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Abstract

Our aim in this chapter is to study the conditions for the reasonably
good performance of classifiers on brain functional magnetic resonance
imaging. We propose a synthetic model for the systematic study of as-
pects such as dimensionality, sample size, subject variability and noise.
Our simulations highlight the key factors that affect generalization ac-
curacy.

1 Introduction

Functional magnetic resonance imaging (fMRI) has become one of the meth-
ods of choice for looking at the activity of the human brain. Neural activity
is followed by an increase in blood flow and oxigenation in the local vascu-
lature. This phenomenon is called hemodynamic response and it is used by
fMRI in order to undirectly measure neural activity.

Classification on brain fMRI faces various challenges. fMRI data is three-
dimensional and thus, datasets are very high dimensional. Typical datasets
contain tens of thousands of voxels. Due to the cost and time needed in order
to capture fMRI along with other imaging modalities and clinical data, the
number of available subjects is small. Usually, datasets have only a few tens
of subjects. Many datasets also show high subject variability, depending
upon the nature of the neuropsychological process and task. Additionally,
it is well known that fMRI signal is noisy.

Classification has been used on brain fMRI for two goals: the prediction
of cognitive states and group classification. In the prediction of cognitive
states [1–15], the goal is to infer the experimental condition (e.g. calculation
vs. reading) that a given subject was undergoing at a given time. In group
classification [16–23], the goal is to infer the group membership (e.g. cocaine
addicted vs. control) of a given subject.

Besides using of all voxels as features [5, 8, 10, 14], classifiers are also
trained with features extracted from the original data. Feature extraction
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methods can be categorized into two groups. Some of the methods extract
features that are a weighted combination from all the available voxels by
using different schemes, such as principal component analysis [6, 13, 20, 21],
independent component analysis [16, 17, 19] and a coarse resolution of the
original image [3]. The remaining methods select a subset of voxels by fol-
lowing different criteria, such as most discriminative voxels [12], most active
voxels [1,2,9,12,15,17,18], searchlight accuracy [24], mutual information [11],
threshold-split region [22,23] and recursive feature elimination [4, 7].

Several classifiers commonly encountered in the machine learning lit-
erature have been proposed for brain fMRI data, such as Gaussian näıve
Bayes [12], k-nearest neighbors [15], Fisher linear discriminant [18–20], logis-
tic regression [14], linear support vector machines [1,2,4,5,7,8,11–13,15,21],
Gaussian support vector machines [3,6,9], Adaboost [10], random forests [16],
neural networks [17] and majority voting [22,23].

Some of the proposed classification frameworks use a predefined set of
regions of interest (ROIs) [2, 5, 10, 15, 17, 19]. As noted in [23], a possible
drawback in these frameworks is that the practitioner needs either prior
knowledge of the underlying neuropsychological process or an additional
independent dataset in order to find the set of ROIs. If one selects the
set of ROIs from the same dataset (double dipping) the significance of the
cross-validation results is compromised [25].

Our goal in this chapter is to study the conditions for the reasonably
good performance of linear support vector machines (SVMs) on brain fMRI
data. To this end, we propose a synthetic model for the systematic study
of aspects such as dimensionality, sample size, subject variability and noise.
We believe this study is a first step in understanding the key factors that
affect generalization accuracy in brain fMRI data.

We chose to focus on linear SVMs since it has been largely used for group
classification as well as the prediction of cognitive states [1, 2, 4, 5, 7, 8, 11–
13, 15, 21]. Other linear classifiers such as the Fisher linear discriminant
and logistic regression have also been proposed in the literature [14, 18–20].
Besides using all voxels as features [5, 8, 10, 14], we chose a method that
extracts features that are a weighted combination from all the available
voxels, namely principal component analysis [6, 13,20,21]. We also chose to
evaluate a feature extraction method that selects a subset of voxels, namely
the most discriminative voxels [12].

2 Materials and Methods

In this section, we present our synthetic model, its parameters and the pro-
cedure for data generation. We also describe the feature extraction methods
used in our experiments, as well as the techniques used for estimating the
generalization accuracy of the classifiers.

Our synthetic model is based on a number of Gaussian-distributed re-
gions with Gaussian spatially-correlated noise. Despite our simplifying as-
sumptions, we believe our model introduces many intuitions from neuro-
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science. First, we assume that a number of brain regions are involved in a
specific activity, such that their activation level differs between two classes.
(Class refers to a group in group classification or a experimental condition
in the prediction of cognitive states.) Second, it is well known that brain
fMRI data contains spatially-correlated noise and that there is high subject
variability, and thus we introduce these elements to our model. Finally, our
experimental setting assumes high dimensionality of the feature vector and
a small number of samples.

For simplicity of presentation, we consider a one-dimensional brain. Note
that most classification algorithms (including linear SVMs) do not take into
account the three-dimensional structure of the data. In fact, voxels are
treated as one-dimensional. Our synthetic model has the following parame-
ters:

• the number of original features: F ,
• the number of samples per class: S,
• the number of involved brain regions: R,
• the distance between the means of the classes: µsignal,
• the variance per class: σ2signal (both parameters µsignal and σ2signal allow

for modeling subject variability),
• the radius of the involved brain regions: rsignal,
• the noise variance: σ2noise and
• the radius of the spatially-correlated noise: rnoise.

We generate a complete synthetic dataset with F features and 2S samples
(each class contains S samples) by using the following procedure:

1. We select R features from {1, . . . , F} uniformly at random.

2. For each of the S samples in class ∈ {−1,+1}:

(a) We create an F -dimensional “signal vector” as follows: Each of
the R selected features is independently sampled from a Gaussian
distribution with mean +µsignal/2 for class +1 (−µsignal/2 for class
−1) and variance σ2signal. The remaining F−R unselected features
are set to zero. After this vector has been created, we smooth it
with a Gaussian filter of radius rsignal and standard deviation
rsignal/2. (We normalize the Gaussian filter so that its center has
weight 1 and thus, each of the R selected features in the signal
vector retains its variance.)

(b) We create an F -dimensional “noise vector” as follows: Each of the
F features is independently sampled from a Gaussian distribution
with mean zero and variance σ2noise. After this vector has been
created, we smooth it with a Gaussian filter of radius rnoise and
standard deviation rnoise/2. (We normalize the Gaussian filter so
that it has unit `2-norm and thus, each of the F features in the
noise vector retains its variance.)

(c) The generated sample is the summation of the “signal vector”
from step (2a) the “noise vector” from step (2b).
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We used LIBLINEAR [26] in order to train linear SVMs with `22-regularization,
hinge loss and soft-margin parameter C = 1. Additionally, we use the fol-
lowing feature extraction methods:

• Original features. We use the F generated features from the above-
described procedure.

• Principal component analysis (PCA) features. [6,13,20,21] We perform
singular value decomposition of the F original features and use all
available components.

• Most discriminative features. [12] We first rank each of the F original
features independently with a Gaussian classifier and then select the
top 100 performing features.

In order to estimate the generalization accuracy of the classifiers, we rely
on three different methods:

• k-fold cross-validation. We hold out S/k samples in turn while training
on the other S(k − 1)/k samples. The held out samples are used for
measuring the classification accuracy. (We chose k = 5.)

• .632 Bootstrapping. For each of B independent repetitions, we perform
the following procedure. From the S samples in the dataset, we pick
S random samples with replacement as training set. (The training
set has approximately 0.632S unique samples.) After training, we
measure the classification accuracy for the samples not in the training
set. The final estimator is an average between the above quantity and
the classification accuracy by using the whole dataset of S samples for
training and testing. We refer the interested reader to [27]. (We chose
B = 5.)

• Independent set. After training in the whole dataset of S samples,
we measure the classification accuracy in an independent set of 1000
samples per class.

The latter method is an unbiased estimator which we use only for assessing
the quality of the former two biased methods, which are used in practice.
Indeed, the independent-set-of-samples method is impractical for most brain
fMRI problems.

3 Results

We perform several synthetic experiments in order to analyze the different
aspects of brain fMRI data. For each experiment, we change one parameter
while keeping the rest of the parameters fixed to a default value. In order to
obtain a measure of confidence of the results, we perform 20 repetitions and
report error bars at 90% significance level. Next, we show the set of values
for each parameter (the default values are in parentheses): F ∈ {500, 1000,
2000, 5000, 10000, 20000, (50000)}, S ∈ {10, (20), 50, 100, 200, 500, 1000},
R ∈ {1, 2, 3, (4), 5, 6, 7}, µsignal ∈ {0.5, 1, 1.5, (2), 2.5, 3, 3.5}, σ2signal ∈ {0.05,

0.1, 0.2, 0.5, (1), 2, 5}, rsignal ∈ {1, 2, 3, 4, 5, (6), 7}, σ2noise ∈ {0.05, 0.1,
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Figure 1: Generalization accuracy for linear SVMs with the original features,
for a different: number of original features (F ), number of samples per
class (S), number of involved brain regions (R), distance between means of
the classes (µsignal), variance per class (σ2signal), radius of the involved brain

regions (rsignal), noise variance (σ2noise) and radius of the spatially correlated
noise (rnoise). Default values were set to F = 50000, S = 20, R = 4,
µsignal = 2, σ2signal = 1, rsignal = 6, σ2noise = 1 and rnoise = 2. We also
include error bars at 90% significance level. Note that k-fold cross-validation
(KS) is a better estimator than .632 bootstrapping (BS), since it is always
closer to the unbiased independent-set-of-samples method (IS). Note that
generalization accuracy is increasing with respect to S, R, µsignal and rsignal.
It is also decreasing with respect to F , σ2noise and rnoise. Generalization
accuracy does not significantly change with respect to σ2signal.
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Figure 2: Generalization accuracy for linear SVMs with PCA features, for a
different: number of original features (F ), number of samples per class (S),
number of involved brain regions (R), distance between means of the classes
(µsignal), variance per class (σ2signal), radius of the involved brain regions

(rsignal), noise variance (σ2noise) and radius of the spatially correlated noise
(rnoise). Default values were set to F = 50000, S = 20, R = 4, µsignal = 2,
σ2signal = 1, rsignal = 6, σ2noise = 1 and rnoise = 2. We also include error
bars at 90% significance level. Note that k-fold cross-validation (KS) is a
better estimator than .632 bootstrapping (BS), since it is always closer to the
unbiased independent-set-of-samples method (IS). Note that generalization
accuracy is increasing with respect to S, R, µsignal and rsignal. It is also
decreasing with respect to F , σ2noise and rnoise. Generalization accuracy does
not significantly change with respect to σ2signal.
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Figure 3: Generalization accuracy for linear SVMs with the most discrimi-
native features, for a different: number of original features (F ), number of
samples per class (S), number of involved brain regions (R), distance be-
tween means of the classes (µsignal), variance per class (σ2signal), radius of the

involved brain regions (rsignal), noise variance (σ2noise) and radius of the spa-
tially correlated noise (rnoise). Default values were set to F = 50000, S = 20,
R = 4, µsignal = 2, σ2signal = 1, rsignal = 6, σ2noise = 1 and rnoise = 2. We also
include error bars at 90% significance level. Note that k-fold cross-validation
(KS) is a better estimator than .632 bootstrapping (BS), since it is always
closer to the unbiased independent-set-of-samples method (IS). Note that
generalization accuracy is increasing with respect to S, R, µsignal and rsignal.
It is also decreasing with respect to F , σ2signal, σ

2
noise and rnoise.
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Figure 4: Generalization accuracy for linear SVMs with the most discrimi-
native features, for a different: number of original features (F ), number of
samples per class (S), number of involved brain regions (R), distance be-
tween means of the classes (µsignal), variance per class (σ2signal), radius of the

involved brain regions (rsignal), noise variance (σ2noise) and radius of the spa-
tially correlated noise (rnoise). Default values were set to F = 50000, S = 20,
R = 4, µsignal = 2, σ2signal = 1, rsignal = 6, σ2noise = 1 and rnoise = 2. We re-
port the unbiased independent-set-of-samples method. We also include error
bars at 90% significance level. The results with the original features (Orig)
and PCA features (PCA) are almost equal. In general, the results with the
most discriminative features (Disc) are significantly better than Orig and
PCA.
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0.2, 0.5, (1), 2, 5} and rnoise ∈ {1, (2), 3, 4, 5, 6, 7}. We believe that some
of these default values are typically encountered in brain fMRI problems,
specifically the number of original features (F ), the number of samples per
class (S) and the signal-to-noise ratio σ2signal/σ

2
noise.

We report the generalization accuracy of linear SVMs with the origi-
nal features in Figure 1, with PCA features in Figure 2 and with the most
discriminative features in Figure 3. Note that k-fold cross-validation is a
better estimator than .632 bootstrapping, since it is always closer to the un-
biased independent-set-of-samples method. For the three feature extraction
methods, generalization accuracy is increasing with respect to the number
of samples per class (S), the number of involved brain regions (R), the dis-
tance between means of the classes (µsignal) and the radius of the involved
brain regions (rsignal). Generalization accuracy is also decreasing with re-
spect to the number of original features (F ), the variance per class (σ2signal),

the noise variance (σ2noise) and the radius of the spatially correlated noise
(rnoise). Although, for the original features as well as PCA features, gener-
alization accuracy does not significantly change with respect to the variance
per class (σ2signal). The behavior with the most discriminative voxels is more
pronounced than with the other two feature extraction methods.

Figure 4 shows a comparison of the three feature extraction methods:
the original features, PCA features and the most discriminative features.
The results with the original features and PCA features are almost equal.
In general, the results with the most discriminative features are significantly
better than the other two methods.

4 Discussion

As in many classification tasks, having a small number of discriminative fea-
tures allows for obtaining good generalization accuracy. Thus the goal of a
practitioner is to decrease the number of features while retaining discrim-
inability. In brain fMRI, we recommend to use methods such as the most
discriminative voxels [12], which obtained significantly better results than
using all voxels as features [5, 8, 10, 14] or PCA features [6, 13, 20, 21]. Note
that the latter fact is not surprising since the objective of PCA is not to find
discriminative features but to best explain the variance in the whole dataset.

In what follows, our observations are mainly with respect to the best
performing feature extraction method, i.e. the most discriminative features.

Our experiments suggest that it is recommendable to collect data from at
least S = 50 samples per class, which allows for obtaining good classification
accuracy (∼ 90%). Having more than S = 50 samples per class seems to
increase generalization accuracy only marginally.

Some aspects of brain fMRI data cannot be controlled since they depend
on the nature of the neuropsychological process and task. Among these
aspects, we have the number and radius of the involved brain regions (R
and rsignal) and the subject variability parameters (µsignal and σ2signal). When
there are few involved brain regions or when the brain regions are small, we
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obtain poor classification accuracies (60 − 65%). When there are several
involved brain regions or when the brain regions are large, we obtain good
classification accuracies (80− 90%). Additionally, in a regime of low subject
variability, when the distance between means of the classes (µsignal) is large
or when the variance per class (σ2signal) is small, we obtain almost perfect
classification (96 − 100%). In a regime of high subject variability, when the
distance between means of the classes (µsignal) is small or when the variance
per class (σ2signal) is high, we obtain very poor classification accuracies (50−
56%).

Other aspects of brain fMRI data can be controlled up to some extent.
Controlling for the noise variance (σ2noise) seems far more important than
controlling for the amount of spatial-correlatedness of the noise (rnoise). In-
deed, when the noise variance is small, all the feature extraction methods
obtained remarkably good generalization accuracy (∼ 96%). In this sense,
we recommend to take into account the reduction of noise variance when
designing neuropsychological tasks as well as when devising proper signal
processing methods for the captured data.

5 Concluding Remarks

We chose a reasonable model based on a number of Gaussian-distributed
regions with Gaussian spatially-correlated noise, although other more com-
plex synthetic models could have been chosen. Note that it is not possible to
know the true probabilistic model that generated real-world data, unless we
work under the unsatisfiable assumption of having access to infinite data. In
practice, only a finite number of samples is available and objectively assess-
ing the level of realism of a model is not possible. Despite the simplifying
assumptions made in our model, we believe it introduces many intuitions
from neuroscience. Having said that, we believe that more complex syn-
thetic models that better introduce other neuropsychological aspects will be
very beneficial.

We did not include the leave-one-out method, where we hold out each
of the samples in turn while training on the other S − 1 samples. The main
reason for excluding this method is that our experimental setting includes
training sets of up to S = 1000 samples, where leave-one-out is computa-
tionally demanding. We preferred to include k-fold cross-validation, since
includes leave-one-out as an specific instance (k = S). Moreover, in our
experiments, k-fold cross-validation was a good estimator of the generaliza-
tion accuracy, since it was always close to the unbiased (but impractical)
independent-set-of-samples method. Experiments with leave-one-out cross-
validation will be of importance, given its use in many studies.

Note that in most experimental settings, the parameters (e.g. number
of PCA components, number of most discriminative features, soft-margin
parameter C) are selected for each training set by using either a validation
set or a nested cross-validation procedure. We chose to keep the parame-
ters fixed for computational reasons. The experimental study of parameter
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selection will be also beneficial.

While we focused exclusively on generalization accuracy, it is also im-
portant to analyze other aspects of feature selection and classification. For
instance, it would be interesting to analyze whether the most discrimina-
tive features include the R ground-truth involved brain regions, or whether
linear SVMs with the original features produce higher weights for the R
ground-truth involved brain regions.
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