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Goal of machine learning
• Use algorithms that will perform well in unseen data

• How to measure performance?

• How to use unseen data?

• Variability?

• By-product: a way to set hyper-parameters
- C for SVMs, k for k-nearest neighbors, gini threshold for 

CART decision trees.



1) Measures of Performance: Classification
• True Positive (TP)
• True Negative (TN)

• False Positive (FP)

• False Negative (FN)

• Accuracy

• Error

• Recall / Sensitivity
• Precision

• Specificity

• Use jointly: (Precision,Recall) or (Sensitivity,Specificity)
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Precision and Recall
• Idea comes from information retrieval

Wikipedia



Sensitivity and Specificity
• Idea comes from signal detection theory
• Assume Gaussian distributions

• By sliding the offset      we get different (TP, FP, TN, FN) 
and thus, different sensitivity and specificity

Pattern Classification, Duda et al., 2nd Ed., Chapter 2
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Receiver Operating Characteristic (ROC)
The Elements of Statistical Learning, Hastie et al.

SVM
k-nearest neighbors
CART decision trees

• By varying the 
hyperparameter of a 
classifier (C for SVM, k for k-
nearest neighbors, gini threshold 
for CART decision trees) we 
can get different:
- Sensitivity

- Specificity

• Summarized with an Area 
Under the Curve (AUC)
- Random: 0.5

- Perfect classifier: 1



Other Loss Functions
• Let +1 mean “diseased patient” and -1 mean “healthy 

patient”
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Other Measures of Performance: Regression
• Assume that for a point      , we predict

• Mean square error:

• Root mean square error:

• Mean absolute error:
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2) Using “Unseen” Data
• Overfitting:

- More complex classifiers fit better the training data (linear 
classifiers versus k-nearest neighbors)

- Find hyper-parameters that better fit training data

- Usually poor performance in unseen data

• To prevent overfitting, how can we “see” unseen data?
- Simulate it !

Pattern Classification, Duda et al., 2nd Ed., Chapter 9



Training, Validation, Testing
• Three data sets:

Training 
set

Validation 
set

Test
set

Report measures using best hyper-parameter

Try different hyper-parameters
(for instance: C=0.1, C=1, C=10 for SVM) 



k-Fold Cross Validation
• Split training data D into k disjoint sets S1,…,Sk

- Either randomly, or in a fixed fashion

-  If D has n samples, then each fold has approximately n / k samples

- Popular choices: k=5, k=10, k=n (leave-one-out)

• For i = 1…k:

train with sets S1,…,Si–1, Si+1,…,Sk

test on set Si

let Mi be the test measure (for instance: accuracy)

• Mean and variance are:
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0.632 Bootstrapping
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• Let B>0, and n be the number of training samples in D

• For i = 1…B:

Pick n samples from D with replacement, call it Si

       (Si might contain the same sample more than once)

train with set Si

test on the remaining samples (D – Si)

let Mi be the test measure (for instance: accuracy)

• Mean and variance are:



0.632 Bootstrapping
• Why 0.632 ?

• Recall that:
- We pick n items with replacement from out of n items

- We choose uniformly at random

• The probability of:
- not picking one particular item in 1 draw is

- not picking one particular item in n draws is

- picking one particular item in n draws is

• Finally: limn→∞1− 1−1/ n( )n =1−1/ e ≈ 0.632

1−1/ n
(1−1/ n)n

1− (1−1/ n)n



3) Variability
• How to compare two algorithms?

- Not only means, also variances !

• Statistical hypothesis testing

• Error bars



Statistical Hypothesis Testing
• How to compare two algorithms?

- Not only means, also variances !

• Let                       be mean and variance of algorithms 1 and 2.

• When to reject null hypothesis              in favor of              ?

• Let:
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Statistical Hypothesis Testing
• Student’s t-distribution:

• For significance level      , degrees of freedom
- Find the value         for which CDF =

- Python: from scipy.stats import t

 t.ppf(1–alpha, v)

• If                reject null hypothesis              in favor of µ1 > µ2µ1 = µ2

να

Probability density function (PDF) Cumulative density function (CDF)

1−αx1−α,ν

x > x1−α,ν

1−α

x1−α,ν

Wikipedia



Statistical Hypothesis Testing: Example 1
• Two algorithms tested with 9-fold cross validation
• Percentage of error on each left-out fold:

- A1: 11,   7, 13, 12, 12,   9, 10,   7, 10

- A2: 10,   8, 12, 10, 11,   9, 13,   7,  9

•  Can we reject null hypothesis (            ) in favor of alternate 
hypothesis (             ) at 5% significance level?

•  Inverse CDF

                                             then cannot reject null
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x = 0.22 ≤1.75= x0.95,16



Statistical Hypothesis Testing: Example 2
• Two algorithms tested with 9-fold cross validation
• Percentage of error on each left-out fold:

- A1: 10, 12, 14, 13, 13, 10, 11, 10, 11

- A2: 10,   8, 12, 10, 11,   9, 13,   7,  9

•  Can we reject null hypothesis (            ) in favor of alternate 
hypothesis (             ) at 5% significance level?

•  Inverse CDF

                                             then reject null
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Error bars (with example)
• How to compare more than 2 algorithms (tables, bar charts, 

line charts)?

• Three algorithms tested with 9-fold cross validation

• Percentage of error on each left-out fold:
- A1: 10, 12, 14, 13, 13, 10, 11, 10, 11

- A2: 10,   8, 12,   6, 11, 14, 17, 13,  9

- A3:   8,   7, 11, 10,   7,   9,  9, 10, 11

• At 5% significance level:

ν = n−1

x1−0.05,ν = x0.95,8 =1.86

µ̂ ±
σ̂
n
x1−α,ν

µ̂ =11.6,   σ̂ 2 = 2
µ̂ =11.1,   σ̂ 2 = 9.9
µ̂ = 9.1,    σ̂ 2 = 2.1

ν = n−1= 8



4) Final words
• What is a sample?
• Dimensionality reduction and cross-validation



What is a Sample?
• In this lecture we assume that each sample is a different 

“unit of interest” for the experimenter

• Never sample the same “unit of interest” several times
-  In a medical application, we might be interested on knowing 

the accuracy (and variance) with respect to patients.

- Taking two visits of the same patient as two different samples 
would be incorrect.

• Collect more data, if necessary
• Never duplicate (copy & paste) data.



•  Incorrect way: DO NOT do dimensionality reduction (or any 
feature selection) on the whole dataset, and then cross-validation

•  Dimensionality reduction (and feature selection) on the whole 
dataset destroys cross-validation

•  reduced training set would depend on the validation set

•  Thus, training is looking at the supposedly “unseen” data

Dimensionality reduction and cross-validation

Training set Validation 
set

Reduced 
training set

Reduced 
validation set

Feature selection / dimensionality reduction



Training set Validation set

•  Correct way: dimensionality reduction (and feature selection) 
inside cross-validation, only applied to the training set

Feature selection /
dimensionality reduction

Dimensionality reduction and cross-validation


