
Convex Optimization — Boyd & Vandenberghe

4. Convex optimization problems

• optimization problem in standard form

• convex optimization problems

• quasiconvex optimization

• linear optimization

• quadratic optimization

• geometric programming

• generalized inequality constraints

• semidefinite programming

• vector optimization
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Optimization problem in standard form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• x ∈ Rn is the optimization variable

• f0 : R
n → R is the objective or cost function

• fi : R
n → R, i = 1, . . . ,m, are the inequality constraint functions

• hi : R
n → R are the equality constraint functions

optimal value:

p⋆ = inf{f0(x) | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

• p⋆ = ∞ if problem is infeasible (no x satisfies the constraints)

• p⋆ = −∞ if problem is unbounded below
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spongebob


spongebob


spongebob


min x^2
st. x ≤ 2
-x ≤ -3

min x
st. x ≤ 5



Optimal and locally optimal points

x is feasible if x ∈ dom f0 and it satisfies the constraints

a feasible x is optimal if f0(x) = p⋆; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) f0(z)
subject to fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p

∥z − x∥2 ≤ R

examples (with n = 1, m = p = 0)

• f0(x) = 1/x, dom f0 = R++: p⋆ = 0, no optimal point

• f0(x) = − log x, dom f0 = R++: p⋆ = −∞

• f0(x) = x log x, dom f0 = R++: p⋆ = −1/e, x = 1/e is optimal

• f0(x) = x3 − 3x, p⋆ = −∞, local optimum at x = 1
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spongebob


spongebob


f0(x) -> 0 as x -> +inf

f0(x) -> -inf as x-> +inf

See f0(x) in [-3,+3]

See f0(x) in [0,2]



Implicit constraints

the standard form optimization problem has an implicit constraint

x ∈ D =
m
⋂

i=0

dom fi ∩
p
⋂

i=1

domhi,

• we call D the domain of the problem

• the constraints fi(x) ≤ 0, hi(x) = 0 are the explicit constraints

• a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize f0(x) = −

∑k
i=1 log(bi − aTi x)

is an unconstrained problem with implicit constraints aTi x < bi
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spongebob

spongebob

iff  b_i - a_i x > 0



Feasibility problem

find x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

can be considered a special case of the general problem with f0(x) = 0:

minimize 0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• p⋆ = 0 if constraints are feasible; any feasible x is optimal

• p⋆ = ∞ if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aTi x = bi, i = 1, . . . , p

• f0, f1, . . . , fm are convex; equality constraints are affine

• problem is quasiconvex if f0 is quasiconvex (and f1, . . . , fm convex)

often written as

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

important property: feasible set of a convex optimization problem is convex
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example

minimize f0(x) = x2
1 + x2

2

subject to f1(x) = x1/(1 + x2
2) ≤ 0

h1(x) = (x1 + x2)2 = 0

• f0 is convex; feasible set {(x1, x2) | x1 = −x2 ≤ 0} is convex

• not a convex problem (according to our definition): f1 is not convex, h1

is not affine

• equivalent (but not identical) to the convex problem

minimize x2
1 + x2

2

subject to x1 ≤ 0
x1 + x2 = 0
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denominator > 0 then x1 ≤ 0

x1 = -x2



Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal, but there exists a feasible y with
f0(y) < f0(x)

x locally optimal means there is an R > 0 such that

z feasible, ∥z − x∥2 ≤ R =⇒ f0(z) ≥ f0(x)

consider z = θy + (1− θ)x with θ = R/(2∥y − x∥2)

• ∥y − x∥2 > R, so 0 < θ < 1/2
• z is a convex combination of two feasible points, hence also feasible
• ∥z − x∥2 = R/2 and

f0(z) ≤ θf0(y) + (1− θ)f0(x) < f0(x)

which contradicts our assumption that x is locally optimal
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not in the
local region

not in the
local region

(i.e., x not globally optimal)

by convexity

since we found that fo(z) < fo(x)

z-x = θ y+(1-θ)x -x
      = θ (y-x)
|z-x|_2 = θ |y-x|_2
            = R/2

fo(z) = fo(θ y+(1-θ)x)
         ≤ θ fo(y) + (1-θ) fo(x)
         < θ fo(x) +  (1-θ) fo(x)
                           … since fo(y) < fo(x)
         = fo(x)

R

x

y

z

then θ |y-x|_2 = R/2



Optimality criterion for differentiable f0

x is optimal if and only if it is feasible and

∇f0(x)
T (y − x) ≥ 0 for all feasible y

−∇f0(x)

X
x

if nonzero, ∇f0(x) defines a supporting hyperplane to feasible set X at x
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(If it were an unconstrained
problem the optimal x would
be in this region.)

1st order condition for convexity
fo(y) ≥ fo(x) + dfo(x)’ (y-x)

I. Assume dfo(x)’ (y-x) ≥ 0
then fo(y) ≥ fo(x)
then x optimal

II. Assume x optimal and dfo(x)’ (y-x) < 0
Let z(t) = t y + (1-t) x, for t in [0,1]

We will arrive to a contradiction
d/dt fo(z(t)) = dfo(t y + (1-t) x)’ (y-x)
d/dt fo(z(t)) (at t=0) = dfo(x)’ (y-x) < 0

Thus, fo(z(t)) decreases with respect to t (starting at t=0) and there exist a small t>0 such that: fo(z(t)) < fo(x)

Thus, x is not optimal



Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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A xo = b,  A F = 0,  then A x = A (F z + x0) = A F z + A x0 = A x0 = b



• introducing equality constraints

minimize f0(A0x+ b0)
subject to fi(Aix+ bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix+ bi, i = 0, 1, . . . ,m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aTi x ≤ bi, i = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)
subject to aTi x+ si = bi, i = 1, . . . ,m

si ≥ 0, i = 1, . . .m
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• epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

• minimizing over some variables

minimize f0(x1, x2)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize f̃0(x1)
subject to fi(x1) ≤ 0, i = 1, . . . ,m

where f̃0(x1) = infx2 f0(x1, x2)
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x2 not in the constraints



Linear program (LP)

minimize cTx+ d
subject to Gx ≼ h

Ax = b

• convex problem with affine objective and constraint functions

• feasible set is a polyhedron

P x⋆

−c
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Examples

diet problem: choose quantities x1, . . . , xn of n foods

• one unit of food j costs cj, contains amount aij of nutrient i

• healthy diet requires nutrient i in quantity at least bi

to find cheapest healthy diet,

minimize cTx
subject to Ax ≽ b, x ≽ 0

piecewise-linear minimization

minimize maxi=1,...,m(aTi x+ bi)

equivalent to an LP

minimize t
subject to aTi x+ bi ≤ t, i = 1, . . . ,m
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Chebyshev center of a polyhedron

Chebyshev center of

P = {x | aTi x ≤ bi, i = 1, . . . ,m}

is center of largest inscribed ball

B = {xc + u | ∥u∥2 ≤ r}

xchebxcheb

• aTi x ≤ bi for all x ∈ B if and only if

sup{aTi (xc + u) | ∥u∥2 ≤ r} = aTi xc + r∥ai∥2 ≤ bi

• hence, xc, r can be determined by solving the LP

maximize r
subject to aTi xc + r∥ai∥2 ≤ bi, i = 1, . . . ,m
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u

since sup_u (a_i u) = |a_i|_2 by norm duality

(example continues)



Quadratic program (QP)

minimize (1/2)xTPx+ qTx+ r
subject to Gx ≼ h

Ax = b

• P ∈ Sn
+, so objective is convex quadratic

• minimize a convex quadratic function over a polyhedron

P

x⋆

−∇f0(x
⋆)
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Examples

least-squares
minimize ∥Ax− b∥22

• analytical solution x⋆ = A†b (A† is pseudo-inverse)

• can add linear constraints, e.g., l ≼ x ≼ u

linear program with random cost

minimize c̄Tx+ γxTΣx = E cTx+ γ var(cTx)
subject to Gx ≼ h, Ax = b

• c is random vector with mean c̄ and covariance Σ

• hence, cTx is random variable with mean c̄Tx and variance xTΣx

• γ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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1/2 |A x - b|_2^2
= 1/2 (A x - b)’ (A x - b)
= 1/2 x’ A’ A x - b’ A x + constant

Making gradient = 0
A’ A x* - A’ b = 0
x* = (A’ A)^-1 A’ b

1/2



Quasiconvex optimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

with f0 : R
n → R quasiconvex, f1, . . . , fm convex

can have locally optimal points that are not (globally) optimal

(x, f0(x))

Convex optimization problems 4–14



convex representation of sublevel sets of f0

if f0 is quasiconvex, there exists a family of functions φt such that:

• φt(x) is convex in x for fixed t

• t-sublevel set of f0 is 0-sublevel set of φt, i.e.,

f0(x) ≤ t ⇐⇒ φt(x) ≤ 0

example

f0(x) =
p(x)

q(x)

with p convex, q concave, and p(x) ≥ 0, q(x) > 0 on dom f0

can take φt(x) = p(x)− tq(x):

• for t ≥ 0, φt convex in x

• p(x)/q(x) ≤ t if and only if φt(x) ≤ 0

Convex optimization problems 4–15

p(x) ≤ t q(x)
p(x) - t q(x) ≤ 0



quasiconvex optimization via convex feasibility problems

φt(x) ≤ 0, fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (1)

• for fixed t, a convex feasibility problem in x

• if feasible, we can conclude that t ≥ p⋆; if infeasible, t ≤ p⋆

Bisection method for quasiconvex optimization

given l ≤ p⋆, u ≥ p⋆, tolerance ϵ > 0.

repeat
1. t := (l + u)/2.
2. Solve the convex feasibility problem (1).
3. if (1) is feasible, u := t; else l := t.

until u − l ≤ ϵ.

requires exactly ⌈log2((u− l)/ϵ)⌉ iterations (where u, l are initial values)

Convex optimization problems 4–16



Linear-fractional program

minimize f0(x)
subject to Gx ≼ h

Ax = b

linear-fractional program

f0(x) =
cTx+ d

eTx+ f
, dom f0(x) = {x | eTx+ f > 0}

• a quasiconvex optimization problem; can be solved by bisection

• also equivalent to the LP (variables y, z)

minimize cTy + dz
subject to Gy ≼ hz

Ay = bz
eTy + fz = 1
z ≥ 0

Convex optimization problems 4–20

(example)



Second-order cone programming

minimize fTx
subject to ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . ,m

Fx = g

(Ai ∈ Rni×n, F ∈ Rp×n)

• inequalities are called second-order cone (SOC) constraints:

(Aix+ bi, c
T
i x+ di) ∈ second-order cone in Rni+1

• for ni = 0, reduces to an LP; if ci = 0, reduces to a QCQP

• more general than QCQP and LP
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cTx
subject to aTi x ≤ bi, i = 1, . . . ,m,

there can be uncertainty in c, ai, bi

two common approaches to handling uncertainty (in ai, for simplicity)

• deterministic model: constraints must hold for all ai ∈ Ei

minimize cTx
subject to aTi x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m,

• stochastic model: ai is random variable; constraints must hold with
probability η

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m

Convex optimization problems 4–26

(example)



deterministic approach via SOCP

• choose an ellipsoid as Ei:

Ei = {āi + Piu | ∥u∥2 ≤ 1} (āi ∈ Rn, Pi ∈ Rn×n)

center is āi, semi-axes determined by singular values/vectors of Pi

• robust LP

minimize cTx
subject to aTi x ≤ bi ∀ai ∈ Ei, i = 1, . . . ,m

is equivalent to the SOCP

minimize cTx
subject to āTi x+ ∥PT

i x∥2 ≤ bi, i = 1, . . . ,m

(follows from sup∥u∥2≤1(āi + Piu)Tx = āTi x+ ∥PT
i x∥2)
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a_i’x is constant wrt u, only analyze (P_i u)’x
sup_{|u|_2 ≤ 1} u’ P_i’ x = |P_i’ x|_2 by norm duality

(example continues)



stochastic approach via SOCP

• assume ai is Gaussian with mean āi, covariance Σi (ai ∼ N (āi,Σi))

• aTi x is Gaussian r.v. with mean āTi x, variance xTΣix; hence

prob(aTi x ≤ bi) = Φ

(

bi − āTi x

∥Σ1/2
i x∥2

)

where Φ(x) = (1/
√
2π)

∫ x
−∞ e−t2/2 dt is CDF of N (0, 1)

• robust LP

minimize cTx
subject to prob(aTi x ≤ bi) ≥ η, i = 1, . . . ,m,

with η ≥ 1/2, is equivalent to the SOCP

minimize cTx

subject to āTi x+ Φ−1(η)∥Σ1/2
i x∥2 ≤ bi, i = 1, . . . ,m
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(example continues)



Geometric programming

monomial function

f(x) = cxa1
1 xa2

2 · · ·xan
n , dom f = Rn

++

with c > 0; exponent ai can be any real number

posynomial function: sum of monomials

f(x) =
K
∑

k=1

ckx
a1k
1 xa2k

2 · · ·xank
n , dom f = Rn

++

geometric program (GP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p

with fi posynomial, hi monomial
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Geometric program in convex form

change variables to yi = log xi, and take logarithm of cost, constraints

• monomial f(x) = cxa1
1 · · ·xan

n transforms to

log f(ey1, . . . , eyn) = aTy + b (b = log c)

• posynomial f(x) =
∑K

k=1 ckx
a1k
1 xa2k

2 · · ·xank
n transforms to

log f(ey1, . . . , eyn) = log

(

K
∑

k=1

ea
T
k y+bk

)

(bk = log ck)

• geometric program transforms to convex problem

minimize log
(

∑K
k=1 exp(a

T
0ky + b0k)

)

subject to log
(

∑K
k=1 exp(a

T
iky + bik)

)

≤ 0, i = 1, . . . ,m

Gy + d = 0
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize f0(x)
subject to fi(x) ≼Ki 0, i = 1, . . . ,m

Ax = b

• f0 : R
n → R convex; fi : R

n → Rki Ki-convex w.r.t. proper cone Ki

• same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)

conic form problem: special case with affine objective and constraints

minimize cTx
subject to Fx+ g ≼K 0

Ax = b

extends linear programming (K = Rm
+ ) to nonpolyhedral cones
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Semidefinite program (SDP)

minimize cTx
subject to x1F1 + x2F2 + · · ·+ xnFn +G ≼ 0

Ax = b

with Fi, G ∈ Sk

• inequality constraint is called linear matrix inequality (LMI)

• includes problems with multiple LMI constraints: for example,

x1F̂1 + · · ·+ xnF̂n + Ĝ ≼ 0, x1F̃1 + · · ·+ xnF̃n + G̃ ≼ 0

is equivalent to single LMI

x1

[

F̂1 0
0 F̃1

]

+x2

[

F̂2 0
0 F̃2

]

+· · ·+xn

[

F̂n 0
0 F̃n

]

+

[

Ĝ 0
0 G̃

]

≼ 0
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Eigenvalue minimization

minimize λmax(A(x))

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sk)

equivalent SDP
minimize t
subject to A(x) ≼ tI

• variables x ∈ Rn, t ∈ R

• follows from
λmax(A) ≤ t ⇐⇒ A ≼ tI

Convex optimization problems 4–38

(example)



Matrix norm minimization

minimize ∥A(x)∥2 =
(

λmax(A(x)TA(x))
)1/2

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Rp×q)

equivalent SDP

minimize t

subject to

[

tI A(x)
A(x)T tI

]

≽ 0

• variables x ∈ Rn, t ∈ R

• constraint follows from

∥A∥2 ≤ t ⇐⇒ ATA ≼ t2I, t ≥ 0

⇐⇒
[

tI A
AT tI

]

≽ 0
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(example)

Let X = [W B;
              B’ C]
Schur complement:
D = C - B’ W^-1 B

If W in S_++ then
X in S_+   if and only if   D in S_+

Assume this is X and you will see


