efficient in an absolute sense.

42

Theorem 3.2.4 (Corner Point and Nash) Let η be a corner point of A∗. Then

η is a Nash equilibrium.

Proof. Pick any user i ∈ [1, n]. Since η is a corner point, ϕi(η − ei) < α∗
i . By

property (A1), ϕi(η − c ei) ≤ ϕi(η − ei) for c > 1, and part two of condition (i) is

satisfied. Part one of the same condition is satisfied by (A1). ¥

We remark that a corner point of A∗ must be Nash equilibrium, but the converse

need not be true. Indeed, there are Nash equilibria that need not be in A∗, even

when it is nonempty.

Theorem 3.2.5 (Nash and System Optimality) A configuration η is Nash and

system optimal if, and only if, η is a corner point of A∗.

3.3 Conclusion

In this chapter, we provide a general theoretical framework of scalable QoS pro-

visioning using aggregate-flow scheduling where packet labels can be set from a finite

label set and routers provide differentiated treatment of packets based on the labels

enscribed. We define the meaning of optimal per-hop control within this context and

find the optimal solution for aggregate-flow control. We show that the optimal per-

hop control satisfies certain properties—denoted (A1), (A2), and (B)—which relate

how label values impact the service a flow receives at a router. We augment the

general result by presenting optimal solutions when restricting the packet scheduling

disciplines to variants of GPS, and the consequences on the core properties.

In Section 3.2, we expand the framework by considering selfish users who can influ-

ence QoS provisioning behavior by regulating the label values assigned to their traffic

streams. Based on the properties exported by the network control—(A1), (A2), and

(B)—we show how a population of selfish users with diverse QoS requirements setting

their packet labels can arrive at a global allocation of resources that is stable (Nash

equilibrium) and efficient (system optimal). We show that even in situations when

43

network resources are scarce such that no resource allocation—aggregate-flow differ-

entiation, per-flow reservation, or otherwise—can satisfy all users’ QoS requirements,

the system reaches a Nash equilibrium. We show that the optimal per-hop control is

also “optimal” in the noncooperative game context in the sense that when network

resources are configurable such that all users’ QoS requirements can be satisfied, then

there exists a Nash equilibrium that is system optimal.

44

4 PERFORMANCE EVALUATION

In this chapter, we extend the theoretical work in Chapter 3 by investigating im-

plementation and performance evaluation issues associated with the induced optimal

aggregate-flow scheduling. We design a system that realizes the optimal per-hop

control coupled with end-to-end adaptive QoS control, and implement a practical en-

hancement by introducing a scaling function which is applied to the TOS field label

value in the IP header at each router. The scaling function allows the service provider

to configure the per-hop control so as to export customized QoS separation —essential

when shaping end-to-end absolute QoS over per-hop relative QoS—commensurate

with the QoS profiles of the service provider’s user base. We use simulation to carry

out a comprehensive performance evaluation study of QoS provisioning using optimal

aggregate-flow scheduling. The results in this chapter are also published in [70, 72].

4.1 QoS Provisioning Architecture Design

4.1.1 Optimal Aggregate-flow Per-hop Control Design

In our design, the optimal per-hop control consists of a classifier and a packet

GPS scheduler which is configured to have m service classes. We set m = L (cf.

Section 2.3) where L is the total number of label values. For each incoming packet,

the optimal aggregate-flow per-hop control performs the following:

• The classifier inspects the η value carried in the TOS field of the packet’s IP

header, and puts the packet with value η into service class η ∈ {1, 2, . . . , L}.

• Based on a fixed time interval Ts (Ts is set at 100ms in the results reported in

Section 4.2):

45

– The classifier periodically measures the average arrival rates λ1, · · · , λm of

all the classes over Ts (a simple counting operation).

– Based on the measured “instantaneous” arrival rate of each service class,

the classifier adjusts the service weights of all classes according to the

procedure in Figure 4.1.

• The packet GPS scheduler then schedules the packets based on the new service

weights. The scheduler uses the current weights to compute the finish time of

backlogged packets. 1

ΦL,L(η,λ):

1. Set η̂k = η̂i for k ∈ [1, L], if for some i ∈ [1, n], ηi = k,

Set η̂k = 0 for all other k (no packet carries label value k).

2. For k ∈ [1, L], set

αk = (1 − ν)
λkη̂k∑L
j=1 λj η̂j

+ ν
λk∑L
j=1 λj

.

Figure 4.1. Structure of reduction classifier for m = L; αk is the service weight
allocated to service class k ∈ {1, . . . , L}.

In Section 4.2.2, we verify the above design by confirming the QoS separation and

adaptive label control properties of optimal aggregate-flow per-hop control. Further

fine-tuning of its components and parameters can yield additional performance gains.

1We remark that the original weighted fair queue implementation of ns is a rough approximation of
ideal GPS: it uses real-time, instead of virtual time, which can dilate the fairness bound of PGPS.

46

4.1.2 End-to-end QoS Control Design

The properties exported by per-hop control—if satisfied—are not sufficient by

themselves to render end-to-end QoS commensurate with user requirements. End-

to-end (or edge) control complements per-hop control by setting the value of η on a

per-flow basis in accordance with user needs. We assume that the network exercises

access control at the edge such that users are not permitted to assign η values to their

packets arbitrarily: if every user assigns the maximum η value L to their flows, then

QoS control via η loses its meaning (degenerates to FIFO-based best-effort service by

property (B)).

As described in Chapter 2, user i’s QoS requirement, in general, can be represented

by a utility function Ui which has the form Ui(λi,x
i, pi) where λi is the traffic rate,

xi the end-to-end QoS received, and pi the unit price charged by the service provider.

The total cost to user i is given by piλi. We assume that Ui satisfies the following

monotonicity properties: increasing with λi, decreasing with xi, and decreasing with

pi. If η-control is allowed to be exercised by the user, then a selfish user i can be

defined as performing the self-optimization

max
ηi∈[1,L]

Ui(λi,x
i, pi).

ηi influences user i’s utility Ui via its effect on the QoS received xi. We assume pi(x
i)

is a monotone (non-increasing) function of xi—better QoS incurs higher cost—which

corresponds to the price function exported by the service provider. Consider threshold

utilities where user preferences are specified as bounds on QoS measures—e.g., bounds

on delay, packet loss rate, jitter, and so forth—and user i’s QoS requirement is given

by the vector of QoS upper bounds θi. The control law

dηi

dt
= (−1)aε ||xi(η) − θi|| (4.1.1)

is a specific instance of adaptive label control and can be shown to be asymptoti-

cally stable. Here, a = sgn(||xi(η)|| − ||θi||) where sgn(·) = 1 if the argument is

nonnegative, and 0, otherwise.

47

Thus, the end-to-end adaptive label control performs the following two tasks:

• Measurement and feedback: the receiver measures the QoS received over a fixed

window of length Tu (Tu = 1s in our simulation results reported in Section 4.2),

and sends feedback control packets using UDP with label value L. (Control

packets are given high priority).

• Adaptive label control: after the k’th feedback is received, the sender compares

measured end-to-end performance with the QoS target and sets a new η value

based on (4.1.1).

4.1.3 Scaling Function

From an absolute QoS shaping perspective, the optimal relative QoS exported by

routers according to the procedure in Figure 4.1 has the following potential weak-

ness. Assume a service provider, over time, observes that its customer base and

corresponding QoS requirement profile varies, but includes as stable subpopulations

user groups requiring 0.0001, 0.001, 0.005, 0.05, 0.1, 0.3, and 0.6 packet loss rates.

Consider Figure 4.2 (left) which shows the packet loss rates exported by the optimal

aggregate-flow scheduler specified in Section 4.1.1 with m = 16 service classes as link

bandwidth is varied2. We observe that optimal aggregate-flow scheduling exports

relative QoS with “equal spacing”. The QoS spacing between service classes has a

finite resolution ∆c ≈ 0.06, or 0 (degenerate case), as affected by m. For 0.0001-,

0.001-, 0.005-packet loss rate user flows, the consequent coarseness forces them to

choose label values that map them essentially to the same service class whose QoS—

for the three user groups to be satisfied—is dominated by the most stringent QoS

requirement 0.0001. Thus 0.001- and 0.005-packet loss flows become “oversatisfied”

or overprovisioned which, in turn, implies that resources are inefficiently utilized.

2The performance results are taken from Section 4.2.

48

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

p
ls

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11

eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

L

η

1

2 0.6

0.3

0.1

0.05

0.005
0.001

Scaling Function Performance
Function

Label Value Scaled Label Value QoS
σ(η)

0.0001

Figure 4.2. Left: “Equal spacing” QoS separation achieved by optimal
aggregate-flow classifier when L = 16. Right: Scaling function σ affecting

nonuniform stretching and contraction.

To solve the potential inefficiency and structural limitation pointed out above, we

introduce a scaling function

σ : [1, L] → R+

where σ is monotone increasing in its argument. This scaling function can be config-

ured by the service provider—we envision this to be done at larger time scales—to

apply nonuniform scaling to the TOS field label values commensurate with its ob-

served customer QoS profile before the IP packets are passed to the classifier proper.

This is illustrated in Figure 4.2 (right).

The modified classifier with scaling function is depicted in Figure 4.3.

The performance gain brought by the scaling function is demonstrated and further

discussed in Section 4.2.3.

4.1.4 Load Imbalance and Local QoS Responsibility

Another practical concern for aggregate-flow per-hop control is the efficiency and

QoS shaping properties across multiple routers on an end-to-end path in a wide area

network. To motivate the problem, consider a flow i with end-to-end delay require-

ment 30ms whose traffic is routed through a 6-hop path shown in Figure 4.4. Assume

49

ΦL,L(η,λ):

1. Set η̂k = σ̂(ηi) for k ∈ [1, L] if for some i ∈ [1, n], ηi = k.

Set η̂k = 0 for all other k (no packet carries label value k).

2. For k ∈ [1, L], set

αk = (1 − ν)
λkη̂k∑L
j=1 λj η̂j

+ ν
λk∑L
j=1 λj

.

Figure 4.3. Structure of reduction classifier with scaling function for m = L; αk is
the service weight allocated to service class k ∈ {1, . . . , L}.

that the load distribution of the routers is nonuniform—typically, only some routers

are bottlenecks or hot spots along an end-to-end path—with routers 1 and 5 highly

loaded and routers 2, 3, 4, and 6 being lightly loaded. A uniform QoS assignment—as

1 2 3 5 64

5ms 5ms 5ms 5ms 5ms 5msUniform QoS
Responsibility
Uniform QoS

Load Distribution

1ms 1ms 1ms
Responsibility

13ms 1ms13msNonuniform QoS

30ms End-to-End QoS Requirement

Figure 4.4. Uniform vs. nonuniform local QoS responsibility distribution to satisfy
30ms end-to-end delay requirement for a given load imbalance.

induced by flow i’s choice of label value ηi—would impose the same 5ms (ignoring, for

simplicity of exposition, link latencies) as the local QoS responsibility at each router

irrespective of its load. A more desirable—and, in general, efficient—allocation is one

50

where heavily loaded routers are given less responsibility than lightly loaded ones3.

This is illustrated in the nonuniform QoS distribution in Figure 4.4 where the highly

loaded routers export 13ms local queueing delay whereas the lightly loaded hops

achieve 1ms delays for a total of 30ms. The aforementioned property is not difficult

to satisfy. A more subtle—and, from a control perspective, important—property for

end-to-end QoS shaping is the change in local QoS responsibility as a function of η.

For example, if flow i increases its label value ηi because the current delivered QoS

is deficient vis-à-vis its requirement, other things being equal, it is desirable that the

lightly loaded routers take on a greater share of the burden for improved QoS than

heavily loaded ones. In Section 4.2.6, we show that both properties are satisfied by

the optimal aggregate-flow scheduler.

4.2 Performance Results

4.2.1 Simulation Set-up

We use the LBNL Network Simulator ns (version 2) as our simulation platform.

We have extended ns into a wide area network QoS benchmarking environment—

called QSim [11]—which was used in our earlier work on WAN QoS performance

evaluation [8, 9]. QSim exports a selection of per-hop controls and end-to-end controls,

along with a QoS interface through which user QoS requirements can be specified.

The control parameters and network configurations are configurable via a GUI. The

latest version incorporates the optimal per-hop control and adaptive label control

specified in Section 4.1.

3One can formally attribute this property by using congestion pricing and utilization as cost mea-
sures [9].

51

Network Configuration

We use two benchmark network topologies, a 2-switch dumbbell topology shown

in Figure 4.5 (left) which isolates a bottleneck link, and a 4-switch caterpillar topology

shown in Figure 4.5 (right) which is comprised of multiple bottleneck links.

1 2

receiver 1

receiver 2

receiver n

. . .
switch

. . .
switch

sender n

sender 2

sender 1

Switch
1

Switch Switch

Switch

2 3

4

Figure 4.5. Benchmark network topology. Left: 2-switch single bottleneck link
shared by n flows. Right: 4-switch multiple bottleneck link caterpillar topology.

Most of the performance results reported in this chapter are from the bottleneck

topology shown in Figure 4.5 (left) whose results are extended by those carried out

for the topology shown in Figure 4.5 (right). The number of service classes varied

from 1 to 32, and the number of user flows varied from 16 to 450. For the convenience

of (3.1.2), the η value we used in simulation ranges from 0 to L − 1.

4.2.2 Service Differentiation

In this section, we investigate the service differentiation properties of optimal

aggregate-flow per-hop control with respect to its QoS separation (property (B))

and shaping (properties (A1) and (A2)) performance, the impact of the weighting

parameter v (cf. Step 2 in Figure 4.1), and the impact of input traffic burstiness.

QoS Separation and Bandwidth

First, we show the QoS separation performance of optimal aggregate per-hop con-

trol as a function of bottleneck bandwidth when L = 16 and there are two flows per

52

class (the number of flows, in this instance, is irrelevant since their impact is sub-

sumed by volume). Each flow is CBR. Figure 4.6 shows the QoS separation achieved

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11

eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

15

20

25

30

35

40

45

50

55

60

10 11 12 13 14 15 16

de
la

y
(m

s)

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11

eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

Figure 4.6. QoS separation achieved by optimal aggregate-flow classifier when
L = 16. Left: Packet loss rate. Right: End-to-end delay.

in the L = 16 service classes when the scheduler executes the optimal aggregate-

flow service weight assignment. The left figure shows the shape of the performance

function for packet loss rate and its QoS separation across the 16 service classes (all

classes are nonempty) as bottleneck bandwidth is increased from 6 Mbps to about

16 Mbps. We observe that even, uniform separation is preserved (property (B) but

in a stronger form), with packet loss rate degenerating to zero as resources become

plentiful. Only the odd η values are plotted to reduce cluttering. Figure 4.6 (right)

shows the corresponding performance results for end-to-end delay (in ms). We ob-

serve that the performance function for delay is less uniform—the performance gap

decreases as η approaches L−1—while satisfying property (B). This can be explained,

in part, by the fact that the waiting time Wk in service class k is its queue length

divided by its service rate αkµ. Since the optimal aggregate-flow classifier satisfies

αL

λL
≥ αL−1

λL−1
≥ · · · ≥ α1

λ1
, the shape of the end-to-end delay curve is consistent with the

waiting time dependence on service rate.

53

Label Control: Properties (A1) and (A2)

Next we show how properties (A1) and (A2) are satisfied by the optimal aggregate-

flow per-hop control. The number of service classes is configured at L = 16 (bottleneck

bandwidth is fixed at 5 Mbps), and we let a single flow occupy service class 0 initially.

Subsequently, this single user flow increases its label value η16 from 0 up to the

maximum value 15, and the resulting QoS exported by the 16 services classes is

plotted in Figure 4.7 (left). We observe that property (B) remains satisfied, and more

importantly, properties (A1) and (A2) are satisfied by the optimal aggregate-flow

classifier. Property (A1) is implied by service class separation which shows that the

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

pl
s

eta16

user 16

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

pl
s

eta48

user 48

Figure 4.7. Manifestation of properties (A1) and (A2). End-to-end QoS shaping as
a function of label value η16 of singular user flow. Left: 16 users (originally each

group has one user). Right: 48 users (average group population size of 3).

QoS of the user who is increasing his η value is monotonically improving, and property

(A2) can be confirmed by the slight positive slope of the service class performance

curves as a function of η16. Also, note that for η16 ≥ 1, there are effectively only 15

service classes since class 0 becomes empty. Figure 4.7 (right) shows the corresponding

performance curves when the initially service class 0 is populated by three user flows,

and one of the flows increases its label value from 0 to 15 as before. Bottleneck

bandwidth is set at 15 Mbps. We observe that properties (A1) and (A2) are satisfied.

54

Impact of Weighting Parameter ν

Recall that the service weight assignment, given by equation (3.1.5), has a weight-

ing parameter 0 ≤ ν < 1 which can be controlled to determine the relative importance

of service differentiation at the router. As discussed in Section 3.1, ν → 1 diminishes

the contribution of the differentiation component (the first term of (3.1.5)) thus turn-

ing the classifier into a FIFO scheduler where label values are effectively ignored.

Conversely, as ν → 0, the contribution from the FIFO component (the second term)

is eliminated thus turning the classifier into a maximal differentiator. This is shown

in Figure 4.8.

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta=15
eta=13
eta=11
eta=9
eta=7
eta=5
eta=3
eta=1

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta=15
eta=11
eta=7
eta=3

Figure 4.8. Impact of ν on QoS separation for L = 16. Left: QoS exported by
service classes as a function of bottleneck bandwidth when ν = 0.9. Right:

Corresponding plots when ν = 0.1.

The left figure shows QoS separation as a function of bottleneck bandwidth for

L = 16 when ν = 0.9 which makes the system resemble a FIFO scheduler. Fig-

ure 4.8 (right) shows the corresponding plot when the weighting parameter is set

to ν = 0.1, thus amplifying the contribution of the differentiation component. We

observe that the range of QoS differentiation is significantly larger for ν = 0.1 than

ν = 0.9—the QoS spacing between η = 0 and η = 15 is about 0.1 for the latter,

whereas it is about 0.8 for the former. However, this occurs at the cost of reduced

resolution with respect to fine-granular QoS spacing. Thus, when viewing L as a re-

source, ν influences how QoS is to be shaped at the switch—to achieve fine-granular

QoS spacing or coarse-granular QoS separation. From a network management per-

55

spective, ν is a control parameter that the service provider may engage to reflect the

overall needs of its customer base and their QoS profile.

4.2.3 Structural Properties of Optimal Aggregate-flow Per-hop Control

The major part of our performance evaluation study focuses on the structural and

dynamical properties of differentiated services as affected by optimal aggregate-flow

per-hop control. We first study the structural properties of optimal aggregate-flow

per-hop control with respect to its efficiency and optimality indicated by the existence

and size of A∗ (cf. Section 3.2), the impact of bounded and discrete label values

{1, 2, . . . , L}, and the benefit of scaling function. Then we show the dynamical and

convergence properties of adaptive label control running over the optimal aggregate-

flow per-hop substrate.

Efficiency and Optimality

In this section, we study the structure of A∗. Recall in Section 3.2, we define

A∗ as the set of η configurations where all user requirements are satisfied. Given

a configuration η, we call a change in label value ηi by user i a selfish move if the

consequent configuration gives higher utility to user i. A configuration η is a Nash

equilibrium if no user can improve her utility by selfish move. If, in addition to being

a Nash equilibrium, η belongs to A∗, then we call η a corner point . Thus a corner

point is a maximally efficient configuration where all users’ QoS requirements are

satisfied.

Figure 4.9 (left) shows the Nash equilibria and corner point structure of A∗ when

25 user flows are grouped into 8 QoS requirement groups given by the packet loss

rate bound profile (0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 1.0). Thus the population group

with bound 0.01 has the most stringent QoS requirement, and the last group cor-

responds to a “best-effort” user group in the worst-case sense. The Nash equilibria

and corner points are found by brute-force search. For bottleneck bandwidths below

56

0

2

4

6

8

10

12

14

9.6 9.8 10 10.2 10.4 10.6 10.8 11

et
a

bandwidth (Mbps)

0.01
0.05
0.10
0.15
0.20
0.30
0.40

0

2

4

6

8

10

12

14

10 10.2 10.4 10.6 10.8 11 11.2 11.4

et
a

bandwidth (Mbps)

0.01
0.04
0.07
0.10
0.15
0.20
0.30

Figure 4.9. Structure of A∗. Left: The change in Nash equilibria as we increase
bottleneck bandwidth for user population with QoS requirement profile

(0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 1.0). At 10 Mbps, Nash equilibria become corner
points of A∗. Right: Corresponding landscape for more stringent user population

QoS profile shown in the legend.

10 Mbps, A∗ is empty but Nash equilibria nonetheless exist (cf. Section 3.2). User

flows with packet loss requirements 0.01, 0.04, and 0.07 are not satisfied (their actual

packet loss rates received exceed their respective bounds), and their η values have

saturated at the maximum value 15. At 10 Mbps bottleneck bandwidth, however,

A∗ 6= ∅, and the distribution of seven label values correspond to the corner config-

uration. We observe that the range of individual label values is large (from 5 to 13

for a distance of 8), and then subsequently shrinks as bandwidth is increased. The

optimal aggregate-flow classifier, is also efficient in the sense that if an aggregate-flow

resource assignment exists that satisfies all user requirements, then it is apt to find

it. Figure 4.9 (right) shows the plots for a more stringent user population profile

(0.01, 0.04, 0.07, 0.1, 0.15, 0.2, 0.3, 1.0). Nash equilibria turn into corner points at a

higher bottleneck bandwidth 10.7 Mbps, but the reduction in the distance between

label values at corner point configurations persists.

Impact of Bounded and Discrete Label Values (L)

In this section, we show the performance impact of bounded and discrete label

values given by L. If L = 1, then we know that the optimal aggregate-flow control

57

degenerates to FIFO scheduling. Thus small L diminishes the QoS resolution achiev-

able by the classifier and increasing L amplifies it. Figure 4.10 shows this dependence.

For n = 32 user flows, we show the QoS exported by L service classes as a function

of bandwidth as L is increased L = 1, 4, 8, 32. Thus at L = 32, the system degen-

erates to per-flow control. The weighting parameter ν of the optimal classifier (cf.

equation (3.1.5)) is set to 0.5.

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta=31
eta=27
eta=23
eta=19
eta=15
eta=11
eta=7
eta=3

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta=31
eta=27
eta=23
eta=19
eta=15
eta=11
eta=7
eta=3

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta=31
eta=27
eta=23
eta=19
eta=15
eta=11
eta=7
eta=3

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta=31
eta=27
eta=23
eta=19
eta=15
eta=11
eta=7
eta=3

Figure 4.10. Impact of bounded label set size L on QoS exported by the service
classes as a function of bottleneck bandwidth for L=1, 4, 8, 32.

Figure 4.10 (top row, left plot) shows QoS shaping when L = 1, i.e., FIFO with

no QoS separation. As L is increased, however, we observe that increased L endows

increased QoS resolution with finer levels of QoS spacing. In fact, for L = 2, 4, 8, 16, 32

(i.e., excluding L = 1), we observe that the performance curves are strict supersets

of each other as indexed by L. This can be shown to follow from the form of label

value normalization η̂ defined by the map (3.1.2) (see Section 3.1). Since for all finite

L > 0, η ∈ {1, 2, . . . , L} is mapped by (3.1.2) to a subset of the closed unit real

interval η̂ ∈ [0, 1], this also explicates the effect of the label set being discrete: a

58

closed continuous interval [a, b], a < b, maps onto [0, 1] by the action of (3.1.2), and

Z+ is mapped to a dense subset of [0, 1]. Thus L translates to “QoS resolution” in a

straightforward fashion.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

pa
ck

et
 lo

ss
 r

at
e

range of labels (log L)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

pa
ck

et
 lo

ss
 r

at
e

range of labels (log L)

Figure 4.11. The combined impact of L and ν on QoS shaping. Left: QoS exported
in L service classes as a function of L for ν = 0.5. Right: Corresponding plot for

ν = 0.1.

Figure 4.11 shows the joint influence of L and ν on QoS shaping. The left figure

shows the QoS exported by L service classes as a function of L (actually its logarithm)

for L = 1, 2, 4, 8, 16, 32 when the weighting parameter is set to ν = 0.5. As a

function of L, this generates a binary QoS tree whose leaves at level log L show

the range and values of QoS covered by the L service classes. Figure 4.11 (right)

shows the corresponding plot when ν = 0.1. We observe that the width of the

covering has significantly widened, however, at the cost of a more coarse-granular

QoS spacing. Thus, as indicated earlier, the L service classes can be used to cover the

QoS space (here, the packet loss rate space [0, 1]) sparsely but uniformly, or densely

but concentrated in a subspace of the entire QoS space. For L = 2` (` ≥ 1) the

subset relation C2 ⊂ C4 ⊂ · · · ⊂ CL ⊂ · · · of the coverings CL ⊂ [0, 1] as a function

of L—which is implied by the form of the normalization (3.1.2)—can be observed in

Figure 4.11.

The size of the label set L also impacts the system efficiency, the existence or

nonemptiness of A∗ which is shown in Figure 4.12. The plot shows the minimum

bottleneck bandwidth needed to achieve A∗ 6= ∅ as a function of L. We observe that,

59

9.5

10

10.5

11

11.5

12

12.5

13

5 10 15 20 25 30

m
in

im
u

m
 b

a
n

d
w

id
th

range of labels (L)

Figure 4.12. Impact of L on existence of A∗: minimum bottleneck bandwidth
required to achieve A∗ 6= ∅ as a function of L.

other things being equal, too small an L value incurs a high QoS shaping penalty

with respect to the network system being able to satisfy the QoS requirements of all

users, even if sufficient bandwidth were available. On the other hand, the marginal

or incremental benefit of increasing L diminishes for given user QoS requirements,

which points toward the possibility that with “not-too-large” L (perhaps a subset of

the TOS bits) the QoS requirements of a multitude of users can be met.

4.2.4 The Role of Scaling Function

In this section, we study the performance impact of the scaling function. Fig-

ure 4.13 shows how the scaling function can affect the QoS differentiation among

service classes. Comparing it with Figure 4.6, we see that the scaling function can

achieve non-uniform QoS differentiation.

Next we show that the scaling function can improve system efficiency. As in Sec-

tion 4.2.3, system efficiency is represented by the minimum bottleneck bandwidth

needed to achieve A∗ 6= ∅. Configure users into 8 groups with different QoS require-

ments. Figure 4.14 shows the minimum bottleneck bandwidth needed to achieve all

users’ QoS targets as a function of L. The top curve is obtained without the scaling

function. This is essentially the same curve described in Figure 4.12. The bottom

60

0

0.2

0.4

0.6

0.8

1

8 9 10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11

eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

15

20

25

30

35

40

45

50

55

60

8 9 10 11 12 13 14 15 16

de
la

y
(m

s)

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11

eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

Figure 4.13. QoS differentiation achieved by optimal aggregate-flow classifier with
scaling function. σ(η) for η ∈ [0, 15]: 1.0, 1.1, 1.2, 10, 11, 12, 100, 110, 120, 500, 550,

600, 1000, 1100, 1200, 2000. Left: Packet loss rate. Right: End-to-end delay.

curve is obtained with an “optimal” scaling function, i.e., for a given L, if we are

allowed to choose σ, what is the minimal bandwidth needed.

9.5

10

10.5

11

11.5

12

12.5

13

5 10 15 20 25 30

m
in

im
u

m
 b

a
n

d
w

id
th

range of labels (L)

no scaling
with scaling

Figure 4.14. Impact of scaling function on system efficiency: minimum bottleneck
bandwidth required to achieve A∗ 6= ∅ as a function of L.

We observe the following: First, with a scaling function, the system achieves its

maximum efficiency when L ≥ 8, i.e., for the bottom curve, the minimum bottleneck

bandwidth required to satisfy all the users’ QoS targets does not further decrease when

L > 8. Second, the scaling function does not help when L = 1, 2. This is because the

system is FIFO when L = 1, and we always get σ̂(η) = 0, 1 after the transformation

(3.1.2) when L = 2. Third, the increase in efficiency, which is represented by the

61

difference of the minimal bottleneck bandwidths in the two curves, is large when

L = 4, 8. However, it becomes smaller when L > 8.

4.2.5 Impact of Burstiness

The previous sections have shown the structural QoS provisioning properties of

the optimal aggregate-flow per-hop control when input traffic is CBR. In this section,

we inject burstiness—an ever-present orthogonal dimension to traffic control and QoS

provisioning—and show that the qualitative behavior of the aggregate-flow QoS pro-

visioning remains the same. Figure 4.15 shows QoS separation results across m = 16

aggregate-flow service classes for the same network configuration as Figure 4.6 (see

Section 4.2.2) except for the difference that the traffic sources are VBR—Poisson—

with the same average data rates.

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11
eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

15

20

25

30

35

40

45

50

55

60

10 11 12 13 14 15 16

de
la

y
(m

s)

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11

eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

Figure 4.15. QoS separation achieved by optimal aggregate-flow classifier when
L = 16 under VBR traffic. Left: packet loss rate. Right: end-to-end delay.

Both the packet loss and delay plots show that QoS separation is achieved, and

moreover, burstiness imparts a more gradual (or smooth) change in the overall QoS

as a function of bottleneck bandwidth due to the absence of threshold effect charac-

teristic of CBR traffic.

Figure 4.16 shows the impact of bounded, discrete label set size L under VBR

traffic which corresponds to the set-up in Figure 4.10 (Section 4.2.3) for CBR traffic.

As with the CBR traffic case, we observe an increased power of QoS resolution as L is

62

increased (only shown for L = 4 and 16 due to space constraints). The principal qual-

itative difference, as with Figure 4.15, is the more gradual change of the performance

curve which is affected by burstiness. In essence, burstiness does not add additional

complications to QoS provisioning above and beyond its “usual” impact with respect

to queuing, multiplexing gain, and so forth, which can be immensely subtle—in their

own right—depending on the traffic properties.

0

0.2

0.4

0.6

0.8

1

6 8 10 12 14 16

pl
s

bandwidth (Mbps)

eta = 3
eta = 2
eta = 1
eta = 0

0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11

eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

Figure 4.16. Impact of finite label set size L on QoS for VBR traffic. Left: L=4;
Right: L=16.

Figure 4.17 shows QoS separation results across m = 16 aggregate-flow service

classes with scaling function under VBR traffic. The network configuration in Fig-

ure 4.17 is same as in Figure 4.13 except for the difference that the traffic sources

are VBR—Poisson—with the same average data rates. Both the packet loss (left)

and delay (right) plots show that QoS separation is achieved, and moreover, bursti-

ness imparts a more gradual (or smooth) change in the overall QoS as a function of

bottleneck bandwidth due to the absence of threshold effect characteristic of CBR

traffic.

4.2.6 Dynamics and Convergence

Time Evolution

In this section, we show that end-to-end adaptive label control—in conjunction

with the optimal aggregate-flow per-hop control network substrate—leads to stable

63

0

0.2

0.4

0.6

0.8

1

8 9 10 11 12 13 14 15 16

pl
s

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11
eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

15

20

25

30

35

40

45

50

55

60

8 9 10 11 12 13 14 15 16

de
la

y
(m

s)

bandwidth (Mbps)

eta = 15
eta = 13
eta = 11

eta = 9
eta = 7
eta = 5
eta = 3
eta = 1

Figure 4.17. QoS separation achieved by optimal aggregate-flow classifier with
scaling function when L = 16 under VBR traffic. σ(η), η ∈ [0, 15]: 1.0, 1.1, 1.2, 10,
11, 12, 100, 110, 120, 500, 550, 600, 1000, 1100, 1200, 2000. Left: packet loss rate.

Right: end-to-end delay.

time evolutions. The QoS exported by the service classes and the end-to-end QoS

received by individual user flows is commensurately stable.

Figure 4.18 (top row) shows the label value dynamics of adaptive label control for

an L = 16 system with n = 25 users grouped into 8 groups with common packet loss

rate requirements 0.1 (users 0 and 1), 0.15 (users 2–4), 0.2 (users 5–7), 0.3 (users 8–10),

0.4 (users 11–14), 0.5 (users 15–18), 0.6 (users 19–21), and best-effort (users 22–24).

We show the η value traces for three of the eight user groups. First, we observe that

in spite of each individual user flow executing its end-to-end adaptive label control

independently of all other user flows—including those in the same group to which each

flow is oblivious—user flows with the same QoS requirement aggregate to the same

service class. Second, the η values converge to equilibrium values after a transient

period. The length of the transient period is a function of feedback control parameters

that are not specific to optimal aggregate-flow scheduling. Third, the brief label value

perturbations in the groups comprised of users 0, 1, and users 15–18 show that QoS is

not guaranteed. Figure 4.18 (bottom row) shows the corresponding measured packet

loss rate traces observed at the receiver. We observe that the rendered end-to-end QoS

is stable, with the label perturbations reflecting the corresponding QoS perturbations

in the packet loss trace.

64

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

et
a

time (sec)

user0
user1

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

et
a

time (sec)

user8
user9

user10

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

et
a

time (sec)

user15
user16
user17
user18

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

pa
ck

et
 lo

ss
 r

at
e

time (sec)

user0
user1

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

pa
ck

et
 lo

ss
 r

at
e

time (sec)

user8
user9

user10

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

pa
ck

et
 lo

ss
 r

at
e

time (sec)

user15
user16
user17
user18

Figure 4.18. Time evolution of adaptive label control and end-to-end QoS. Top row:
Evolution of label values shown for three user groups with common QoS

requirements (0.1, 0.3, and 0.5). Bottom row: Corresponding trace of measured
end-to-end QoS for user flows belonging to the three QoS groups.

Stringency of QoS Requirement

Figure 4.19 shows the impact of increased stringency in the QoS requirement

profile on QoS provisioning performance. For the first QoS requirement profile

(0.1, 0.15, 0, 2, 0.3, 0.4, 0.5, 0.6), when the bottleneck bandwidth is less than 8.3 Mbps,

A∗ is empty—i.e., there does not exist an aggregate-flow (L = 16) service weight

assignment and configuration that is able to satisfy the QoS requirements of all user

flows. This shows up as “clustering” of the stringent QoS flows which stems from

saturation of label values at the maximum L. At bottleneck bandwidth 8.3 Mbps

or higher, however, A∗ 6= ∅ and adaptive label control finds a label assignment (and

corresponding service weight assignment at routers controlled by the classifier) where

all user flows are satisfied. A similar behavior is observed for the three successively

more stringent QoS profiles whose initial clustering is more pronounced, and the QoS

exported lies in a narrower QoS range—as required to satisfy the more stringent QoS

65

requirements—with fine-granular QoS spacing (note that the ordinate has been scaled

accordingly).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

7.8 7.9 8 8.1 8.2 8.3 8.4 8.5 8.6 8.7

pl
s

bandwidth (Mbps)

0.10
0.15
0.20
0.30
0.40
0.50
0.60

0

0.1

0.2

0.3

0.4

0.5

0.6

9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4

pl
s

bandwidth (Mbps)

0.01
0.05
0.10
0.15
0.20
0.30
0.40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11

pl
s

bandwidth

0.01
0.04
0.07
0.10
0.15
0.20
0.30

0

0.05

0.1

0.15

0.2

0.25

0.3

10.5 10.6 10.7 10.8 10.9 11 11.1 11.2 11.3 11.4

pl
s

bandwidth

0.01
0.03
0.05
0.08
0.11
0.15
0.20

Figure 4.19. End-to-end QoS achieved under adaptive label control as a function of
bottleneck bandwidth for successively more stringent QoS requirement profiles

(shown in the legends).

Time Evolution in Many-switch Topology

We also have performance results for the many-switch system (shown in Figure

4.5) when adaptive label control is used. Figure 4.20 shows the QoS provisioning

dynamics of the 4-router benchmark internetwork shown in Figure 4.5 (right). The

number of service classes is set at L = 16, and there are a total of 175 user flows

possessing 8 sets of QoS requirements including one best-effort application type (the

trivial QoS upper bound). The QoS requirements are: 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6,

and best-effort. Figure 4.20 (top) shows the label value dynamics and convergence

for a subset of three user groups, and Figure 4.20 (bottom) shows the corresponding

end-to-end QoS achieved. The qualitative dynamics are analogous to the previous

66

benchmark results with one noticeable quantitative performance difference being the

longer transient period required for convergence. This is, in part, due to the larger

number of flows—more inter-flow interactions which can impede convergence—and

the increased round-trip time (RTT) of the feedback loop.

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

et
a

time

user0
user1
user2

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

et
a

time

user9
user10
user11

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

et
a

time

user15
user16
user17

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

pl
s

time

user0
user1
user2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

pl
s

time

user9
user10
user11

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300
pl

s
time

user15
user16
user17

Figure 4.20. Time evolution of adaptive label control and end-to-end QoS in
many-switch topology (Figure 4.5 (right)) with many flows. Top row: Evolution of
label values shown for three user groups with common QoS requirements (0.1, 0.3,
and 0.5). Bottom row: Corresponding trace of measured end-to-end QoS for user

flows belonging to the three QoS groups.

In addition to the increased noise factor and time lag influence (in general, func-

tional or delay-differential equations used in the analysis of feedback congestion con-

trol can cause oscillatory behavior [65]), another pertinent factor is the inter-flow

interaction due to property (A2). The latter can make one user flow’s label control

action adversely affect another flow’s end-to-end QoS thus increasing the time needed

to quiescence.

67

Load Imbalance

In Section 4.1.4, we indicated that an efficient way to provide QoS across multiple

switches on an end-to-end path is to give more responsibility to the lightly loaded

switches than to the heavily loaded ones. In this section, we demonstrate that the

optimal aggregate-flow per-hop control exports such properties both statically and

dynamically.

The simulation set-up is as follows: let user flows traverse multiple hops where

they share the bandwidth with cross traffic. The cross traffic sources are configured

such that each class of the switches receives some amount of cross traffic. Therefore,

by varying the volumes of cross traffic injected into all the classes, we can effectively

control the load of the switches.

n0 n2 n3n1

Cross Traffic Cross Traffic Cross Traffic 0

0.2

0.4

0.6

0.8

1

1 2 3

pl
s

switch ID

eta=0
eta=4
eta=8

eta=12

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

pl
s

eta

switch 1
switch 2
switch 3

end-to-end

Figure 4.21. QoS distribution on multi-hop path with three medium-loaded
switches. Left: Switch loads. Middle: Static QoS distribution. Right: Dynamical

QoS distribution.

We first consider the scenario when all the switches are evenly loaded. Figure 4.21

shows the QoS distribution pattern of the system. The left figure depicts the topology

and the load on each switch. The middle figure shows the QoS achieved by each class

at each switch. Since all the switches have similar load, the QoS experienced by the

same class at different switches are comparable. The right figure shows the change

in end-to-end QoS and the QoS achieved at each switch when one user changes its

η value from 0 to 15. As expected, since all switches are offered similar loads, the

switches take the same responsibilities to improve the QoS of the user.

68

n0 n2 n3n1

Cross Traffic Cross Traffic Cross Traffic
0

0.2

0.4

0.6

0.8

1

1 2 3

pl
s

switch ID

eta=0
eta=4
eta=8

eta=12

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

pl
s

eta

switch 1
switch 2
switch 3

end-to-end

Figure 4.22. QoS distribution on multi-hop path with one heavy-loaded switch and
two light-loaded switches. Left: switch loads. Middle: static QoS distribution.

Right: dynamical QoS distribution.

Next we study the QoS distribution among switches when they are under different

load conditions as depicted in Figure 4.22 (left). Figure 4.22 (middle) shows the static

QoS distribution among the switches by plotting the QoS of all the classes at each

switch. As stated in Section 4.1.4, the classes in the lightly-loaded switches experience

better QoS than the corresponding classes in the heavily-loaded switch. Figure 4.22

(right) shows the more subtle feature, the dynamic QoS distribution among switches.

It depicts the change of the end-to-end QoS and the QoS achieved at each switch when

one user changes its η value from 0 to 15. In Section 4.1.4, we stated that when one

user increases η value to improve its QoS, an efficient way is to put more responsibility

on the lightly-loaded switch. Figure 4.22 (right) verifies that our optimal aggregate-

flow per-hop control exhibits this property. As η increases, we observe the packet loss

rate at the lighted-loaded switch decreases faster than it does at the heavily-loaded

switch.

The QoS distribution over load imbalance system is further demonstrated by Fig-

ure 4.23 where the switches along the path are configured with four different patterns

of loads: (High, low, low), (low, high, low), (low, low, high), and (medium, medium,

medium) respectively. The Figure describes the actual QoS achieved at each switches

under these four different load imbalance patterns to satisfy a given QoS target (packet

loss rate = 0.15). We see that the system adaptively distributes QoS responsibility

among the switches to meet the end-to-end QoS requirement.

69

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 2 3

pl
s

switch ID

high-low-low
low-high-low
low-low-high

medium-medium-medium

Figure 4.23. To satisfy given QoS target, the actual QoS achieved at each switch
with respect to different load imbalance patterns.

4.3 Conclusion

In this chapter, we advance previous theoretical work on optimal aggregate-flow

scheduling. We have designed a system that implements the optimal aggregate-flow

per-hop control and end-to-end QoS control, and proposed practical enhancements

by introducing scaling function and discussing load imbalance issues. We have given

a comprehensive simulation-based performance evaluation of the system. We have

shown quantitative performance evaluations of both structural and dynamical prop-

erties, thus extending, in addition to complementing, the theoretical results in Chap-

ter 3. The performance results, overall, show that user-specified services can be effi-

ciently and effectively achieved over the network with optimal aggregate-flow per-hop

control substrate when coupled with adaptive label control.

70

5 SYSTEM BUILDING AND BENCHMARKING

Collaborating with Cisco Systems, we have implemented the optimal aggregate-flow

per-hop control in commercial routers. The system building experience shows that

the optimal per-hop control scheme purposed is practical and implementable. The

overhead brought by optimal per-hop control is small. We also conducted bench-

marking over Q-Bahn testbed which is comprised of Cisco 7206 VXR routers running

developed optimal per-hop control. Our benchmarking output confirms the previous

results from theoretical analysis and simulation study, and demonstrates the scala-

bility of the QOS provisioning architecture.

In Section 5.1, we discuss the overall design and the key components in optimal

per-hop control implementation. Section 5.2 describes system building procedure. In

Section 5.3, we present our benchmarking results.

5.1 System Design

5.1.1 Key issues

In Section 4.1.1, we described an algorithm for optimal aggregate-flow per-hop

control based on weighted fair queue. The basic idea is to online measure the traf-

fic to each class and dynamically adjust the weights of classes commensurate to the

current load distribution among them (cf. Section 4.1.1 for more details). Our im-

plementation of optimal per-hop control in Cisco routers follows the same algorithm

with focus on system efficiency. Two key issues related to efficiency are:

• How to keep the operation in packet forwarding path as minimal as possible,

including packet classification, class load measurement, and enqueueing?

• How to reduce the overhead of periodical weight recalculation?

71

We also expect the optimal per-hop control may coexist with other QoS solutions

in practice. Thus our design reuses many existing QoS mechanisms provided in Cisco

routers and provides interface for flexible user configuration.

The platforms we use are Cisco 7200 series routers with Cisco Internetwork Op-

erating System (IOS) version 12.2. The optimal per-hop control implementation can

also be transplanted to other platforms with minor change.

5.1.2 Overall Structure

In our design, the optimal per-hop control is built upon class based weight fair

queue (CBWFQ) mechanism in Cisco routers (cf. [80] for an overview) and its func-

tionality can take effects on individual output interfaces. If enabled, the optimal

per-hop control intercepts and processes packets in Cisco express forwarding (cf. [78]

for more information) which is the default packet process mode in Cisco 7200 series

routers.

In express forwarding mode, packets are handled by interrupt when received.

Following is a general description of the packet process procedure during express

forwarding when CBWFQ is configured on the corresponding output interface [80, 79].

1. The interface processor first detects there is a packet on the network media,

and transfers this packet to the input/output memory on the router.

2. The interface processor generates a receive interrupt. During this interrupt, the

central processor determines what the type of the packet (IP), and then begins

to switch the packet.

3. The processor searches the route cache to determine if the packet’s destination

is reachable, what the output interface should be, what the next hop towards

this destination is, and finally, what MAC header the packet should have to

successfully reach the next hop. The processor uses this information to rewrite

the packet’s MAC header.

72

4. When CBWFQ is enable on the outbound interface, the processor decides which

class to put the packet and copies the packet to the queue of the class. The

receive interrupt then returns, and the process that was running on the processor

before the interrupt occurred continues running.

5. After the transmission of the current outgoing packet is completed, the output

interface processor generates an interrupt. During the interrupt, the central pro-

cessor determines which packet to send next based on the CBWFQ algorithm,

copies the packet to the transmit queue of the interface, then returns.

6. The output interface processor detects the packet on its transmit queue, and

transfers the packet onto the network media.

In the above procedure, after determining the output interface of the packet and

before putting the packet into the output queue of the interface, the IOS detects

that the optimal per-hop control is enabled, and then passes control to the optimal

per-hop control module (referred as OPC module from now on).

Figure 5.1 depicts the overall structure of optimal per-hop control module.

... WFQ
SchedulerClassifier

Counter
Class

Mapping

Class
Weights

Timer

Weight
Controller

Class
Control

Buffer

Figure 5.1. Structure of optimal aggregate-flow per-hop control module
implemented in Cisco routers.

The OPC module has two components: classifier, which is packet-driven, and

weight controller, which is timer-driven. The data abstraction used and/or updated

by OPC module are:

73

• Class mapping table: determines the mapping from DSCP values to class in-

dices.

• Counters: records the traffic characteristics of classes during the last time pe-

riod, including number of packets received and number of packets dropped.

• Class weights: the weight assignment (bandwidth sharing percentage) of classes

in CBWFQ.

• Class control table: the most important data structure in OPC module. It

contains the control parameters used to calculate the class weights (cf. Fig-

ure 4.1.1). Our design supports the scaling function enhancement (cf. Sec-

tion 4.1.3), thus the scaling function results of DSCP values are contained. The

parameters in class control table can be flexiblely configured through Command

Line Interface (CLI) of Cisco routers. For this purpose, link list is a preferred

implementation.

When a packet is passed to OPC module, the classifier first looks up the DSCP

value at the packet header and decides which class this packet should go to based on

the information in the class mapping table, then updates the corresponding counters

and puts the packet into the buffer of the target class. In the simplified case—the

number of DSCP used is equal to the number of class configured at CBWFQ—the

mapping from DSCP to class index is one to one (cf. Section 4.1.1). To reduce over-

head, we use simple counters, together with existing traffic measurement mechanism

provided by IOS, to record the traffic characteristics of classes.

The weight controller is a timer-driven module whose time interval can be set

through CLI. When triggered, the weight controller first computes the weights of the

classes based on the counter values and the information stored in class control table

following the algorithm described in Figure 4.1.1 (or Figure 4.1.3 if scaling function

is used), then updates the weights for CBWFQ, and finally resets the counters. To

reduce overhead, we use a back-end process to act as weight controller. The timer

inaccuracy is handled accordingly. Section 5.1.3 provides further details.

74

5.1.3 Dynamic Weight Computation

We further simplified the algorithm described in Figure 4.1.1 (or Figure 4.1.3

when scaling function is used) to improve system efficiency. First, rewrite the weight

computation equation in Figure 4.1.1 as follows:

αk = (1 − ν)
λkη̂k∑L
j=1 λj η̂j

+ ν
λk∑L
j=1 λj

= (1 − ν)
λk ηk−ηmin

ηmax−ηmin∑L
j=1 λj ηj−ηmin

ηmax−ηmin

+ ν
λk∑L
j=1 λj

= (1 − ν)
λk(ηk − ηmin)∑L
j=1 λj(ηj − ηmin)

+ ν
λk∑L
j=1 λj

, k ∈ [1, L].

In practice, best-effort traffic exists and ηmin = 0. Thus, we don’t need to keep

track of ηmin which takes O(n) time and the above equation can be simplified as

αk = (1 − ν)
λkηk∑L
j=1 λjηj

+ ν
λk∑L
j=1 λj

, k ∈ [1, L]. (5.1.1)

Next, we need to relate λk to the counter values. Note that

λk =
number of packet arrived · average packet length

last timer interval
.

A valid assumption is that the average lengths of packets in different classes within

the last timer period are same. Let Ak denote the number of packet arrived at class

k, k ∈ [1, · · · , L]. Then equation (5.1.1) becomes

αk = (1 − ν)
Akηk∑L
j=1 Ajηj

+ ν
Ak∑L
j=1 Aj

, k ∈ [1, L]. (5.1.2)

Equation (5.1.2) is used by weight controller module. Note that the timer inaccuracy

due to weight controller being back-end process does not influence the final weight

calculation results. When scaling function is used, the corresponding equation will

be

αk = (1 − ν)
Akσ(ηk)∑L
j=1 Ajσ(ηj)

+ ν
Ak∑L
j=1 Aj

, k ∈ [1, L]. (5.1.3)

In our implementation, we use integer operation when calculating equation (5.1.2)

and (5.1.3) to improve efficiency. To represent weight αk, 0 ≤ αk ≤ 1 by an integer

75

βk, let B be the integer representing the maximum range of βk, k ∈ [1, L], then

βk = αkB. Our simulation results show that B ≥ 512 suffices in terms of accuracy—

it achieves the same performance results as float weights are used in CBWFQ. The

order of operation in Equation (5.1.3) and (5.1.2) is arranged in the way such that

round-off errors are minimized.

When updating CBWFQ, βk, k ∈ [1, L] needs to be converted into bandwidth

share, the data format used by CBWFQ.

5.1.4 User Configuration Interface

The parameters of OPC module can be configured through CLI using existing

Cisco QoS configuration framework class-map and policy-map. Class-map defines

the recognized DSCP values or DSCP sets. Policy-map defines the behavior of per-

hop control including number of classes used, the mapping from DSCP values (or sets)

to classes, and the scaling function values for classes. Policy-map is set on interface

basis, thus an ISP can enforce different per-hop control policies on different interfaces.

There are also some parameters global to all interfaces, including the timer inter-

val of weight controller. This simplifies the weight controller design—addition data

structure (delta list) is not needed to keep track of timer and the recalculation of the

class weights can be done uniformly for all interfaces.

5.2 System Building Procedure

Two independent organizations, Cisco IOS developing team and Network System

Lab at Purdue University collectively built optimal per-hop control in Cisco routers.

The collaboration protocol is as follows: First both parties jointly design the overall

structure of optimal per-hop control (OPC module). Next, Network System Lab

provides the pseudo code of OPC module, and Cisco team incorporates the module

with the rest of IOS and compiles a prototype IOS image. The prototype images is

then downloaded and tested by Network System Lab over Q-bahn testbed at Purdue.

76

The testing results are sent back to Cisco team for debugging. The modified images

will be tested and debugged in the same way repeatedly until a final version is reached.

The network configuration for testing follows the ones used in simulation (Figure

5.2)to verify testing results. Some software tools are developed to automate the tests.

The whole system development process took 6 months with most of the time devoted

to testing and debugging.

The benchmarking and performance evaluation was carried out over Q-bahn

testbed by Network System Lab independently at Purdue.

5.3 Benchmarking Results

This section presents the benchmarking and performance evaluation results ob-

tained from Q-bahn testbed—an IP-over-SONET QoS backbone comprised of Cisco

7206 VXR routers—which is used as a QoS testbed at the Network Systems Lab at

Purdue University. Figure 5.2 shows the 11-switch Abilene-like topology of Q-bahn

testbed.

NYCM

STTL

SNVA

LOSA

DENV
IPLS

ATLA

HSTN

KSCY

Figure 5.2. Network topology of Q-bahn testbed

5.3.1 QoS Differentiation

In this section, we examine the QoS differentiation behavior, the most basic prop-

erty, of optimal per-hop control.

77

The first benchmarking setup is as follows: we configure the router with 8 classes,

and send different traffic volume to different classes while keeping the total arriving

traffic constant. We measure the average QoS experienced at classes 1–8 and examine

the QoS ordering among these classes under different load distribution.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

loa
d s

har
e a

nd
pls

class index

load share
pls

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

loa
d s

har
e a

nd
pls

class index

load share
pls

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

loa
d s

har
e a

nd
pls

class index

load share
pls

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

loa
d s

har
e a

nd
pls

class index

load share
pls

Figure 5.3. QoS separation among classes under different load distribution

Figure 5.3 shows load distribution and the average QoS achieved at different

classes. The load distribution is depicted by the percentage of traffic received at

each classes out of the total traffic arrived at the router. The QoS is measured as the

average packet loss rate at each class during the period. Each figure of 5.3 represents

a different load distribution. Class indices are marked on the X-axis. For each class,

the left box represents the load percentage and the right box represents the packet

loss rate. In top left figure, all classes receive same traffic volume thus the load per-

centage is 1/8 for all classes. In top right figure, higher classes get more traffic. In

particular, the ratio of load at class 1–8 are 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8. In bottom

left figure, higher classes get less traffic where ratio of load at class 1–8 are in reverse

78

order: 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1. Bottom right figure shows another pattern of load

distribution where ratio of load at class 1–8 are 2 : 4 : 6 : 8 : 7 : 5 : 3 : 1. In all the

figures corresponding to different load distributions, we observe the semantics “higher

class gets better QoS” is preserved. Note that the average packet loss rate over all

classes are same for all the four figures since the total arriving traffic at the router is

constant.

0

0.2

0.4

0.6

0.8

1

1618202224262830

pl
s

bandwidth (Mbps)

eta=0
eta=2
eta=4
eta=6
eta=8

eta=10
eta=12
eta=14

0

0.2

0.4

0.6

0.8

1

89101112131415

pl
s

bandwidth (Mbps)

eta=0
eta=2
eta=4
eta=6
eta=8

eta=10
eta=12
eta=14

Figure 5.4. QoS separation among classes under different congestion level

Next, as a complement to the above setup, we vary the total amount of arriving

traffic at the router, which determines the congestion level and overall QoS at the

router, while keeping the load distribution among the classes constant. Figure 5.4

shows the QoS achieved at different classes under different congestion level. The traffic

load is evenly distributed among the classes, i.e. all classes receive same percentages of

total traffic, and the congestion level is increased/decreased by increasing/decreasing

the traffic sending to individual classes simultaneously. Figure 5.4 (left) demonstrates

the result when 8 classes are used and Figure 5.4 (right) demonstrates the result when

16 classes are used. The X-axis represents the traffic rate (Mbps) received per class

and the Y-positions of the points mark the QoS (packet loss rate) achieved at the

classes. We observe the following: although the overall QoS is getting better/worse

as the congestion level (traffic rate per class) is decreased/increased, the semantics

“higher class gets better QoS” is preserved.

79

5.3.2 Dynamic Environment

We also conducted more realistic experiments over Q-bahn testbed. In each ex-

periment, we generate a large number of processes on the hosts connected to Q-bahn

testbed (Figure 5.2). These processes setup connections (sessions) between each other

and send traffic over Q-bahn testbed. For each session, the source and destination

hosts, interarrival time, lifetime, sending rate, and QoS(throughput) requirement are

randomly selected following pre-defined distribution. Our goal is to study the behav-

ior of the optimal per-hop control in large-scale dynamic environment.

Figure 5.5 shows the result of a two-hour experiment. In the experiment, we

generated 1378 sessions with average interarrival time 10 seconds and average session

lifetime 10 minutes. The average sending rate of sessions is 6Mbps. The traffic are

sent to 5 different classes. The number of sessions selecting different classes has the

ratio 9 : 7 : 5 : 3 : 1, i.e. the higher classes are selected by less sessions.

The left figures in 5.5 shows the workload configuration. The left top figure

depicts the total number of active sessions over the testbed as time evolves. The left

middle figure depicts the percentage of sessions generated on each end host. The left

bottom figure depicts the sessions distribution among the end host as time evolves. At

any given time, the average number of sessions over all hosts and the corresponding

standard deviation are displayed.

The right figures in 5.5 demonstrates the class assignment and QoS achieved. The

right top figure depicts the percentage of sessions selecting different classes. The

right middle figure depicts the percentage of sessions that achieve different levels

of QoS satisfaction. The right bottom figure, which is the most important figure,

demonstrates the relation between QoS satisfaction level and the class selected. The

average QoS satisfaction ratios for sessions selecting different classes are shown in the

right bottom figure.

The experiment results confirms that the optimal per-hop control achieve “higher

classes get better QoS” semantics in any scenarios including dynamic environments.

80

5.4 Conclusion

This chapter describes our experience on building the optimal per-hop control in

Cisco routers and benchmarking over Q-bahn testbed. Our results shows that the

optimal per-hop control is a practical and implementable scheme which can provide

predictable services in realistic and dynamic network environments.

81

0

20

40

60

80

100

120

140

11/12
10:00:00

11/12
10:20:00

11/12
10:40:00

11/12
11:00:00

11/12
11:20:00

11/12
11:40:00

11/12
12:00:00

11/12
12:20:00

N
um

be
r

of
 S

es
si

on
s

Time (secs)

Number of Total Sessions on Q-Bahn

number of sessions

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

P
er

ce
nt

ag
e

of
 S

es
si

on
 O

cc
ur

re
nc

e
(%

)

QoS Class

ToS Distribution

in_tos histogram

0

10

20

30

40

50

60

70

80

90

100

70 72 74 76 78 80 82 84 86 88 90 92

P
er

ce
nt

ag
e

of
 S

es
si

on
s

(%
)

End System ID

Session Distribution per Endsystem

session distribution

0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P
er

ce
nt

ag
e

of
 S

es
si

on
 O

cc
ur

re
nc

e
(%

)

QoS Satisfaction Ratio

QoS Satisfaction Ratio Distribution

qos ratio histogram

0

0.5

1

1.5

2

2.5

3

3.5

4

11/12
10:00:00

11/12
10:20:00

11/12
10:40:00

11/12
11:00:00

11/12
11:20:00

11/12
11:40:00

11/12
12:00:00

11/12
12:20:00

A
ve

ra
ge

 S
es

si
on

s
w

ith
 S

td
. D

ev
ia

tio
n

Measurement Time

Endsystem Activity Deviation

std. dev.
avg sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
ve

ra
ge

 Q
oS

 S
at

is
fa

ct
io

n
R

at
io

QoS Class

ToS vs. QoS Satisfaction Ratio

average qos ratio

Figure 5.5. Q-Bahn experiment report

82

6 STOCHASTIC MODELING AND OPTIMIZATION

6.1 Introduction

In this chapter, we study the stochastic modeling and optimization of aggregate-

flow scheduling in multi-class G/G/1 queueing systems, where each user flow has

a QoS requirement and schedulers allocate resources such that user satisfaction for

the whole system is maximized. This work is motivated by our results in Chapter 3

on optimal per-hop control design which did not consider the impact of stochastic-

ity of the input: arrival processes with general interarrival and service times. For

certain scheduler spaces—in particular, work conserving, non-preemptive and non-

anticipative schedulers—various forms of Kleinrock’s conservation law [40] can be

shown to hold. The optimum scheduling problem then asks: Given a target per-

formance or quality of service (QoS) requirement associated with the input, find a

scheduler that comes closest, in a suitable sense, to achieving the desired performance.

Kleinrock’s conservation law has the effect of making the optimal scheduling problem

constrained, as the performance space of the input flows must lie on a hyperplane

defined by the conservation law.

The optimal per-flow scheduling problem in multi-class queueing systems with n

flows or types was pioneered by Coffman and Mitrani [19], with a string of works

(cf. Section 6.2 for related work) that have focused on characterizing the structure of

the performance space. Our work can be viewed as extending Coffman and Mitrani’s

per-flow scheduling framework by introducing aggregate-flow schedulers that capture

the constraint that a router may only have m, m ≤ n, service classes at its disposal.

In Chapter 2, we specify aggregate-flow schedulers by assuming a many-to-one

function, ξ : {1, . . . , n} → {1, . . . ,m}, called a classifier, and requiring that the

scheduler maps each flow i ∈ {1, . . . , n} to one of m service classes as specified by

83

ξ(i). The resultant m (or less) aggregated super-flows are then treated as input to

an m-flow per-flow scheduler, which, in conjunction with the classifier ξ, defines the

aggregate-flow scheduler. The “goodness” of an aggregate-flow scheduler is evalu-

ated with respect to the QoS received by individual flows, hence the criterion of

optimality remains unchanged. Since m = n and ξ = identity map corresponds to

per-flow schedulers, the optimal aggregate-flow scheduling framework can be viewed

as a generalization of Coffman and Mitrani’s per-flow scheduling framework.

6.1.1 Features of Optimal Aggregate-flow Scheduling

Aggregate-flow scheduling—and per-flow scheduling as a special case—has the

following features that are relevant to optimal scheduling:

Kleinrock’s conservation law. The stochastic input along with properties of the sched-

uler space induce conservation laws—Kleinrock’s conservation law [39, 40, 75] and

more restricted forms called strong conservation laws [76, 23]—which capture the

trade-off relation that to improve service to one flow, the performance of one or more

flows must be sacrificed. Kleinrock’s conservation law can be viewed as an applica-

tion of Little’s conservation law [48, 84]. Both hold for general G/G/1 systems and

scheduler spaces, but details of the underlying stochastic framework must be specified

as there is no unique form.

Performance space. Previous works in per-flow scheduling have focused on properties

of the performance space. For a given input and scheduler space, the performance

space is the set of n-dimensional performance vectors that are achievable by some

schedulers in the scheduler space. Kleinrock’s conservation law constrains the per-

formance space to lie on a (n− 1)-dimensional hyperplane. Strong conservation laws

additionally impose a polymatroidal structure. For example, for M/G/1 systems

with work conserving, non-preemptive and non-anticipative scheduling disciplines,

the performance space is convex and spanned by random weighted combinations of

static priority schedulers [30].

84

Optimum performance. The process of finding an optimum scheduler can be divided

into two steps: (i) find a performance vector in the performance space closest to the

desired target QoS, and (ii) identify a scheduler in the scheduler space that achieves

the performance of the first step. When the notion of “closest” is captured by the

minimum mean-square error (MMSE) under the L2 norm—a commonly used criterion

in estimation, control and optimization—then step (i) can be further subdivided

into two steps: first, find the orthogonal projection of the target QoS vector on the

conservation law hyperplane, then find a vector in the performance space closest to

the projection point. When the performance space is suitably nice—e.g., convex—the

orthogonal projection may lie inside the performance space; in general, this needs not

be the case.

Complexity of optimum scheduling. The 3-step decomposition property of finding

an optimum scheduler facilitates studying the algorithmic aspect of computing an

optimum scheduler for a given stochastic input and target performance, when Klein-

rock’s conservation law holds, without necessitating a detailed characterization of the

structure of the performance space. The complexity of optimal per-flow scheduling

for a given input and target performance vector involves finding an optimal point

in the performance space with respect to a given performance criterion. Optimal

aggregate-flow scheduling has the added effect of limiting the feasible region to sub-

spaces induced by the scheduling constraint that only m ≤ n service classes are

available to an aggregate-flow scheduler.

Figure 6.1 illustrates of the conservation law hyperplane, performance space, and

aggregate-flow subspace for n = 3 and m = 2.

6.1.2 New Contribution

A conceptual contribution of the work in this chapter is the introduction of

stochastic framework of optimal aggregate-flow scheduling, which extends Coffman

and Mitrani’s optimal per-flow scheduling framework [19]. The generalized framework

85

X 1

X 2

X 3

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

conservation law hyperplane

QoS target
performance space

aggregate−flow subspace

.

.

Figure 6.1. Depiction of conservation law hyperplane, per-flow performance space,
and aggregate-flow subspace for an n = 3 and m = 2 optimum scheduling example.

provides, in part, a theoretical foundation for QoS provisioning using aggregate-flow

scheduling under stochastic input. The technical contribution is a computational

complexity characterization of aggregate-flow scheduling where we prove that opti-

mal aggregate-flow scheduling for multi-class G/G/1 systems is NP-hard. This stands

in contrast with optimal per-flow scheduling studied in previous contexts, includ-

ing certain polymatroid optimization under strong conservation laws and optimal

aggregate-flow scheduling without conservation laws, which are poly-time solvable.

The latter arises in relative service differentiation under static input, and has cubic

time complexity (Chapter 3). Kleinrock’s conservation law in combination with opti-

mal flow aggregation imparts computational hardness. In settings where only one of

the conditions holds, optimal aggregate-flow scheduling is polynomially solvable.

The complexity result applies to a broad range of multi-class G/G/1 queueing

systems under work conserving, non-preemptive and non-anticipative scheduling dis-

ciplines, when Kleinrock’s conservation law holds, without requiring detailed knowl-

edge of the associated performance space. This is achieved by a sufficiency condition

which states that (i) as long as the performance space contains an open ball—however

small—centered around the performance vector achieved by the FIFO scheduler,

and (ii) within the ball performance inside a service class is the same, the optimal

aggregate-flow scheduling problem is NP-hard. While the aforementioned conditions

86

point toward the applicability of the hardness result to general queueing systems,

even for very simple queueing systems such as M/M/1 whose performance space sat-

isfies (i) and (ii)—i.e., they are not assumptions—optimal aggregate-flow scheduling

remains NP-hard.

The rest of the chapter is organized as follows. In the next section we discuss re-

lated works. In Section 6.3, we introduce a multi-class queueing framework including

assumptions on the stochastic input and scheduler space. We then define the optimal

aggregate-flow scheduling problem for multi-class G/G/1 systems. In Section 6.4, we

describe the structure of optimal aggregate-flow scheduling and state the main result.

Section 6.5 proves hardness of one-dimensional clustering with linear constraints, a

key component in the proof of the main result. The results in this chapter are also

presented in [71].

6.2 Related Work

The problem of finding an optimal scheduler for a given performance target under

stochastic input in per-flow multi-class queueing systems was introduced by Coff-

man and Mitrani [19]. Since then, the area has been intensively investigated, with

focus on characterizing the per-flow performance space satisfying strong conserva-

tion laws [76]—a weaker form being Kleinrock’s conservation law—under different

assumptions on the input and scheduler space.

Coffman and Mitrani’s seminal paper [19] studied the per-flow multi-class M/M/1

system for preemptive schedulers. They showed that the performance space is con-

vex and spanned by static priority schedulers (i.e., priority queues). Gelenbe and

Mitrani [30] studied the M/G/1 queue for non-preemptive schedulers and proved

analogous results. In [23], Federgruen and Groenevelt extended [30] to M/G/c, and

they established a corresponding result for G/M/1 under preemptive schedulers in

[22]. Federgruen and Groenevelt [23, 22] used the polymatroidal structure of the per-

formance space to show that convex separable objective functions can be optimized

87

in polynomial time. Georgiadis and Viniotis [32] considered GI/G/1 systems under

general work conserving schedulers, including time-varying adaptive policies, without

a priori assuming ergodicity. Shanthikumar and Yao [76] established the equivalence

between strong conservation laws and the polymatroidal structure of the performance

space, showing that the latter is not only sufficient but also necessary. Bertsimas [2]

provides a survey of optimal control in multi-class queueing systems following Coffman

and Mitrani’s framework [19], where relaxation is used to find approximations of the

performance space and corresponding performance bounds. Chen and Yao [7] (Chap-

ter 11) provide a comprehensive exposition of related works, including generalized

conservation laws and their relationship to extended polymatroids with application

to closed queueing systems.

The aforementioned works in optimal per-flow scheduling considered computa-

tional complexity. Polymatroid optimization, enabled by strong conversation laws, af-

fected poly-time solvability of convex separable functions for queueing systems where

the 2n − 2 inequalities of the strong conservation law can be represented in space

polynomial in n. For linear objective functions where the optimal solution must be a

vertex of the base polytope of the polymatroid, this dependence of the input size on

a compact representation of the constraints is removed. This is due to the fact that

an optimal solution can be recovered from the n coefficients of the objective function.

Poly-time solvability of linear objective functions extends to generalized conservation

laws. An important negative result was proved by Papadimitriou and Tsitsiklis [58]

for optimal control of closed multi-class queueing networks which they showed to be

EXP-complete. The queueing system considered, however, is significantly different in

that it is a closed queueing network where stochasticity only arises from the (expo-

nential) service time distribution, and combinatorial hardness is built in at multiple

levels including routing and scheduling. Thus, it is not surprising that the stochas-

tic control problem considered is computationally hard, although the degree of its

hardness (EXP-complete) is interesting.

88

In Chapter 3, we studied optimal aggregate-flow multi-class scheduling in a shared

resource environment where bandwidth is directly provisioned. That is, the semantics

of resource sharing is with respect to the underlying resource—i.e., bandwidth—and

not the performance induced by the apportioned resources. Under the minimum

mean-square error (MMSE) criterion and relativization of user bandwidth require-

ments, optimal aggregate-flow scheduling is shown to be poly-time solvable, in partic-

ular, has cubic time complexity. This chapter generalizes the optimal aggregate-flow

multi-class scheduling framework by considering stochastic input for which Klein-

rock’s conservation law holds. The study of optimal per-flow multi-class scheduling

showed that per-flow scheduling combined with strong conservation laws leads to

poly-time complexity of convex objective functions. In Chapter 3, it was shown that

aggregate-flow scheduling without conservation laws is also computationally tractable.

This chapter shows that aggregate-flow scheduling combined with conservation laws

is NP-hard.

A key component to proving NP-hardness of optimal aggregate-flow schedul-

ing involves reduction from a one-dimensional constrained clustering problem with

MMSE objective function. Surprisingly, little is known about the complexity of one-

dimensional optimal clustering with linear constraints and MMSE objective function.

We prove it is NP-complete. Brucker [6] showed that one-dimensional unconstrained

clustering under MMSE is poly-time solvable. The complexity of k-dimensional,

k ≥ 2, unconstrained clustering under MMSE remains an open problem [6, 35, 28].

Gal and Klots [27] solved a form of one-dimensional unconstrained clustering where

the objective is to maximize the sum of average group weights over all groups.

Statistical multiplexing—a form of flow aggregation—has been studied with the

aim of characterizing the multiplexing gain via envelop curves and effective band-

width [4, 21, 33, 86]. From a scheduling perspective, these works fall under the

category of per-flow multi-class scheduling. They showed that bandwidth is more

efficiently utilized the more flows are multiplexed or aggregated. In contrast with

Coffman and Mitrani’s per-flow scheduling framework where the performance space—

89

given by strong conservation laws—captures the trade-off across different schedulers,

in statistical multiplexing an effective characterization of achievable performance for

specific schedulers (e.g., FIFO, EDF, SP, GPS) is sought with the aid of the law of

large numbers assuming independence among flows.

A notion similar to flow aggregation, known as job grouping [82], has been studied

in the scheduling literature. The job grouping model studies optimal scheduling for

deterministic sequences of jobs. Aggregation is defined at the individual job level, and

optimal scheduling studies the grouping of jobs so as to minimize processing time.

In essence, optimal scheduling in the job grouping context involves unconstrained

clustering which, in the absence of conservation laws, is polynomially solvable by

dynamic programming.

Although optimal aggregate-flow scheduling was originally motivated by the prac-

tical context of designing efficient routers for achieving scalable QoS provisioning, it

has led to interesting linkages between stochastic scheduling, clustering, job grouping,

and scalable network design.

6.3 System Model

The system model is comprised of four parts. The first part describes the stochas-

tic framework of multi-class queueing which, in addition to notational set-up, is

needed to define aggregate-flow scheduling. The second part defines the optimal

aggregate-flow scheduling problem. The third part discusses Kleinrock’s conservation

law with respect to the underlying input and scheduler space, and how it impacts

scheduling. The fourth part specifies an interface between the stochastic and algo-

rithmic components of optimal aggregate-flow scheduling which is used in Section 6.4.

6.3.1 Multi-class Queueing Model

Consider an n-flow (or type) G/G/1 system with general interarrival and service

times. Let U = (Uk), Uk = [Tk, Sk, Ck], k ∈ Z, be a sequence of random variables rep-

90

resenting the input, where Tk ∈ R+ (the positive reals excluding 0) is the interarrival

time between the k-th and (k + 1)-th arriving packets, Sk ∈ R+ is the service time

of the k-th packet, and Ck ∈ {1, · · · , n} is the flow index of the k-th arriving packet.

Following [5], the evolution of the system at arrival instants may be described by a

recursive stochastic equation

Xk+1 = f(Xk, Uk) = f(Xk, [Tk, Sk, Ck]), k ∈ Z (6.3.1)

where Xk denotes the state of the system seen by the k-th arriving packet, and f is a

measurable function on the joint probability space and captures the scheduling disci-

pline. For stochastic schedulers, an additional random input is needed to represent the

behavior of f . For strictly stationary input, (6.3.1) can be shown to have well-defined

solutions [5]. For our purposes, it suffices to have a stochastic framework wherein

Kleinrock’s conservation law holds, which need not be restricted to strictly stationary

input. For example, this applies to second-order self-similar processes which are used

to model long-range dependence in Internet traffic.

Recall in Chapter 2, we specify aggregate-flow schedulers by assuming a many-to-

one function, ξ : {1, . . . , n} → {1, . . . ,m}, m ≤ n, called a classifier, and requiring

that a scheduler maps each flow i ∈ {1, . . . , n} to one of m service classes as specified

by ξ(i). The resultant m (or less) aggregated super-flows are then treated as input to

an m-flow per-flow scheduler, which, in conjunction with the classifier ξ, defines the

aggregate-flow scheduler.

Definition 6.3.2 An n-to-m aggregate-flow scheduler g is a pair (ξ, f), where ξ :

{1, . . . , n} → {1, . . . ,m} is a classifier, f is a state transition function of an m-flow

multi-class queueing system, and the action of g is given by

Xk+1 = g(Xk, Uk)

= f(Xk, [Tk, Sk, ξ(Ck)]), k ∈ Z.

Since ξ and f are measurable, g is measurable. An n-to-m aggregate-flow scheduler

is just a special case of an n-flow per-flow scheduler, hence the stochastic framework

91

of per-flow scheduling can be inherited. On the other hand, since m = n and ξ =

identity map corresponds to per-flow schedulers, aggregate-flow schedulers can be

viewed as a generalization of per-flow schedulers, where the classifier ξ allows various

forms of information loss due to m < n to be imposed on the system, including the

special case of no loss.

An alternative definition of aggregate-flow scheduler is: g is an n-to-m aggregate-

flow scheduler if there exists a classifier ξ such that given an arbitrary system

state xk seen by the k-th packet and two instances of the (k + 1)-th packet

uk+1 = [tk+1, sk+1, ck+1] and u′
k+1 = [tk+1, sk+1, c

′
k+1], g(xk, uk+1) = g(xk, u

′
k+1) if

ξ(ck+1) = ξ(c′k+1). The second definition is more behavioral and does not make use

of a state transition function f of an m-flow multi-class queueing system. The two

definitions can be shown to be equivalent.

6.3.2 Optimal Aggregate-flow Scheduling

Let w = (w1, · · · , wn) denote the performance vector of an n-flow multi-class

queueing system where wi > 0 is a performance measure associated with flow i. In

general, w may depend on (Xk) which is determined by the state transition function f

and input U = (Uk). This is denoted by w = φf (U) where φf is assumed measurable.

Given input U and a set of schedulers S, the (per-flow) performance space with respect

to U and S is defined as

H = {w : ∃f ∈ S,w = φf (U)}.

Thus, H is the set of performance vectors that are achievable by some schedulers in the

scheduler space. We use Ha to denote the corresponding aggregate-flow performance

space when f is restricted to be an n-to-m aggregate-flow scheduler.

Let θ = (θ1, · · · , θn) be a desired target performance vector where θi > 0 repre-

sents the performance or QoS requirement of flow i. Under the minimum mean-square

92

error criterion of “goodness,” the per-flow optimal scheduling problem in n-flow multi-

class G/G/1 systems given input U and scheduler space S is defined as

inf
w∈H

‖w − θ‖2 (6.3.3)

where ‖ ·‖ is the L2 norm. Note that finding a scheduler f ∈ S that achieves an

optimal w is treated as a separate problem. This is justified by the negative nature of

the main result. The corresponding optimal aggregate-flow scheduling problem when

the scheduler is restricted to belong to the aggregate-flow scheduler space Sa is given

by

inf
w∈Ha

‖w − θ‖2 (6.3.4)

where Ha is the aggregate-flow performance space under input U and scheduler space

Sa. For m = n, Ha = H, i.e., per-flow scheduling is a special case. Hence, the case of

interest in aggregate-flow scheduling is m < n for which Ha ⊆ H.

6.3.3 Conservation Law

Kleinrock’s conservation law takes on the form of an inner product functional.

The following shows an instance under strictly stationary input. Let 1/λ = E{T0},
1/µ = E{S0}, ρ = λ/µ, and λi = P{C0 = i}λ, 1/µi = E{S0 |C0 = i}, ρi = λi/µi, for

i = 1, · · · , n. Let Xk be the waiting time Wk, and let wi = E{W0 |C0 = i}.

Proposition 6.3.5 Consider an n-flow G/G/1 queueing system in steady state,

i.e., a stationary solution of (6.3.1) exists. Given input U , for any non-preemptive,

work-conserving and non-anticipative scheduler,
n∑

i=1

ρiwi = c̄

where c̄ > 0 is a constant that depends on the input.

Proposition 6.3.5 is a straightforward consequence of Theorem 6.3.2 in [5] (Chap-

ter 6, pp. 202). In general, Kleinrock’s conservation law specifies an (n − 1)-

dimensional hyperplane

H∗ = {w : ρ ◦ w = c̄} (6.3.6)

93

where ρ = (ρ1, . . . , ρn). We have Ha ⊆ H ⊆ H∗. Strict stationarity in not necessary

for Kleinrock’s conservation law to hold. For example, for second-order stationary

processes which have been used to model long-range dependent traffic [64], Kleinrock’s

conservation law can be shown to hold under certain steady state assumptions.

Coffman and Mitrani’s per-flow scheduling framework [19] uses strong conservation

laws [76] where, in addition to (6.3.6), 2n − 2 inequalities over the subsets of J ⊆
{1, . . . , n} are imposed ∑

i∈J

ρiwi ≥ c̄J .

Jointly with (6.3.6), the inequalities lead to a polytope whose vertices are static

priority schedulers. In our work, the weaker form (6.3.6) suffices.

6.3.4 Aggregate-flow Performance Space and Open Ball Containment

Given ξ : {1, . . . , n} → {1, . . . ,m}, let Gξ = {v ∈ Rn : vi = vj if ξ(i) = ξ(j)}. Let

Gm =
⋃

ξ Gξ where the union is over all n-to-m classifiers ξ. Thus, Gm denotes the set

of all vectors that have at most m distinct elements. Under the assumption

wi = wξ(i), i = 1, · · · , n (6.3.7)

where flows belonging to the same service class experience the same performance, it

holds that

Ha ⊆ H ∩ Gm. (6.3.8)

Let q > 0 denote the performance vector achieved by the FIFO scheduler. Note

that in the definition of classifier, ξ need not be surjective. Hence, for 1 ≤ m ≤ n,

FIFO is an n-to-m aggregate-flow scheduler and q ∈ Ha. By work conservation and

assumption (6.3.7), we have q1 = q2 = · · · = qn = c̄/ρ. The following assumption

(“open ball containment property”) provides an interface between the stochastic and

algorithmic components of optimal aggregate-flow scheduling:

∃ r > 0 such that Br(q) ∩Ha = Br(q) ∩H∗ ∩ Gm (6.3.9)

94

where Br(q) ⊆ Rn is the open ball of radius r centered around q. We will show that

assumption (6.3.9) suffices to make the main complexity result hold for any multi-class

G/G/1 system when Kleinrock’s conservation law holds.

6.4 Structure of Optimal Aggregate-flow Scheduling

In this section, we state the main result and show the structure of optimal

aggregate-flow scheduling which can be related to one-dimensional optimal clustering

with linear constraint. The latter is shown to be NP-complete in Section 6.5.

6.4.1 Main Result

Theorem 6.4.1 Given an n-flow m-class G/G/1 system with user QoS requirement

vector θ ∈ Rn
+ and work-conserving, non-preemptive and non-anticipative schedulers,

assume Kleinrock’s conservation law (6.3.6) holds and the open ball containment prop-

erty (6.3.9) on Ha is satisfied. Then optimal aggregate-flow scheduling under the

MMSE criterion (6.3.4)

inf
w∈Ha

‖w − θ‖2

is NP-hard.

Theorem 6.4.1 says that for multi-class queueing systems with general input where

Kleinrock’s conservation law holds and containment of a well-structured ball in Ha

is satisfied, the problem of optimally grouping n input flows into m service classes

such that the realized performance comes closest to users’ target performance in the

mean-square sense is computationally hard. In fact, our proof shows that a special

case of the main result with m = 2 is already NP-hard. For strong conservation laws,

H is convex and (6.3.9) is more easily satisfied.

The decision problem corresponding to Theorem 6.4.1 is given by the following.

95

Problem 6.4.2 [OPT-AGG] Under the assumptions of Theorem 6.4.1, for given

K ∈ R+ and θ ∈ Rn
+ decide if there exists w ∈ Ha such that

‖w − θ‖2 ≤ K.

We remark that the parameters of the input instance are actually defined over the

rationals Q, consistent with convention of computational complexity for capturing

input length. For notational simplicity, we will continue to use reals assuming this is

understood.

6.4.2 Decomposition

In the definition of OPT-AGG, it suffices for the performance requirement vector

to lie on the conservation law hyperplane, i.e., θ ∈ H∗. The restricted problem

is called OPT-AGG′. Both problems are computationally equivalent: a poly-time

algorithm for OPT-AGG′ gives a poly-time algorithm for OPT-AGG, and vice versa.

This is enabled by the next proposition.

Proposition 6.4.3 Given θ ∈ Rn, let θ̂ be the orthogonal projection of θ on H∗;

i.e., θ̂ is the unique solution to minw∈H∗ ‖w−θ‖2. For any A ⊆ H∗, w∗ is a solution

to

inf
w∈A

‖w − θ‖2

if and only if w∗ is a solution to

inf
w∈A

‖w − θ̂‖2.

Proof. The orthogonal projection is given by

θ̂ = θ +
c̄ − ρ ◦ θ

‖ρ‖2
ρ (6.4.4)

where ρ and c̄ are the parameters of H∗. Since A ⊆ H∗, for all w ∈ A we have

‖w − θ‖2 = ‖w − θ̂‖2 + ‖θ̂ − θ‖2.

‖θ̂ − θ‖2 is a constant from which the proposition follows. ¥

96

Proposition 6.4.3 states that finding a closest point in a subset A of the conserva-

tion law hyperplane with respect to an arbitrary performance requirement θ can be

decomposed into two steps: first, finding the orthogonal projection of θ on H∗, then

finding a point in A closest to the projection point. When A = H and the per-flow

performance space H is suitably “nice”—e.g., convex polytope under strong conser-

vation law—then the optimal per-flow solution is either the projection point itself, or

it lies on the boundary of the polytope H. In either case, the optimal solution can be

found in polynomial time. The next proposition relates the optimal per-flow solution

to a fairness property.

Proposition 6.4.5 w ∈ H∗ is the solution to minw∈H∗ ‖w − θ‖2, if and only if w

satisfies

w1 − θ1

ρ1

= · · · =
wn − θn

ρn

. (6.4.6)

Proof. w ∈ H∗ if and only if ρ ◦ w = c̄, and w satisfies (6.4.6) if and only if ∃ c ∈ R

such that w = θ + cρ. Jointly we get w = θ̂, where θ̂ is the orthogonal projection of

θ on H∗, as specified by (6.4.4). ¥

(6.4.6) can be viewed as a fairness criterion in the following sense: ρi = λi/µi repre-

sents the traffic intensity of flow i; wi−θi measures the deviation from the performance

target. By setting wi − θi proportional to ρi, we enforce the trade-off: “The excess

happiness (or misery) is inversely proportional to how much one sends.”

Let OPT-AGG′′ be a further restriction of OPT-AGG′ where the QoS requirement

vector θ is restricted to lie in an open ball on the hyperplane

θ ∈ Br/2(q) ∩H∗

where r > 0 is the radius of the open ball in Theorem 6.4.1. Since OPT-AGG′′ is a

special case of OPT-AGG′, OPT-AGG′ is computationally as hard as OPT-AGG′′.

Thus, to show hardness of OPT-AGG, it suffices to show that OPT-AGG′′ is NP-hard.

97

6.4.3 Clustering

We show that optimal aggregate-flow scheduling is equivalent to an optimal clus-

tering problem. Given ξ : {1, · · · , n} → {1, · · · ,m} and d = [d1, · · · , dm] ∈ Rm,

define π(ξ,d) ∈ Rn

πi(ξ,d) = dξ(i), i = 1, · · · , n.

Thus π is an n-dimensional vector whose components, as dictated by ξ, take on values

from the m-dimensional vector d. Following is a definition of a clustering problem

which we show is equivalent to optimal aggregate-flow scheduling.

Problem 6.4.7 [OPT-CLUST] Under the assumptions of Theorem 6.4.1, for given

K ∈ R+ and θ ∈ Br/2(q) ∩H∗ decide if there exist ξ and d ∈ Rm
+ such that

‖π(ξ,d) − θ‖2 ≤ K

subject to π(ξ,d) ∈ Ha.

Proposition 6.4.8 OPT-AGG′′ has a solution if and only if OPT-CLUST has a

solution.

Proof. We can consider two cases: (i) K ≥ (r/2)2 and (ii) K < (r/2)2. In case (i),

w = q, and ξ(i) = 1 for i = 1, . . . , n and d1 = q1 are solutions to OPT-AGG′′ and

OPT-CLUST, respectively.

Consider case (ii). Assume OPT-AGG′′ has a solution w. The radius of the open

ball in the definition of OPT-AGG′′ implies that w ∈ Br(q). Since w ∈ Ha, by (6.3.9),

w ∈ Gm. Thus there exist ξ and d such that w = π(ξ,d), and ξ, d is a solution to

OPT-CLUST. In the reverse direction, w = π(ξ,d) is a solution to OPT-AGG′′. ¥

Proposition 6.4.8 implies that OPT-CLUST and OPT-AGG′′ are computationally

equivalent. Thus to prove Theorem 6.4.1, it suffices to prove that OPT-CLUST is

NP-complete.

98

6.4.4 Open Ball Scaling

To prove NP-completeness of OPT-CLUST, we first put OPT-CLUST into a poly-

nomially equivalent form OPT-CLUST′.

Problem 6.4.9 [OPT-CLUST′] Under the assumptions of Theorem 6.4.1, for given

K ∈ R+ and θ ∈ H∗ decide if there exist ξ and d ∈ Rm such that

‖π(ξ,d) − θ‖2 ≤ K

subject to π(ξ,d) ∈ H∗.

OPT-CLUST′ is a relaxation of OPT-CLUST—as opposed to specializations car-

ried out in previous transformations—where θ and π(ξ,d) are allowed to be in H∗.

Therefor the equivalence reduction between OPT-CLUST and OPT-CLUST′ is more

complex.

Lemma 6.4.10 OPT-CLUST and OPT-CLUST′ are computationally equivalent.

Before proving Lemma 6.4.10, we give Proposition 6.4.11 which is needed in the

proof of the lemma. The proposition says: performing optimal clustering, given a

target performance vector on H∗ that is far away from q, is equivalent to performing

optimal clustering with respect to a target performance vector—actually, a continuum

of vectors on the line connecting the original target vector and q—arbitrarily close

to q. The scaling is determined by the parameter c > 0 in the proposition.

Proposition 6.4.11 Given c ∈ R+, K ∈ R+, θ ∈ Rn
+, and ρ ∈ Rn

+, there exist ξ′

and d′ ∈ Rm such that

‖π(ξ′,d′) − θ‖2 ≤ K, π(ξ′,d′) ◦ ρ = θ ◦ ρ

if and only if there exist ξ′′ and d′′ ∈ Rm such that

‖π(ξ′′,d′′) − (q +
θ − q

c
)‖2 ≤ K

c2
, π(ξ′′,d′′) ◦ ρ = (q +

θ − q

c
) ◦ ρ

where qi = θ◦ρPn
j=1 ρj

for i = 1, · · · , n.

99

Proof. (⇒) Let ξ′′ = ξ′ and d′′
i = q +

d′i−q

c
for i = 1, · · · ,m where q = θ◦ρPn

j=1 ρj
. Then

π(ξ′′,d′′) = q +
π(ξ′,d′) − q

c
.

We have

‖π(ξ′′,d′′) − (q +
θ − q

c
)‖2 = ‖q +

π(ξ′,d′) − q

c
− (q +

θ − q

c
)‖2

= ‖π(ξ′,d′) − θ

c
‖2 ≤ K

c2
,

and

π(ξ′′,d′′) ◦ ρ =
(
q +

π(ξ′,d′) − q

c

)
◦ ρ =

(
q +

θ − q

c

)
◦ ρ .

(⇐) Let ξ′ = ξ′′ and d′
i = q + c(d′′

i − q) for i = 1, · · · ,m. Then

π(ξ′,d′) = q + c(π(ξ′′,d′′) − q).

Analogous to the if-part of the proof, it is straightforward to verify that ξ′ and d′

satisfy conditions ‖π(ξ′,d′) − θ‖2 ≤ K and π(ξ′,d′) ◦ ρ = θ ◦ ρ. ¥

Proof of Lemma 6.4.10. (i) Given an instance of OPT-CLUST′ specified by K ′ and

θ′, construct an instance of OPT-CLUST as follows: K and θ are defined as

K =
K ′

c2
, θ = q +

θ′ − q

c

where c =
√

3‖θ′ − q‖2/r. We have θ ◦ ρ = q ◦ ρ and ‖θ − q‖2 = r/3. Thus

θ ∈ Br/2(q) ∩H∗. We will show: ∃ ξ′ and d′ such that

‖π(ξ′,d′) − θ′‖2 ≤ K ′, π(ξ′,d′) ◦ ρ = θ′ ◦ ρ (6.4.12)

if and only if there exist ξ and d such that

‖π(ξ,d) − θ‖2 ≤ K, π(ξ,d) ∈ Ha. (6.4.13)

Suppose ξ′ and d′ satisfy (6.4.12). By Proposition 6.4.11, ∃ ξ′′ and d′′ such that

‖π(ξ′′,d′′) − θ‖2 ≤ K, π(ξ′′,d′′) ◦ ρ = θ ◦ ρ. (6.4.14)

100

Of those solutions satisfying (6.4.14), choose ξ∗, d∗ such that ‖π(ξ∗,d∗) − θ‖2 ≤
‖q−θ‖2. To show that π(ξ∗,d∗) ∈ Ha, it suffices to establish that π(ξ∗,d∗) is within

distance r of q. We have

‖π(ξ∗,d∗) − q‖2 ≤ ‖π(ξ∗,d∗) − θ‖2 + ‖θ − q‖2

≤ 2‖θ − q‖2 =
2

3
r,

from which (6.4.13) follows. Conversely, if ξ and d satisfy (6.4.13), by Proposition

6.4.11, there exist ξ′ and d′ satisfying (6.4.12).

(ii) Given an instance K and θ of OPT-CLUST, use the same instance as input

to OPT-CLUST′. Suppose OPT-CLUST has a solution ξ, d. Since Ha ⊆ H∗, ξ, d

is also a solution to OPT-CLUST′. On the other hand, suppose OPT-CLUST′ has a

solution ξ′, d′. By the same argument as in (i), we can find a solution ξ∗, d∗ which

satisfies (6.4.13). ¥

The preceding results have shown that

OPT-AGG
P⇐⇒ OPT-AGG′ P⇐= OPT-AGG′′ P⇐⇒ OPT-CLUST

P⇐⇒ OPT-CLUST′

where A
P⇐= B denotes polynomial reduction from problem B to problem A. Since

OPT-AGG is the decision problem corresponding to the optimization problem in

Theorem 6.4.1, the main result is proved by showing OPT-CLUST′ is NP-complete.

Theorem 6.4.15 OPT-CLUST′ is NP-complete.

Section 6.5 is devoted to proving Theorem 6.4.15.

6.5 Complexity of Optimal Clustering

We formulate an unconstrained optimization version of OPT-CLUST′, called

OPT-CLUST′′, and show that they are equivalent. OPT-CLUST′′ is then proved

NP-complete in Section 6.5.2.

101

6.5.1 Unconstrained Optimization and Subspace Projection

Given θ, ρ, and ξ, let Sj
ξ = {i : ξ(i) = j}, j = 1, · · · ,m denote the set of flow

indices mapped to j under classifier ξ. Define eξ = [e1
ξ , · · · , em

ξ] as ej
ξ =

P
ξ(i)=j θi

|Sj
ξ |

for j = 1, · · · ,m, and rξ = [r1
ξ , · · · , rm

ξ] as rj
ξ =

P
ξ(i)=j ρi

|Sj
ξ |

for j = 1, · · · ,m. Let

Eξ = π(ξ,eξ) and Rξ = π(ξ, rξ).

Problem 6.5.1 [OPT-CLUST′′] Under the assumptions of Theorem 6.4.1, for given

K ∈ R+ and θ ∈ H∗ decide if there exists ξ such that

‖θ − Eξ‖2 +
(Eξ ◦ ρ − θ ◦ ρ)2

‖Rξ‖2
≤ K.

Lemma 6.5.2 OPT-CLUST′ and OPT-CLUST′′ are computationally equivalent.

Lemma 6.5.2 is proved with the help of the next proposition which states that for

a given classifier ξ, the optimal performance vector wξ which resides in the subspace

H∗ ∩ Gξ can be calculated in O(n2) time.

Proposition 6.5.3 Given ξ, θ ∈ Rn
+, ρ ∈ Rn

+, the solution to

min
d

‖π(ξ,d) − θ‖2, (6.5.4)

subject to π(ξ,d) ◦ ρ = θ ◦ ρ is given by

dξ = eξ − rξ

∑m
j=1 |Sj

ξ |ej
ξr

j
ξ −

∑n
i=1 θiρi∑m

j=1 |Sj
ξ |(rj

ξ)
2

. (6.5.5)

Furthermore, let wξ = π(ξ,dξ). Then

wξ = Eξ − Rξ
Eξ ◦ ρ − θ ◦ ρ

‖Rξ‖2
, (6.5.6)

and

‖θ − wξ‖2 = ‖θ − Eξ‖2 +
(Eξ ◦ ρ − θ ◦ ρ)2

‖Rξ‖2
. (6.5.7)

102

Proof. Given ξ, we can use Lagrange multipliers to get dξ. Rewrite (6.5.4) and

π(ξ,d) ◦ ρ = θ ◦ ρ as

min
d

m∑
j=1

∑
ξ(i)=j

(θi − dj)
2,

m∑
j=1

dj

∑
ξ(i)=j

ρi − θ ◦ ρ = 0

respectively. The Lagrangian is given by

L(d, λ) =
m∑

j=1

∑
ξ(i)=j

(θi − dj)
2 + λ

(m∑
j=1

dj

∑
ξ(i)=j

ρi − θ ◦ ρ
)
.

We have

∂L

∂dj

= −
∑

ξ(i)=j

2(θi − dj) + λ
∑

ξ(i)=j

ρi = 0, j = 1, · · · ,m, (6.5.8)

∂L

∂λ
=

m∑
j=1

dj

∑
ξ(i)=j

ρi − θ ◦ ρ = 0. (6.5.9)

From (6.5.8),

dj =

∑
ξ(i)=j θi

|Sj
ξ |

− λ

∑
ξ(i)=j ρi

2|Sj
ξ |

= ej
ξ −

λ

2
rj
ξ , j = 1, · · · ,m. (6.5.10)

Substitute (6.5.10) into (6.5.9),

λ =
2
∑m

j=1 ej
ξ

∑
ξ(i)=j ρi − 2θ ◦ ρ∑m

j=1 rj
ξ

∑
ξ(i)=j ρi

=
2
∑m

j=1 |Sj
ξ |ej

ξr
j
ξ − 2

∑n
i=1 θiρi∑m

j=1 |Sj
ξ |(rj

ξ)
2

.

Thus

dj = ej
ξ − rj

ξ

∑m
j=1 |Sj

ξ |ej
ξr

j
ξ −

∑n
i=1 θiρi∑m

j=1 |Sj
ξ |(rj

ξ)
2

, j = 1, · · · ,m. (6.5.11)

103

Note that (6.5.5) is a vector version of (6.5.11). By the definition of π, (6.5.6) follows

from (6.5.5). For (6.5.7),

‖θ − wξ‖2 =
∥∥θ − Eξ + Rξ

Eξ ◦ ρ − θ ◦ ρ

‖Rξ‖2

∥∥2

= ‖θ − Eξ‖2 + ‖Rξ‖2
(Eξ ◦ ρ − θ ◦ ρ

‖Rξ‖2

)2

+ 2(θ − Eξ) ◦ Rξ
Eξ ◦ ρ − θ ◦ ρ

‖Rξ‖2

= ‖θ − Eξ‖2 +
(Eξ ◦ ρ − θ ◦ ρ)2

‖Rξ‖2
.

¥

Proof of Lemma 6.5.2. Consider an instance specified by θ and K for both

OPT-CLUST′ and OPT-CLUST′′ (i) Suppose OPT-CLUST′ has a solution ξ, d. Ac-

cording to the optimality of wξ described in Proposition 6.5.3, ‖wξ−θ‖2 ≤ ‖π(ξ,d)−
θ‖2 ≤ K. Thus ξ is a solution to OPT-CLUST′′. (ii) Suppose OPT-CLUST′′ has a

solution ξ. We have ‖wξ − θ‖2 ≤ K and wξ ◦ ρ = θ ◦ ρ. Thus ξ, dξ is a solution of

OPT-CLUST′. ¥

From a geometric perspective, the optimal performance vector wξ for a given

classifier is the orthogonal projection of θ on the subspace H∗ ∩ Gξ. This orthogonal

relationship is captured by the next proposition which will be used in the proof of

Theorem 6.5.13 in the next section.

Proposition 6.5.12 Given θ ∈ Rn
+, ρ ∈ Rn

+, and ξ, for all w satisfying w ∈ Gξ

and w ◦ ρ = θ ◦ ρ,

‖θ − w‖2 = ‖θ − wξ‖2 + ‖wξ − w‖2

where wξ is defined by (6.5.6).

Proof. Since w ∈ Gξ, ∃d ∈ Rm such that w = π(ξ,d). We have

(θ − Eξ) ◦ (wξ − w) =
m∑

j=1

∑
ξ(i)=j

(θi − ej
ξ)(d

j
ξ − dj) = 0

104

since
∑

ξ(i)=j(θi − ej
ξ) = 0 and

Rξ ◦ (wξ − w) =
m∑

j=1

∑
ξ(i)=j

rj
ξ(d

j
ξ − dj) =

m∑
j=1

∑
ξ(i)=j

ρi(d
j
ξ − dj) = ρ ◦ wξ − ρ ◦ w = 0.

Thus,

(θ − wξ) ◦ (wξ − w) =
(
θ − Eξ + Rξ

Eξ ◦ ρ − θ ◦ ρ

‖Rξ‖2

)
◦ (wξ − w)

= (θ − Eξ) ◦ (wξ − w) +
Eξ ◦ ρ − θ ◦ ρ

‖Rξ‖2
Rξ ◦ (wξ − w)

= 0.

We have

‖θ − w‖2 = ‖θ − wξ + wξ − w‖2

= ‖θ − wξ‖2 + ‖wξ − w‖2 + 2(θ − wξ) ◦ (wξ − w)

= ‖θ − wξ‖2 + ‖wξ − w‖2.

¥

6.5.2 Hardness of One-dimensional Clustering

Theorem 6.5.13 OPT-CLUST′′ is NP-complete.

To prove NP-completeness of OPT-CLUST′′, we will reduce the follow-

ing problem—a variant of PARTITION known to be NP-complete [29]—to

OPT-CLUST′′.

Problem 6.5.14 [EVEN-PARTITION] Given X1, · · · , Xn, Xi ∈ N, i = 1, · · · , n, n

is even, is there a subset S ⊆ {1, · · · , n} with cardinality n/2 such that

∑
i∈S

Xi =
1

2

n∑
i=1

Xi.

The next proposition is used in the reduction from EVEN-PARTITION to

OPT-CLUST′′ in the proof of Theorem 6.5.13.

105

Proposition 6.5.15 Given real numbers w′
1, · · · , w′

k, ρ′
1, · · · , ρ′

k and w′′
1 , · · · , w′′

` ,

ρ′′
1, · · · , ρ′′

` with mean w̄′, ρ̄′, w̄′′, ρ̄′′, respectively, and k, ` ≥ 1, define w1, · · · , wn,

ρ1, · · · , ρn, where n = k + `, as follows:

wi =

 w′
i , 1 ≤ i ≤ k,

w′′
i−k , k + 1 ≤ i ≤ n,

ρi =

 ρ′
i , 1 ≤ i ≤ k,

ρ′′
i−k , k + 1 ≤ i ≤ n.

Let w̄, ρ̄ be the mean of the wi and ρi’s, respectively. Then

n∑
i=1

(wi − w̄)2 =
k∑

i=1

(w′
i − w̄′)2 +

∑̀
i=1

(w′′
i − w̄′′)2 +

k`

k + `
(w̄′′ − w̄′)2, (6.5.16)

n∑
i=1

(wi − w̄)ρi =
k∑

i=1

(w′
i − w̄′)ρ′

i +
∑̀
i=1

(w′′
i − w̄′′)ρ′′

i +
k`

k + `
(w̄′′ − w̄′)(ρ̄′′ − ρ̄′).

(6.5.17)

Proof.

n∑
i=1

(wi − w̄)2 =
k∑

i=1

(w′
i − w̄)2 +

∑̀
i=1

(w′′
i − w̄)2

=
k∑

i=1

(w′
i − w̄′)2 + k(w̄′ − w̄)2 +

∑̀
i=1

(w′′
i − w̄′′)2 + `(w̄′′ − w̄)2

=
k∑

i=1

(w′
i − w̄′)2 + k

(`

n
(w̄′ − w̄′′)

)2

+
∑̀
i=1

(w′′
i − w̄′′)2 + `

(k

n
(w̄′′ − w̄′)

)2

=
k∑

i=1

(w′
i − w̄′)2 +

∑̀
i=1

(w′′
i − w̄′′)2 +

k`

k + `
(w̄′′ − w̄′)2.

106

n∑
i=1

(wi − w̄)ρi =
k∑

i=1

(w′
i − w̄)ρ′

i +
∑̀
i=1

(w′′
i − w̄)ρ′′

i

=
k∑

i=1

(w′
i − w̄′)ρ′

i +
∑̀
i=1

(w′′
i − w̄′′)ρ′′

i

+
k∑

i=1

(w̄′ − w̄)ρ′
i +

∑̀
i=1

(w̄′′ − w̄)ρ′′
i

=
k∑

i=1

(w′
i − w̄′)ρ′

i +
∑̀
i=1

(w′′
i − w̄′′)ρ′′

i

+
k∑

i=1

`

n
(w̄′ − w̄′′)ρ′

i +
∑̀
i=1

k

n
(w̄′′ − w̄′)ρ′′

i

=
k∑

i=1

(w′
i − w̄′)ρ′

i +
∑̀
i=1

(w′′
i − w̄′′)ρ′′

i +
k`

k + `
(w̄′′ − w̄′)(ρ̄′′ − ρ̄′).

¥

Proof of Theorem 6.5.13. It is easy to check that the problem is in NP. We will reduce

EVEN-PARTITION to OPT-CLUST′′. Given an instance of EVEN-PARTITION

specified by X1, · · · , X`, let Xmax, Xmin denote the maximum and minimum, k =

`
2
(` − 1) + 1, and let

A(`1, `2) =

(
(`2

1 + `2
2)k + `1`2`

2(k + `
2
)

) 1
2

, 1 ≤ `1, `2 ≤ `,

C = max
`1 6=`2

(
`2

k+`2
+ `1−`2

(k+`1)(k+`2)
A(`1, `2)

)
Xmax − `1

k+`1
Xmin + k(`1−`2)

(k+`1)(k+`2)
(1 + A(`1, `2))

`1−`2
(k+`1)(k+`2)

(k − A(`1, `2))

+ 1.

Construct an instance of OPT-CLUST′′ specified by n, m, K, ρ, θ as follows:

n = 2k + `, m = 2, K =
k `

k + `
2

, ρi = ρ′
i/D,

θi =

1 , 1 ≤ i ≤ k,

2 , k + 1 ≤ i ≤ k + `,

3 , k + ` + 1 ≤ i ≤ n,

107

where

D =
n∑

i=1

ρ′
i + 1 and ρ′

i =

1 , 1 ≤ i ≤ k,

C + Xi−k , k + 1 ≤ i ≤ k + `,

1 , k + ` + 1 ≤ i ≤ n.

We shall show: ∃S ⊆ {1, · · · , `}, |S| = `
2

and
∑

i∈S Xi = 1
2

∑`
i=1 Xi, if and only if ∃ ξ

such that

‖θ − wξ‖2 = ‖θ − Eξ‖2 +
(Eξ ◦ ρ − θ ◦ ρ)2

‖Rξ‖2
≤ K

where wξ is defined by (6.5.6).

(⇒) Suppose ∃S ⊆ {1, · · · , `}, |S| = `
2
, and

∑
i∈S Xi = 1

2

∑`
i=1 Xi. Define ξ as

ξ(i) =

 1 , i ∈ {1, · · · , k} ∪ {i : i − k ∈ S},
2 , i ∈ {k + ` + 1, · · · , n} ∪ {i : i − k /∈ S}.

Using (6.5.16) from Proposition 6.5.15, we have

‖θ − Eξ‖2 =
∑
i∈S1

ξ

(θi − e1
ξ)

2 +
∑
i∈S2

ξ

(θi − e2
ξ)

2

=
k `

2

k + `
2

(2 − 1)2 +
`
2
k

`
2

+ k
(3 − 2)2 =

k `

k + `
2

.

Let y =
P`

i=1 Xi

`
, then

P
i∈S Xi

|S| =
P

i/∈S Xi

`−|S| = y. Using (6.5.17), we have

θ ◦ ρ − Eξ ◦ ρ =
∑
i∈S1

ξ

(θi − e1
ξ)ρi +

∑
i∈S2

ξ

(θi − e2
ξ)ρi

=
k `

2

k + `
2

(2 − 1)
C + y − 1

D
+

`
2
k

`
2

+ k
(3 − 2)

1 − C − y

D
= 0 .

Thus ‖θ − wξ‖2 = k `
k+ `

2

≤ K.

(⇐) Suppose there is no S ⊆ {1, · · · , `} that satisfies |S| = `
2

and
∑

i∈S Xi =

1
2

∑`
i=1 Xi. We will show for all ξ, ‖θ − wξ‖2 > K. ξ can be expressed as

ξ(i) =

 1 , i ∈ Sa ∪ Sb ∪ Sc,

2 , i ∈ S ′
a ∪ S ′

b ∪ S ′
c,

(6.5.18)

108

where Sa∪S ′
a = {1, · · · , k}, Sb∪S ′

b = {k+1, · · · , k+`}, and Sc∪S ′
c = {k+`+1, · · · , n}.

Thus, all ξ must fall into one of the following cases:

(a) Sa = {1, · · · , k}, Sc = ∅, |Sb| = `
2
;

(b) Sa = {1, · · · , k}, Sc = ∅, |Sb| 6= `
2
;

(c) ∅ (Sa ⊆ {1, · · · , k}, ∅ (Sc ⊆ {k + ` + 1, · · · , n};

(d) ∅ (Sa ({1, · · · , k}, Sc = ∅;

(e) Sa = ∅.

Note that (d) follows from (c), and (e) follows from (a), (b) and (c). We will show

that ‖θ − wξ‖2 > K holds for (a), (b), and (c).

Case (a). Let y1 =
P

i+k∈Sb
Xi

|Sb| , y2 =

P
i+k∈S′

b
Xi

|S′
b|

, and rb =
P

i∈Sb
ρi

|Sb| = C+y1

D
,

r′b =

P
i∈S′

b
ρi

|S′
b|

= C+y2

D
. By the contrapositive hypothesis, y1 6= y2, thus rb 6= r′b. Using

(6.5.16) and (6.5.17), we have

‖θ − Eξ‖2 =
∑
i∈S1

ξ

(θi − e1
ξ)

2 +
∑
i∈S2

ξ

(θi − e2
ξ)

2

=
k `

2

k + `
2

(2 − 1)2 +
`
2
k

`
2

+ k
(3 − 2)2 =

k `

k + `
2

, (6.5.19)

and

θ ◦ ρ − Eξ ◦ ρ =
∑
i∈S1

ξ

(θi − e1
ξ)ρi +

∑
i∈S2

ξ

(θi − e2
ξ)ρi

=
k `

2

k + `
2

(2 − 1)(rb − 1) +
`
2
k

`
2

+ k
(3 − 2)(1 − r′b)

=
k `

2

k + `
2

(rb − r′b) 6= 0.

Thus ‖θ − wξ‖2 > ‖θ − Eξ‖2 = k`
k+ `

2

= K.

109

Case (b). Let |Sb| = `1, |S ′
b| = `2, y1 =

P
i+k∈Sb

Xi

`1
, y2 =

P
i+k∈S′

b
Xi

`2
, and

rb =
P

i∈Sb
ρi

`1
= C+y1

D
, r′b =

P
i∈S′

b
ρi

`2
= C+y2

D
. We have `1 6= `2. Without loss of

generality, assume `1 > `2. Using (6.5.16),

‖θ − Eξ‖2 =
k `1

k + `1

+
k `2

k + `2

. (6.5.20)

By the definition of C,

C >

k `2
k+`2

y2 − k `1
k+`1

y1 + k(`1−`2)
(k+`1)(k+`2)

A(`1, `2)Xmax + k2(`1−`2)
(k+`1)(k+`2)

+ k2(`1−`2)
(k+`1)(k+`2)

A(`1, `2)

k2(`1−`2)
(k+`1)(k+`2)

− k(`1−`2)
(k+`1)(k+`2)

A(`1, `2)
.

Since k = `
2
(` − 1) + 1, k − A(`1, `2) > 0. Hence,(k2(`1 − `2)

(k + `1)(k + `2)
− k(`1 − `2)

(k + `1)(k + `2)
A(`1, `2)

)
C >

k `2

k + `2

y2 − k `1

k + `1

y1

+
k(`1 − `2)

(k + `1)(k + `2)
A(`1, `2)Xmax +

k2(`1 − `2)

(k + `1)(k + `2)
+

k2(`1 − `2)

(k + `1)(k + `2)
A(`1, `2),

Noting k2(`1−`2)
(k+`1)(k+`2)

= k `1
k+`1

− k `2
k+`2

, we have

(k `1

k + `1

− k `2

k + `2

)
(C − 1) +

k `1

k + `1

y1 − k `2

k + `2

y2

>
k(`1 − `2)

(k + `1)(k + `2)

√
(`2

1 + `2
2)k + `1`2`

2(k + `
2
)

(C + Xmax + k).

Divide both sides by C + Xmax + k > 0 and square them. Since `1 − `2 > 0,(
(k `1

k+`1
− k `2

k+`2
)(C − 1) + k `1

k+`1
y1 − k `2

k+`2
y2

)2

(C + Xmax + k)2

>
k2(`1 − `2)

2

(k + `1)2(k + `2)2

(`2
1 + `2

2)k + `1`2`

2(k + `
2
)

=
k2(`1 − `2)

2

2(k + `1)(k + `2)(k + `
2
)

(`2
1

k + `1

+
`2
2

k + `2

)
. (6.5.21)

110

Thus

(θ ◦ ρ − Eξ ◦ ρ)2

‖R‖2
=

(∑
i∈S1

ξ
(θi − e1

ξ)ρi +
∑

i∈S2
ξ
(θi − e2

ξ)ρi

)2∑
i∈S1

ξ
(r1

ξ)
2 +

∑
i∈S2

ξ
(r2

ξ)
2

=

(
k `1
k+`1

(2 − 1)(rb − 1) + `2 k
`2+k

(3 − 2)(1 − r′b)
)2

(k+`1rb)2

k+`1
+

(k+`2r′b)2
k+`2

=

(
k `1
k+`1

(C + y1 − 1) − k `2
k+`2

(C + y2 − 1)
)2

(`1(C+y1)+k)2

k+`1
+ (`2(C+y2)+k)2

k+`2

≥
(
(k `1

k+`1
− k `2

k+`2
)(C − 1) + k `1

k+`1
y1 − k `2

k+`2
y2

)2

`21(C+y1+k)2

k+`1
+

`22(C+y2+k)2

k+`2

≥
(
(k `1

k+`1
− k `2

k+`2
)(C − 1) + k `1

k+`1
y1 − k `2

k+`2
y2

)2(`21
k+`1

+
`22

k+`2

)
(C + Xmax + k)2

>
k2(`1 − `2)

2

2(k + `1)(k + `2)(k + `
2
)
. (6.5.22)

The second equality follows from Proposition 6.5.15. The last inequality follows from

(6.5.21).

From (6.5.20) and (6.5.22), we get

‖θ − wξ‖2 = ‖θ − Eξ‖2 +
(θ ◦ ρ − Eξ ◦ ρ)2

‖R‖2

>
k `1

k + `1

+
k `2

k + `2

+
k2(`1 − `2)

2

2(k + `1)(k + `2)(k + `
2
)

=
(k2` + 2k`1`2)(2k + `) + k2(`1 − `2)

2

2(k + `1)(k + `2)(k + `
2
)

=
2k`(k2 + k` + `1`2)

2(k + `1)(k + `2)(k + `
2
)

=
k`

k + `
2

.

111

Case (c). Let |Sa| = k1, |S ′
a| = k2, |Sb| = `1, |S ′

b| = `2, and |Sc| = j1, |S ′
c| = j2.

By (6.5.16),

‖θ − Eξ‖2 =
∑
i∈S1

ξ

(θi − e1
ξ)

2 +
∑
i∈S2

ξ

(θi − e2
ξ)

2

=
k1j1

k1 + j1

22 +
(k1 + j1)`1

k1 + j1 + `1

(
1 − 2j1

k1 + j1

)2

+
k2j2

k2 + j2

22 +
(k2 + j2)`2

k2 + j2 + `2

(
1 − 2k2

k2 + j2

)2

= 4
k1j1

k1 + j1

+
`1

k1 + j1 + `1

(k1 − j1)
2

k1 + j1

+ 4
k2j2

k2 + j2

+
`2

k2 + j2 + `2

(j2 − k2)
2

k2 + j2

.

Without loss of generality, assume k1+j1 ≥ k2+j2 and k1 ≥ j1. Noting k1−j1 = j2−k2

since k1 + k2 = j1 + j2 = k, we have

‖θ − Eξ‖2 ≥ 4
k1j1

k1 + j1

+
`1

k1 + j1 + `

(k1 − j1)
2

k1 + j1

+ 4
k2j2

k2 + j2

+
`2

k1 + j1 + `

(k1 − j1)
2

k1 + j1

= 4
k1j1

k1 + j1

+
`

k1 + j1 + `

(k1 − j1)
2

k1 + j1

+ 4
k2j2

k2 + j2

. (6.5.23)

Furthermore, k1 ≥ j1 implies k2 ≤ j2, thus

4
k2j2

k2 + j2

≥ k2(` + 2j1)
2

(k + j1 + `)(k1 + j1 + `)
. (6.5.24)

(6.5.23) and (6.5.24) imply

‖θ − Eξ‖2 ≥ 4
k1j1

k1 + j1

+
`(k1 − j1)

2

(k1 + j1 + `)(k1 + j1)
+

k2(` + 2j1)
2

(k + j1 + `)(k1 + j1 + `)

=
4k1j1 + `(k1 + j1)

k1 + j1 + `
+

k2(` + 2j1)
2

(k + j1 + `)(k1 + j1 + `)

=
(k + j1)` + 4kj1

k + j1 + `
.

Since k > `
2
(` − 1), for all j1, 1 ≤ j1 ≤ k, we have (k+j1)`+4kj1

k+j1+`
> k`

k+ `
2

. Therefore,

‖θ − wξ‖2 ≥ ‖θ − Eξ‖2 > k`
k+ `

2

. ¥

The proof of Theorem 6.5.13 actually shows a stronger result: OPT-CLUST′′

with constant m, in particular, m = 2, is already NP-complete. Thus the optimal

aggregate-flow scheduling problem in Theorem 6.4.1, with OPT-AGG being its deci-

sion form, is NP-hard even for m = 2.

112

6.6 Conclusion and Discussion

In this chapter, we have extended Coffman and Mitrani’s optimal per-flow schedul-

ing framework [19] by considering aggregate-flow schedulers for general stochas-

tic input under work-conserving, non-preemptive and non-anticipative schedulers.

Whereas optimal per-flow scheduling subject to conservation laws is poly-time

solvable—as is optimal aggregate-flow scheduling without conservation laws—we show

that optimal aggregate-flow scheduling in multi-class G/G/1 systems subject to Klein-

rock’s conservation law is NP-hard.

There remain a number of open problems. They include:

Approximation. A natural question to explore is the approximability property

of optimal aggregate-flow scheduling. The optimization version of PARTITION—

more precisely, EVEN-PARTITION, which was used to show that OPT-CLUST′′ is

NP-complete—is known to have a polynomial time approximation scheme [1]. A

heuristic approach is to solve the unconstrained optimization problem which can be

done in cubic time using dynamic programming. We conjecture that OPT-CLUST′′

is much harder to approximate than PARTITION, perhaps even not constant factor

approximable.

Objective function. This chapter considered an MMSE objective function for both

its practical relevance and its common use in optimization and control. Other objec-

tive functions of interest include the L1-norm ‖w−θ‖, signed optimization problems

corresponding to w ≤ θ including one that counts how many user requirements are

satisfied, proportional fairness, and linear objective functions. For a subset of these

objective functions, we can show equivalence of optimal solutions in the per-flow per-

formance space. In the aggregate-flow case, the optimal solution for linear objective

functions depends on the right-hand-side of the inequalities of the strong conserva-

tion law. This stands in contrast with per-flow optimization of linear functions via

linear programming which only depends on the n normalized coefficients of the objec-

113

tive function [23, 76]. We conjecture that optimal aggregate-flow scheduling remains

NP-hard for the above functions.

Performance space relaxation. The open ball containment assumption (6.3.9)

requires that all flows within a service class receive the same performance. It may

be interesting to explore if the equality constraint can be meaningfully relaxed, for

example, by requiring that any two flows belonging to the same service class receive

performance that is at most ε apart. The hardness result would not be affected by an

ε-relaxation as we have already proved NP-completeness for the more difficult special

case ε = 0. However, for approximability relaxation may play a role.

Two-dimensional clustering . When transforming one-dimensional clustering with

linear constraint into an unconstrained form enabled by Proposition 6.5.3, the con-

sequent two-dimensional clustering problem bears resemblance to a simpler two-

dimensional MMSE clustering problem: Given θ ∈ Rn × Rn, find ξ : {1, . . . , n} →
{1, . . . ,m} and d ∈ Rm×Rm that minimizes ‖π(ξ,d)−θ‖2 where π is the correspond-

ing two-dimensional extension. The complexity of unconstrained two-dimensional

MMSE clustering remains open. We believe that the methods used in this chapter

may be applied to show that the problem is NP-complete.

Aggregation and efficiency . In addition to optimality, another important aspect of

aggregate-flow scheduling involves characterizing the loss of efficiency stemming from

flow aggregation. In previous chapters where stochasticity of the input and conser-

vation laws were not considered, a quantitative result on the loss of performance as

a function of the degree of flow aggregation was given (cf. Chapter 3, 4). A similar

exploration may be of interest for the generalized framework. The computational

hardness of optimal aggregate-flow scheduling may have implications on finding effec-

tive characterizations of the performance loss, however, this needs not be necessarily

the case.

114

7 CONCLUSION AND FUTURE WORK

7.1 Thesis Summary

This dissertation studies providing QoS to individual flows using aggregate-flow

scheduling. Our work is carried out on both theoretical and practical sides.

In theory part, we present a theoretical framework to analyze network architec-

tures based on aggregate-flow scheduling and study optimal aggregate-flow schedul-

ing problem. We show that the optimal aggregate-flow scheduling problem in general

queueing systems with stochastic input is NP-hard under MMSE QoS provisioning

criterion. The complexity comes from the combination of conservation law and flow

aggregation. Our result is an extension of the well studied stochastic optimization of

per-flow schedulers. Under relative QoS differentiation objective function, we show

the optimal aggregate-flow scheduling problem is poly-time solvable by dynamic pro-

gramming and efficient linear algorithm exists in practical scenario where user’s QoS

requirements are coded in the ToS field of IP header. We study quantitative prop-

erties of the induced optimal aggregate-flow scheduling solution that are related to

class differentiation and end-to-end QoS provisioning. The optimal solution and its

properties jointly build theoretical foundation for PHB design in Diff-serv networks.

In practice part, we design an optimal aggregate-flow per-hop control that achieves

the induced optimal aggregate-flow scheduling solution and implement the optimal

per-hop control in Cisco routers. We conduct a comprehensive performance evaluation

by both simulations and experiments over Q-bahn testbed comprised of Cisco routers

running the implemented optimal per-hop control. The benchmarking results confirm

our theoretical framework and analysis, and reveal further quantitative features of

both structural and dynamical properties of the system. Our results, collectively, show

that user-specified services can be efficiently and effectively achieved over networks

115

with optimal aggregate-flow per-hop control substrate when coupled with either open-

loop or closed-loop (adaptive label control) edge control.

7.2 Future Work

Our study focuses on the core of networks with aggregate-flow scheduling as build-

ing block. There remain a number of open problems related to other components and

system-wise properties of our QOS provisioning architecture. They include:

Many-switch system. The properties (A1), (A2), and (B) imposed on per-hop

control play an essential role in our QoS provisioning framework. As discussed in

Chapter 2, these three properties are extensible to WAN environment since if a prop-

erty holds for any single per-hop control, it also holds for a sequence of hops as

a composite function of individual hops. Thus our results based on the properties

apply to both single-switch and many-switch systems. On the other hand, the quanti-

tative features related to the three properties have only been studied in single switch

case. The extension of quantitative analysis to many-switch case will further charac-

terize system behavior and help design more effective and efficient end-to-end control

schemes.

End-to-end control. The close loop end-to-end QoS control dynamically adjusts

label values carried in the ToS fields of IP headers to meet user’s QoS requirements.

Our current scheme increases/decreases label values in accordance with congestion

level without changing data rate. Another direction of end-to-end control is to adjust

data rate during congestion. This can be achieved either by using TCP congestion

control or by adding this functionality into close loop end-to-end QoS control. Setting

label value and data rate are both necessary in real networks. Thus, in addition to

studying individual control schemes, we need to analyze interaction between these

two control schemes and design coordinating mechanism between them.

Game theory analysis. We study global resource allocation properties of the sys-

tem in the non-cooperative game environment where each user is changing its label

116

value independently to maximize its utility. Our stability and optimality results are

based on the nonemptiness of A∗, the set of configurations where all user’s QoS re-

quirements are satisfied (cf. Section 3.2). The dynamical properties inside A∗ is also

characterized. The remaining issues on game theory analysis include system stability

when A∗ is empty, system dynamics outside A∗, and the extended game theoretic

structure with selfish service provider as an additional player.

Edge control implementation. In system building part, the most important task

is to implement a QoS agent that performs edge control functionality (end-to-end

control and access control). The QoS agent may reside at the edge of the network

or in the end host on behalf of the network. The desired feature of QoS agent is

application transparent, i.e. legacy applications can run without knowing QoS agent

is setting the ToS fields of its outgoing packets. The development of QoS agent is the

ongoing work carried out in the network system lab at Purdue University.

117

LIST OF REFERENCES

[1] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complexity and Approximation—Combinatorial Optimization Prob-
lems and Their Approximability Properties. Springer, 1999.

[2] D. Bertsimas. The achievable region method in the optimal control of queueing
systems; formulations, bounds and policies. Queueing Systems, 21(3–4):337–389,
1995.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An archi-
tecture for differentiated service. RFC 2475, 1998.

[4] R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Effective en-
velopes: Statistical bounds on multiplexed traffic in packet networks. In Proc.
IEEE INFOCOM ’00, 2000.

[5] A. Brandt, P. Franken, and B. Lisek. Stationary Stochastic Models. John Wiley
& Sons, 1990.

[6] P. Brucker. On the complexity of clustering problems. In R. Henn, B. Korte,
and W. Oletti, editors, Optimierung und Operations Research, Lecture Notes in
Economics and Mathematical Systems. Springer, Berlin, 1978.

[7] H. Chen and D. Yao. Fundamentals of Queueing Networks. Springer, 2001.

[8] S. Chen and K. Park. A distributed protocol for multi-class QoS provision in
noncooperative many-switch systems. In Proc. IEEE International Conference
on Network Protocols, pages 98–107, 1998.

[9] S. Chen and K. Park. An architecture for noncooperative QoS provision in
many-switch systems. In Proc. IEEE INFOCOM ’99, pages 864–872, 1999.

[10] S. Chen, K. Park, and M. Sitharam. On the ordering properties of GPS routers
for multi-class QoS provision. In Proc. SPIE International Conference on Per-
formance and Control of Network Systems, pages 252–265, 1998.

[11] Shaogang Chen. Stratified Best-effort QoS Provisioning in Noncooperative Net-
works. PhD thesis, Purdue University, 2000.

[12] D. Clark and W. Fang. Explicit allocation of best-effort packet delivery service.
IEEE/ACM Trans. Networking, 6(4):362–373, 1998.

[13] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang. Pricing in computer networks:
motivation, formulation, and example. IEEE/ACM Trans. Networking, 1(6):614–
627, 1993.

[14] R. L. Cruz. A calculus for network delay, part I: network elements in isolation.
IEEE Trans. Inform. Theory, 37(1):114–131, 1991.

118

[15] R. L. Cruz. Quality of service guarantees in virtual circuit switched networks.
IEEE J. Select. Areas Commun., 13(6):1048–1056, 1995.

[16] G. de Veciana, G. Kesidis, and J. Walrand. Resource management in wide-area
ATM networks using effective bandwidths. IEEE J. Select. Areas Commun.,
13(6):1081–1090, 1995.

[17] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. Journal of Internetworking: Res. Exper., 1:3–26, 1990.

[18] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated ser-
vices: Delay differentiation and packet scheduling. In Proc. ACM SIGCOMM
’99, 1999.

[19] E. Coffman, Jr. and I. Mitrani. A characterization of waiting time performance
realizable by single-server queues. Operations Research, 28(3):810–821, 1980.

[20] A. Elwalid and D. Mitra. Effective bandwidth of general Markovian traffic sources
and admission control in high speed networks. IEEE/ACM Trans. Networking,
1(3), 1993.

[21] A. Elwalid and D. Mitra. Analysis, approximations and admission control of a
multi-service multiplexing system with priorities. In Proc. IEEE INFOCOM ’95,
pages 463–472, 1995.

[22] A. Federgruen and H. Groenevelt. Characterization and optimization of achiev-
able performance in general queueing systems. Operations Research, 36(5):733–
741, 1988.

[23] A. Federgruen and H. Groenevelt. M/G/c queueing systems with multiple cus-
tomer classes: Characterization and control of achievable performance under
nonpreemptive priority rules. Management Science, 34(9):1121–1138, 1988.

[24] W. Feng, D. Kandlur, D. Saha, and K. Shin. Adaptive packet marking for
providing differentiated services in the Internet. In Proc. IEEE International
Conference on Network Protocols, pages 108–117, 1998.

[25] D. Ferguson, C. Nikolaou, and Y. Yemini. An economy for flow control in com-
puter networks. In Proc. IEEE INFOCOM ’89, pages 110–118, 1989.

[26] D. Ferguson, Y. Yemini, and C. Nikolaou. Microeconomic algorithms for load
balancing in distributed computer systems. In Proc. 8th International Conference
on Distributed Computing Systems, pages 491–499, 1988.

[27] S. Gal and B. Klots. Optimal partitioning which maximizes the sum of the
weighted averages. Operations Research, 43(3):500–508, 1995.

[28] M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman and
Company, 1979.

[29] M. Garey and D. Johnson. Computers and Intractability, page 223. W. H.
Freeman and Company, 1979.

[30] E. Gelenbe and I. Mitrani. Analysis and synthesis of computer systems. Academic
Press, New York, 1980.

119

[31] L. Georgiadis, R. Guérin, V. Peris, and K. Sivarajan. Efficient network QoS
provisioning based on per node traffic shaping. IEEE/ACM Transactions on
Networking, 4(4):482–501, 1996.

[32] L. Georgiadis and I. Viniotis. On the conservation law and the performance
space of single server systems. Operations Research, 42(2):372–379, 1994.

[33] R. Gibbens. Traffic characterization and effective bandwidths for broadband net-
work traces. In F. Kelly, S. Zachary, and I. Ziedins, editors, Stochastic Networks:
Theory and Applications, pages 169–179. Clarendon Press, Oxford, 1996.

[34] R. J. Gibbens, S. K. Sargood, F .P. Kelly, H. Azmoodeh, R. Macfadyen, and
N. Macfadyen. An approach to service level agreement for ip networks with
differentiated services. In Phil. Trans. Royal. Soc. Lond. A, pages 2165–2182,
2000.

[35] T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theo-
retical Computer Science, 38:293–306, 1985.

[36] A. Heddaya and K. Park. Parallel computing on high-speed wide-area networks:
a pricing policy for its communication needs. In Proc. 3rd IEEE Workshop
on the Architecture and Implementation of High Performance Communication
Subsystems, pages 188–191, 1995.

[37] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB
Group. RFC 2597, 1999.

[38] V. Jacobson, K. Nichols, and K. Poduri. An Expedited Forwarding PHB. RFC
2598, 1999.

[39] L. Kleinrock. A conservation law for a wide class of queueing disciplines. Naval
Research Logistics Quarterly, 12:181–192, 1965.

[40] L. Kleinrock. Queueing Systems, Volume 2: Computer Applications, chapter 3,
pages 113–118. Wiley-Interscience, New York, 1976.

[41] Y. Korilis and A. Lazar. Why is flow control hard: Optimality, fairness, partial
and delayed information. In Proc. 2nd ORSA Telecommunications Conference,
March 1992.

[42] Y. Korilis, A. Lazar, and A. Orda. Architecting noncooperative networks. IEEE
J. Select. Areas Commun., 13(7):1241–1251, 1995.

[43] Y. Korilis, A. Lazar, and A. Orda. Achieving network optima using Stackelberg
routing strategies. IEEE/ACM Trans. Networking, 5(1):161–173, 1997.

[44] J. Kurose and R. Simha. A microeconomic approach to optimal resource allo-
cation in distributed computer systems. IEEE Trans. on Computers, 38(5):705–
717, 1989.

[45] A. Lazar and G. Pacifici. Control of resources in broadband networks with quality
of service guarantees. IEEE Network Magazine, pages 66–73, October 1991.

[46] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On the self-similar
nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Net-
working, 2:1–15, 1994.

120

[47] W. Lin, R. Zheng, and J. Hou. How to make assured services more assured?
In Proc. IEEE International Conference on Network Protocols, pages 182–191,
1999.

[48] J. Little. A proof for the queueing formula L = λW . Operations Research,
9:383–387, 1961.

[49] S. Low and P. Varaiya. An algorithm for optimal service provisioning using
resource pricing. In Proc. IEEE INFOCOM ’94, pages 368–373, 1994.

[50] J. MacKie-Mason and H. Varian. Economic FAQs about the Internet. In L. McK-
night and J. Bailey, editors, Internet Economics, pages 27–63. MIT Press, 1996.

[51] Peter Marbach. Pricing differentiated services networks: Bursty traffic. In Proc.
IEEE INFOCOM ’2001, pages 650–658, 2001.

[52] M. May, J. Bolot, A. Jean-Marie, and C. Diot. Simple performance models of
differentiated services schemes for the Internet. In Proc. IEEE INFOCOM ’99,
pages 1385–1394, 1999.

[53] John-Francis Mergen. Personal communication.

[54] R. Nagarajan and J. Kurose. On defining, computing and guaranteeing quality-
of-service in high-speed networks. In Proc. IEEE INFOCOM ’90, pages 2016–
2025, 1992.

[55] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differentiated services archi-
tecture for the Internet. Internet Draft, 1997.

[56] Andrew Odlyzko. Paris Metro Pricing: The minimalist differentiated services
solution. In Proc. IEEE/IFIP International Workshop on Quality of Service,
1999.

[57] A. Orda, R. Rom, and N. Shimkin. Competitive routing in multiuser communi-
cation networks. IEEE/ACM Trans. Networking, 1(5):510–521, 1993.

[58] C. Papadimitriou and J. Tsitsiklis. The complexity of optimal queueing network
control. Mathematics of Operations Research, 24(2):293–305, 1999.

[59] A. Parekh and R. Gallager. A generalized processor sharing approach to flow
control in integrated services networks: the single-node case. IEEE/ACM Trans.
Networking, 1(3):344–357, 1993.

[60] A. Parekh and R. Gallager. A generalized processor sharing approach to flow
control in integrated services networks: the multiple node case. IEEE/ACM
Trans. Networking, 2(2):137–150, 1994.

[61] K. Park, G. Kim, and M. Crovella. On the relationship between file sizes, trans-
port protocols, and self-similar network traffic. In Proc. IEEE International
Conference on Network Protocols, pages 171–180, 1996.

[62] K. Park, G. Kim, and M. Crovella. On the effect of traffic self-similarity on
network performance. In Proc. SPIE International Conference on Performance
and Control of Network Systems, pages 296–310, 1997.

121

[63] K. Park, M. Sitharam, and S. Chen. Quality of service provision in noncooper-
ative networks: heterogeneous preferences, multi-dimensional QoS vectors, and
burstiness. In Proc. 1st International Conference on Information and Computa-
tion Economies, pages 111–127, 1998.

[64] K. Park and W. Willinger, editors. Self-Similar Network Traffic and Performance
Evaluation. Wiley-Interscience, 2000.

[65] Kihong Park. Warp control: a dynamically stable congestion protocol and its
analysis. In Proc. ACM SIGCOMM ’93, pages 137–147, 1993.

[66] Kihong Park. Self-organized multi-class QoS provision for ABR traffic in ATM
networks. In Proc. 15th IEEE International Phoenix Conference on Computers
and Communications, pages 446–453, 1996.

[67] V. Paxson and S. Floyd. Wide-area traffic: the failure of Poisson modeling. In
Proc. ACM SIGCOMM ’94, pages 257–268, 1994.

[68] H. Ren and K. Park. Efficient shaping of user-specified QoS using aggregate-
flow control. In Proc. IEEE/IFIP International Workshop on Quality of Future
Internet Services, pages 259–271, 2000.

[69] H. Ren and K. Park. Toward a theory of differentiated services. In Proc.
IEEE/IFIP International Workshop on Quality of Service, pages 211–220, 2000.

[70] H. Ren and K. Park. On the QoS provisioning power of optimal aggregate-flow
scheduling. In Proc. SPIE International Conference on Scalability and Traffic
Control in IP Networks, 2001.

[71] H. Ren and K. Park. On the complexity of optimal aggregate-flow scheduling.
Technical report, CSD-TR 02-021, Dept. of Computer Sciences, Purdue Univer-
sity, 2002.

[72] H. Ren and K. Park. Performance evaluation of optimal aggregate-flow schedul-
ing: A simulation study. Computer Communications, 2002.

[73] J. W. Roberts. Engineering for quality of service. In K. Park and W. Will-
inger, editors, Self-Similar Network Traffic and Performance Evaluation. Wiley-
Interscience, 2000.

[74] J. Sairamesh, D. Ferguson, and Y. Yemini. An approach to pricing, optimal
allocation and quality of service provisioning in high-speed networks. In Proc.
IEEE INFOCOM ’95, pages 1111–1119, 1995.

[75] L. Schrage. An alternative proof of a conservation law for the queue G/G/1.
Operations Research, 18(1):185–187, 1970.

[76] J. Shanthikumar and D. Yao. Multiclass queueing systems: Polymatroidal struc-
ture and optimal scheduling control. Operations Research, 40(2):293–299, 1992.

[77] Scott Shenker. Making greed work in networks: a game-theoretic analysis of
switch service disciplines. In Proc. ACM SIGCOMM ’94, pages 47–57, 1994.

[78] Cisco Systems. Cisco ios software. http://www.cisco.com/en/US/products/sw/
iosswrel/index.html.

122

[79] Cisco Systems. How to choose the best router switching path for your network.
http://www.cisco.com/warp/public/105/20.html.

[80] Cisco Systems. Qc: Cisco ios quality of service solutions configuration guide,
release 12.2. http://www.cisco.com/en/US/products/sw/iosswrel/index.html.

[81] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and W. Stornetta. Spawn:
a distributed computational economy. IEEE Trans. Software Engineering,
18(2):103–117, 1992.

[82] S. Webster and K. Baker. Scheduling groups of jobs on a single machine. Oper-
ations Research, 43(4):692–703, 1995.

[83] Michael P. Wellman. A market-oriented programming environment and its ap-
plication to distributed multicommodity flow problems. Journal of Artificial
Intelligence Research, 1:1–23, 1993.

[84] W. Whitt. A review of L = λW and extensions. Queueing Systems, 9(3):235–268,
1991.

[85] W. Willinger, M. Taqqu, R. Sherman, and D. Wilson. Self-similarity through
high-variability: statistical analysis of Ethernet LAN traffic at the source level.
In Proc. ACM SIGCOMM ’95, pages 100–113, 1995.

[86] Z. Zhang, D. Towsley, and J. Kurose. Statistical analysis of the general-
ized processor sharing scheduling discipline. IEEE J. Select. Areas Commun.,
13(6):1071–1080, 1995.

123

VITA

Huan Ren received his B.S. and M.S. degrees in electrical engineering from Xi’an

Jiaotong Univerisity, People’s Republic of China. Since 1998 he has been working

toward a Ph.D. degree in the Department of Computer Sciences at Purdue Univer-

sity. His research interest include scalable quality of service provisioning, network

modeling, network protocols and algorithms design, and scheduling.

