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Abstract

This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE prob-
lem. We measure the performance of a standard genetic algorithm on an elementary set of
problem instances consisting of embedded cliques in random graphs. We indicate the need
for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which
exhibits superior performance on the same problem set.

As we scale up the problem size and test on \hard" benchmark instances, we notice a
degraded performance in the algorithm caused by premature convergence to local minima. To
alleviate this problem, a sequence of modi�cations are implemented ranging from changes in
input representation to systematic local search. The most recent version, called union GA,
incorporates the features of union cross-over, greedy replacement, and diversity enhancement.
It shows a marked speed-up in the number of iterations required to �nd a given solution, as well
as some improvement in the clique size found.

We discuss issues related to the SIMD implementation of the genetic algorithms on a Think-
ing Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3))
of the serial algorithm for computing one iteration.

Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to
work \well" for the clique problem; (2) a GA is computationally very expensive, and its use is
only recommended if it is known to �nd larger cliques than other algorithms; (3) although our
customization e�ort is bringing forth continued improvements, there is no clear evidence, at this
time, that a GA will have better success in circumventing local minima.

�Part of this research was presented at the 2nd DIMACS Implementation Challenge on Combinatorial Optimiza-

tion, DIMACS, October, 1993.
ySupported in part by NSF grant CCR-9204284
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1 Introduction

This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem.

Genetic algorithms [7, 6] are general-purpose optimization methods that have gained wide popu-

larity in recent years. They are an algorithmic formalization of the twin notions of \survival of

the �ttest" and \�t parents are likely to produce even �tter o�-spring." Surprisingly, this combi-

nation has lead to a randomized algorithm with unique features which seems to assure its place

among other well-known heuristics such as simulated annealing and gradient descent. As with

simulated annealing, it is an open problem as to how powerful genetic algorithms are at solving

combinatorial optimization problems, and few rigorous characterizations exist. Recent work in this

regard includes [11, 12, 10]. On the empirical side, a large body of work exists in applying genetic

algorithms to di�erent application areas, as well as experimental evaluation on hard combinatorial

optimization problems, notably the traveling salesman problem [9, 4, 13, 8]. Although the jury is

still out, there is general agreement that genetic algorithms need to be tailored to the particular

application at hand, and in the case of the traveling salesman problem, genetic algorithms have

been exhibited which approach, and in some cases exceed, the performance of other well-known

heuristics on certain problem instances. In contrast, not much work has been done on the maximum

clique problem, and this paper is an e�ort in this direction.

Our test ground is MAX-CLIQUE, an NP-complete problem. The need to �nd large cliques

arises in numerous pratical areas [2], and many constraint satisfaction problems can be naturally

cast as MAX-CLIQUE. Furthermore, recent work in interactive proof systems has shown that unless

P = NP, �nding a good approximation to the maximum clique size is as hard as solving the exact

problem [5, 1]. This, coupled with the special year on Combinatorial Optimization at DIMACS

and its Implementation Challenge, has motivated us to approach the MAX-CLIQUE problem from

the genetic algorithms perspective. We proceed in three stages. First, we test a standard genetic

algorithm on a test bed of random graphs with controlled embedded cliques and show the need for

improvement. We introduce a new genetic algorithm, multi-phase annealed GA, which is a two-way

extension of the standard algorithm, and demonstrate its superior performance. The algorithm

is obtained by incorporating an annealed �tness function1 which assigns variable �tness values to

1\�tness function" is a term commonly used in the GA literature to refer to an objective function.
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subgraphs that are not cliques, parameterized by a control variable �. This variable determines the

degree to which subgraphs are penalized for not being cliques, and leads to an annealing schedule

on � whereby the penalty is increased as time progresses. Another feature of the algorithm is based

on population-driven search where the statistical properties of the initial population are controlled

to produce e�cient search.

Next, the algorithm is tested on benchmark problems contributed to the DIMACS Challenge as

well as other instances such as 1024-node random graphs. The conclusion is that the multi-phase

annealed GA is getting stuck in local minima. As the problems get \harder" and the problem

size increases, the algorithm does not scale satisfactorily resulting in suboptimal solutions. Several

modi�cations are tested, including systematic local search and changing of the input representation

via clustered encoding. In the most recent version (union GA), three features, union cross-over,

greedy replacement, and diversity enhancement are combined resulting in an improved performance.

This is most pronounced time-wise in that the number of iterations needed to �nd a given clique

size is substantially reduced, accompanied by small improvements in the maximum clique size

found. In union cross-over, two subgraphs are merged to form another graph by taking the union

of the two vertex sets, then setting the new graph to be the vertex-induced subgraph. Nodes which

were not in the intersection of the parent subgraphs are then pruned with some probability. In

greedy replacement, each element is replaced with a new element if the new element represents an

improvement over the former. Diversity enhancement of a population is achieved by probabilistically

reallocating elements belonging to a saturated subpopulation to one that is not.

In the �nal section, we discuss some issues related to the parallel implementation of the genetic

algorithm on a Thinking Machines CM-5. Due to the high time-complexity of the algorithm (O(n3)

for one iteration), which is intrinsic to GA's, we were forced to perform all our testing on the CM-5.

The program was written SIMD-style, whereby every element of the population was treated as a

virtual processor, subject to the same code. The main drawback of this approach lies in not being

able to explicitly control how virtual processors are mapped to actual processors on a partition.

Assuming this mapping is handled poorly by the operating system, a potential improvement in

speed is attainable by switching to full-
edged MIMD programming whereby making use of a priori

information regarding the communication pattern within a population, an improved mapping could

be imposed at the extra cost of having to compute it. Otherwise, various hardware features of the
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CM-5 were exploited to yield a faster code.

We conclude by discussing where we are now in the evaluation process, the tentative conclusion

being that we have as yet found no �rm evidence to suggest that a genetic algorithm may outperform

other well-known heuristics such as simulated annealing for the MAX-CLIQUE problem. On the

other hand, our experience so far leads us to believe that the current performance can be further

improved to levels matching other heuristics. If this is so, the bene�t of using a GA needs to be

weighed against the fact that its time-complexity is very high.

2 A simple genetic algorithm and the need for customization

2.1 Simple genetic algorithm

Let G = (V;E) be an undirected graph where V is the vertex set and E is the set of edges. Let

n = jV j. A clique of size k is a complete subgraph of G with k vertices. For any graph G of n

vertices, we will use X = f0; 1gn to encode its subgraphs. That is, x = x1x2 : : :xn corresponds to

the unique subgraph G0 = (V 0; E0), where xi = 1 if and only if i 2 V 0 for all i = 1; 2; : : : ; n. A

�tness function f : X ! R+ assigns to each subgraph a nonnegative number, its �tness value. A

simple way of de�ning a �tness function for the MAX-CLIQUE problem is given by,

8x 2 X; simple(x) =

(
k if x is a clique of size k
0 otherwise.

A population is a multi-set over X . Let H(t) be the population at time t, and let N = jH(t)j

for all t � 0. A genetic algorithm using a �tness function f is characterized by three operations,

reproduction (TR), cross-over (TC), and mutation (TM). The operations are described as follows:

� Reproduction. To compute TR(H), generate N random samples from the distribution

Prfh = xg = f(x)=
P

y2H f(y), where h is a random variable over sample space H.

� Cross-over. To compute TC(H), repeat N times: select x = x1x2 : : : xn, y = y1y2 : : : yn 2 H

randomly using the uniform distribution. Select a random index i, 1 � i � n + 1. Form

z = x1 : : :xi�1yi : : :yn. Include z in TC(H).

� Mutation. To compute TM(H), for all x 2 H, with probability pm, do the following: select

a random index i, 1 � i � n. Flip the i'th bit xi.
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Let T be the composite map T = TMTCTR. If H(t) is the population at time t, then H(t + 1) =

T (H(t)). One such step is called a generation. We call T the simple genetic algorithm with mutation.

In theoretical considerations, one is interested in understanding the behavior of (H(t))1t=0.

The basic test data set is described by a triple n=k=p where n is the number of nodes in the

test graph G, k is the size of the clique embedded in the graph, and p is the probability by which

edges are added to the already existing edge set induced by the imbedded clique. For p small, the

maximum clique size, !(G), will equal k.

2.2 Multi-phase annealed GA

2.2.1 Relaxing the �tness function

In an attempt to improve search, we introduce an annealed �tness function that has the following

form. Let N (i) = fj 2 V : fi; jg 2 Eg [ fig be the neighborhood of node i, and let I(x) = fi :

xi = 1; i = 1; 2; : : : ; ng. De�ne

�(x) =

P
i2I(x) jN (i)\ I(x)j

jI(x)j2
:

Clearly, 0 � �(x) � 1, and �(x) = 1 if and only if x encodes a clique. The closer �(x) is to 0, the

more \de�cient" x is from being a clique. Biasing the �tness function towards large subgraphs and

combining with �(x), we get the annealed �tness function

��(x) = �(x)� jI(x)j

where � � 1 is a parameter that can be used to control the degree to which x is penalized for not

being a clique. It is easily seen that

lim
�!1

��(x) = lim
�!1

�(x)�jI(x)j = simple(x):

Note, for � < 1, it is possible that a large, densely interconnected subgraph is assigned a higher

�tness value than !(G), the maximal clique size. The penalty parameter � is similar to temperature

in simulated annealing in that a controlled fuzziness factor is injected to enhance search. This

suggests imposing an annealing schedule on �(t). In the current implementation, we have used the

following rule for the annealing schedule Anneal :

� := � (1 + ca
jmax all �max cliquej

max all
)
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where max all = max f��(x) : x 2 Hg, and max clique = max f��(x) : x 2 H ^ x is cliqueg.

ca > 0 is a parameter that controls the rate of change of �. Let diversity be a function that measures

the degree to which a population is nonhomogeneous. We de�ne it by the formula

div =
1

nN

nX
i=1

max f
X
x2H

xi ; N �
X
x2H

xig:

After the coordinate change div0 = 2(1� div), 0 � div � 1, and div = 0 if and only if H consists
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Figure 1: E�ect of annealing. 128-node graph with p = 1=8; 1=16; 1=32; 1=128.

of N copies of a single element. The annealed genetic algorithm (A-GA) is given as follows:
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A-GA(H,�)

begin

repeat

H := TR(H; ��).

H := TC(H).

div := Diversity(H).

� := Anneal(�;H).

until div < �

end

Figure 1 captures the e�ect of annealing a �tness function. It compares performance of the an-

nealed GA against the simple GA on the problem set f128=k=0:5 : k = 3; 10; 17; : : : ; 115g for four

initial populations generated with vertex probabilities p = 1=8; 1=16; 1=32; 1=128. The abscissa,

normalized embedded clique size, represents k=n. The ordinate, normalized max clique found, refers

to !̂=k where !̂ is the size of the maximum clique found by the algorithm over its entire run. For

all the runs reported in the paper, the population size was set at N = 20n. Figure 1 clearly shows

the superior performance of the annealed �tness function in �nding larger cliques. The e�ect is

most pronounced when the initial population is generated with p = 1=8.

2.2.2 Population-driven search

Figure 2 shows the e�ect of changing the characteristics of the initial population. In the case

where the simple �tness function is employed (left �gure), a marked improvement is obtained when

going from vertex probability p = 1=8 to p = 1=32 for normalized clique sizes below 0:7. As p is

decreased further, a degradation in performance occurs as can be seen in the downward shift of the

p = 1=128 curve. This suggests that the performance curve, as a function of p, is unimodal which

introduces the problem of having to �nd its peak. Furthermore, the gain in overall performance is

obtained at the expense of degraded performance at the higher end of the normalized clique size.

The situation is di�erent in the annealed �tness function case. Except for the failure to �nd a very

small clique (normalized clique size 0:023), the p = 1=8 curve is highly 
at, �nding the optimal

clique or one near to it, and clearly superior to p = 1=32; 1=128. Furthermore, the downward shift

in the performance curve is monotonic as p is decreased. The only gain in making p small is the
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compensatory e�ect obtained when the size of the maximum clique is very small. This suggests

using a procedure which commences with an initial population characterized by a high value of p,
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Figure 2: E�ect of initial population. 128-node graph. (left) Simple �tness function. (right)
Annealed �tness function.

then repeats the search over several phases, each with a smaller probability. This strategy is called

multi-phasing, and a genetic algorithm which exploits this feature is described next.

MPA-GA:

begin

p := 1=2.

Initialize H using the distribution Prfxi = 1g = p, 8i.

repeat

� := 1.

A-GA(H; �).

p := p = 2.

Reset H using the distribution Prfxi = 1g = p, 8i.

until pn � 


end
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The initial population is generated by setting each bit to 1 with probability 1=2. Next, the annealed

GA is invoked, its termination concluding the �rst phase. In subsequent phases, p is exponentially

decreased by a factor of 1=2 until the last phase is reached at pn = 
. In the current implementation,


 = 1.

For a typical test graph G 2 64=k=0:5 (not shown here), disregarding the embedded k-clique

and looking only at the 64-node 0:5-random graph, one may estimate (very roughly) the maximum

clique size to be around 8, using the threshold function 2 log 1

p

n � 2 log 1

p

log 1

p

n + 2 log 1

p

e=2 + 1

[3]. The actual size of the embedded clique corresponding to normalized clique size 0:2 is 13. The

height at 0:2 for the multi-phase simple case is 0:6 which corresponds to a clique size of 8. Hence,

quite plausibly, the algorithm is getting stuck in local minima created by the underlying p-random

graph. To test this hypothesis, we ran the algorithm on several test sets 128=k=p for di�erent p's.

The outcomes of 128=k=0:3, 128=k=0:7, and 128=k=0:9 are shown in �gure 3. The shift of the dip

to the right as edge probability p is increased is clearly visible, con�rming our suspicion.
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Figure 3: Local minima problem and the shift in the dip as a function of edge probability p.

Figure 4 (left) shows the performance of the multi-phase annealed GA and multi-phase simple

GA on a set of p-random graphs with 128 vertices where p was sampled at p = 0:1; 0:2; : : : ; 0:9.

Overall, MPA-GA outperforms the simple algorithm, but not by very much. Figure 4 (right) shows
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Figure 4: (left) p-random graphs. Normalized clique size found against edge probability p. (right)
128-node overlap graph. Normalized clique size found against normalized running time.

a similar performance comparison on a 128-node graph where one large clique (64 nodes), and

three smaller ones (57, 47, and 47 nodes) were embedded with mutual overlap. There was a 31

node overlap between the 64-node clique and each of the two 47-node cliques. There was further

overlap among the other combinations to a smaller extent. Over 2000 generations, the multi-phase

annealed GA found a clique of size 71 (in fact, the maximal clique) whereas the multi-phase simple

GA found one of size 60. The three long plateaus corresponding to the annealed algorithm are in

part caused by a stringent termination threshold � = 0:0001. The three little humps corresponding

to the simple algorithm have shorter width due to a bound on the phase length, which for this

run was set at 3n generations. This was instantiated so as to give the multi-phase simple GA as

many phases as possible without compromising the search over each phase by too much. Without

a time-limit on the phase length, we noticed that the simple GA would often reach a plateau, and

spend an inordinate amount of time converging without improving its position. Due to constraints

on the total number of generations the algorithm is allowed to run, the simple GA would end

up exploring only a few phases before reaching its termination. In the annealed GA, due to the

annealing schedule on �, convergence was not a big problem. Adopting a less stringent termination

threshold can further expedite search.
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Figure 5: 171-node Keller graph. (a) Clique size found against number of generations. (b) Diversity
against number of generations.

Figure 5 (left) shows the performance of the annealed and simple algorithms on a 171-node Keller

graph with a known maximum clique size of 11. Both the annealed and simple genetic algorithms

�nd a clique of size 9, but do not succeed in �nding the optimal one. Figure 5 (right) shows the

population diversity, div, plotted against generation count. As is evident, the annealed algorithm

goes through all its phases within 500 generations. For this particular run, an additional termina-

tion condition was tested which prompted the premature termination of phases, without properly

reaching the normal termination threshold � = 0:0001. The diversity plot of the simple GA reveals

a typical convergence pattern observed in other runs, where the �rst three phases (until genera-

tion � 1500) are fruitless and get terminated by the 3n-rule. The four little convergence bumps

correspond to the four \high-rise blocks" in �gure 5 (left) where cliques are being found. Since

during the period leading up to generation 1500 all elements have �tness value 0, reproduction is

e�ectively turned o�, and cross-over induced mixing is the only process at play. The �rst three

\terraces" of the diversity graph show this phenomenon. The slope di�erences are due to variance

and �nite sample e�ects.
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3 Benchmarking and further customization

3.1 Evaluation of the multi-phase annealed GA

Table 6 shows the performance of the multi-phase annealed GA on a set of benchmark problems

contributed to the DIMACS Challenge. Size refers to the maximum clique size found, and time

is the generation count until a termination condition (mostly \plateau" detection) is met. As is

evident, oftentimes the algorithm ends up �nding a solution that is less than 60% of the known

optimal level. The numbers are a little bit misleading because, for instance, in the case of the Keller

graph keller5.clq, a solution of up to 21 can be found by disabling the plateau detection mechanism.

By incorporating a local search procedure, this can be facilitated much faster, but we felt it was

not important since it corresponds to climbing the �nal stretch to a local minimum which is always

doable using hill-climbing.

DIMACS CLIQUE BENCHMARKS

File Nodes Edges Clique Size Annealed GA Union GA
Size Time Size Time

keller4.clq 171 9435 11 9 957 9 43
keller5.clq 776 225990 27 16 173 18 92
hamming8-2.clq 256 31616 � 79 94 261 80 119
hamming8-4.clq 256 20864 16 13 123 16 47
san400 0.5 1.clq 400 39900 13 7 53 7 3
san400 0.7 1.clq 400 55860 40 16 165 20 57
san400 0.7 2.clq 400 55860 30 12 163 15 17
san400 0.7 3.clq 400 55860 22 12 1800 12 18

Figure 6: DIMACS contributed benchmark table

The performance on three 1024-node random graphs can be seen in table 7. Again, the num-

bers fall below what is known to be accomplishable (roughly 10; 15; 25 for the 0:3; 0:5; 0:7 random

graphs), and the algorithm is getting stuck in local minima. The numbers are from the most recent

single data collection run. Averages are available for smaller graph sizes, and are currently being

collected for the 1024 size. Due to the high time-complexity of the algorithm, data collection is a

very time consuming process, even on a CM-5, requiring hours of CPU time. A large bottleneck is

the time required to compute the �tness function itself which is O(n2). For exact computations,

this cannot be avoided since a genetic algorithm is driven by the �tness value as the guiding bias

in extracting structure from the problem instance. Even with bit-packing this turns out to be
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1024 NODE RANDOM GRAPHS

File Nodes Edges Annealed GA Union GA
Size Time Size Time

0.3 random 1024 24866 6 7 28
0.5 random 1024 43269 12 341 11 51
0.7 random 1024 61550 19 314 18 84

Figure 7: Random graph benchmark table

the single most costly operation, and we are currently looking at using lower-cost approximate

evaluations.

3.2 Union GA

The union GA is the most recent modi�cation on the multi-phase annealed GA in an e�ort im-

prove the algorithm's performance. It is characterized by three features, union cross-over, greedy

replacement, and diversity enhancement which are described as follows.

� Union cross-over. Let x; y 2 f0; 1gn. Let Ix = fi : xi = 1g, and similarly for Iy . z is

the union cross-over of x and y if 8 i 2 Ix \ Iy , zi = 1, and 8 i 2 Ix4Iy, zi = 1 with some

probability.

� Greedy replacement. Elements are classi�ed as republicans, peronistas, and democrats. x is

a republican if it is a clique of su�cient size. x is a peronista if it is a near-clique of su�cient

size. Otherwise, x is a democrat. The rules of replacement are: (a) A republican only replaces

itself with a bigger republican. In so doing, it posts its old state onto a bulletin board. (b) A

peronista replaces itself if the candidate is a republican. Otherwise, it attempts to prune itself

into a republican. (c) A democrat always replaces itself unless the candidate is a democrat.

If so, it checks the bulletin board to replace itself by a republican. If unsuccessful, it replaces

itself if the candidate democrat has a higher �tness value.

� Diversity enhancement. Let x be a clique of size k. Let Hk be the subset of the population

consisting of cliques of size k. If the diversity ofHk is low, then elements inHk probabilistically

replace themselves with the outcome of a random union cross-over operation.

Union cross-over is di�erent from single-point cross-over described in section 2.1 in that there is a

monotonicity property associated with it which may allow two cliques that are part of a larger clique
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to merge more easily to form a larger clique. The single most distinguishing feature of a genetic

algorithm lies in the cross-over operator by which two elements may combine to produce elements

that are far apart in Hamming distance. The most direct way this operation can enhance search

is if two subsequences of the parent strings (\building-blocks"), say nonoverlapping, are merged

into a newly combined string, and ends up being a superior string with respect to the objective

function. This process is called the building-block hypothesis, and Holland's schema theorem [7, 6]

is a formalization thereof. For monotonic objective functions, it is possible to prove optimality of

a genetic algorithm capturing a form of \biased mixing" [10]. In our experiments, we have noticed

that even with encodings that try to assign labels to the vertices that preserve the neighborhood

structure of the given graph, most cliques turn out to have labels that are spread out which is

intuitively clear for random graphs. Therefore, two such cliques, if they are part of a larger clique,

are more easily merged using the union cross-over operation.

3.3 Evaluation of the union GA

The union GA tested here is the multi-phase annealed GA incorporating the three new features

minus the multi-phase mechanism. Instead of multi-phasing, which would not have allowed us to

gather some benchmark data on time, the search is started from an initial population where the

bits in the strings are set with very small probability. The result of this testing on the DIMACS

Challenge subset is shown in table 6 of section 3.1. There is a small improvement in the maximum

clique size found, for example, �nding the optimal solution of 16 for the Hamming graph hamming8-

4.clq. The main advantage lies in the speed-up in the number of generations needed to �nd the

best solution. The present algorithm, which has not been tuned with respect to its parameters, is

still getting stuck in local minima as can be seen from the table. Figure 8 shows the population

dynamics of the union GA when solving the 776-node Keller graph. The plot shows the behavior

of the algorithm over 500 generations where count refers to the histogram count of the number

of cliques of a certain size at a given time instance. The algorithm was run without a plateau

counter for a population size of 250 (very small compared to our usual 20n rule). It is seen that the

algorithm has converged to a distribution whose maximum clique size is 18. The process by which

a genetic algorithm approaches the MAX-CLIQUE problem can be visualized by the movement

of the distibution peak to the right (higher clique size), initially starting at the left end. The
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Figure 8: Population dynamics: time evolution of clique size histogram plot. 776-node Keller graph.

movement of the peak is fueled by the cross-over operator by which larger cliques are generated

which in turn combine to generate even larger cliques. Ideally, this shift in the mass should continue

until a maximum clique is found. As larger cliques are more rare, it is reasonable to expect for

the height of the distribution to become dampened, and the rate of movement of the peak to slow

down. The evolution shown in �gure 8 gets stuck in a stationary distribution from which it has

only a small probability of escaping. The conditional probability of �nding an optimum element x

given population H(t), PrfxjH(t)g, has also become stationary at a very small value, indicated by

the fact that no improvements are seen over 400 generations. Figure 9 shows the performance of

the multi-phase GA (top) against that of the union GA. The union GA �nds the optimal clique 16

for this 256-node Hamming graph.
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4 Parallel implementation issues

All results reported in this paper were produced using a Thinking Machines CM-5 using C*, a

SIMD programming language. Our CM-5 consists of 128 processors divided into one 32-node, and

two 16-node partions. A partition is the smallest available grouping of processors. Each partition

is accessed through a partition manager which supervises the running of processes on the partition.

C* allows one to program a very large number of virtual processors which are then emulated by

the physical processors available on the CM-5.

The most straightforward way to implement a GA in SIMD style is to write from the point of

view of an individual population element. In C*, an n-dimensional array of processors (called a

shape) is de�ned with one conceptual data point at each element of the array. For a GA it makes

the most sense to put the strings in a one-dimensional shape with one bit string at each processor

along with whatever local data is needed to implement the GA.

There are several issues that must be addressed in a parallel implementation. A major issue

with C* is the mapping of virtual processors to physical processors. We are relying on the system

software to give an e�cient mapping of populations of bit strings onto the available processors.

Since general communication is required for the roulette wheel parent selection and there is no

recurring pattern of communication among the bit strings, there is no advantage to be gained by

using C*'s ability to specify the communication structure of a higher-dimensional shape without

signi�cant redesign of our implementation.

A more speci�c issue is the fast evaluation of the bit strings. Due to the O(n2) complexity of

the �tness function evaluation, we decided that a more e�cient implementation would pack the bit

strings into 32-bit words. Since the adjacency matrix is also an array of bits packed into words, we

can use the bitwise logical operators available from C* to compute the evaluation function more

e�ciently. Taking the view of each string, every row of the matrix is ANDed with the string and

the number of bits in the resulting string is summed over all rows which are present in the string

thereby computing the neighborhood size of a string. This is then normalized by the number of

nodes in the string. The adjacency matrix is stored on the Partition Manager and is broadcast

to all the processors as needed. The alternative of replicating the matrix in each processor would

probably be faster but is only feasible if the matrix is small.

One important additional feature is the ability to take a checkpoint of the current state of the

15



0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160

C
L
I
Q
U
E
 
S
I
Z
E

GENERATION

max evaluation
max true clique

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

D
I
V
E
R
S
I
T
Y

GENERATION

’oldham.gap’

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300

C
L
I
Q
U
E
 
S
I
Z
E

GENERATION

max evaluation
max true clique

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 50 100 150 200 250 300

D
I
V
E
R
S
I
T
Y

GENERATION

’newham.gap’

Figure 9: 256-node Hamming graph. Top: multi-phase annealed GA. Bottom: union GA.

GA. This enables long runs to be done in pieces and provides a degree of fault-tolerance. We take

advantage of the Scalable Disk Array allowing parallel I/O for the storage of parallel variables.

Niching, which is a method for grouping a population into weakly coupled subpopulations, is

easily done in C* using a segment bit to divide the set of processors into subsets during calculation

of the running total and assigning niche boundaries at each processor. The number of niches can

be varied over the duration of the run. For instance, \telescoping" from 20 down to 10 by merging

adjacent niches into a niche of twice the original size. This process could continue until all strings

belong to one fully-merged population

An alternative parallel implementation strategy in MIMD style could use CMMD, the message-

passing library available on the CM-5. This might give increased performance and 
exibility. For
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instance, 32 subpopulations could be evolved independently with some schedule of interactions be-

tween subpopulations. Or perhaps a controller processor could feed tasks to many worker processors

and thereby handle intermixing of the subpopulations.

Another simple enhancement is to allow \local" mating. One way to implement this is to let

each chromosome conduct a pair of random walks within some radius to �nd its two parents. This

is applicable to either the SIMD or MIMD style with the additional issue of whether inter-niche

mixing should be allowed.

5 Conclusion

We have presented a preliminary study of the empirical power of genetic algorithms at solving

the MAX-CLIQUE problem. Two new genetic algorithms, multi-phase annealed GA and union

GA, were developed during the course of increasing performance, and they were tested against

benchmark problems provided by the DIMACS Challenge as well as 1024-node random graphs.

Based upon our experience so far, we draw the following tentative conclusions. First, a GA

needs to be heavily customized to have a chance to perform well. Second, a GA is computationally

very expensive, and its usage seems justi�ed only if it can be shown to outperform other general-

purpose heuristics on particular clique problems. Third, our experience so far does not lead us to

believe that genetic algorithms will outperform other algorithms, even though we are optimistic

that some of them (e.g. simulated annealing) can be matched.

For \di�cult" problems, we think that the building-block hypothesis may no longer apply, hence

the potential speed-up obtainable by cross-over search may be nulli�ed. Currently, we are in the

process of completing tests for the union GA, extended to multi-phase, for a range of di�erent

population sizes. We hope to convey a more complete picture in the near future.
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