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Convex Optimization — Boyd & Vandenberghe

4. Convex optimization problems

e optimization problem in standard form
e convex optimization problems

® quasiconvex optimization

e linear optimization

e quadratic optimization

e geometric programming

e generalized inequality constraints

e semidefinite programming
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Optimization problem in standard form

minimize  fo(z)
subject to  fi(x) <

e r € R" is the optimization variable
e fo: R" — R is the objective or cost function
e f,:R" =R, i=1,...,m, are the inequality constraint functions

e h; : R" — R are the equality constraint functions

optimal value:

p* =inf{fo(z) | fi(x) <0, i=1,...,m, hi(x) =0, i1 =1,...,p}

min x*2
e p* = o if problem is infeasible (no x satisfies the constraints) st.x=<2
-X < -3
e p* = —oo if problem is unbounded below min x
st. x<5
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spongebob


spongebob


spongebob


min x^2
st. x ≤ 2
-x ≤ -3

min x
st. x ≤ 5


Optimal and locally optimal points

x is feasible if + € dom f; and it satisfies the constraints
a feasible x is optimal if fo(x) = p*; X,pt is the set of optimal points

x is locally optimal if there is an R > 0 such that = is optimal for
minimize (over z) fo(2)

subject to fi(2) <0, i=1,...,m, hi(z)=0, i=1,...,p
[z —zl2 <R

examples (with n =1, m = p = 0)

e fo(r)=1/x, dom fy =R, : p* =0, no optimal point  fo(x)-> 0 as x -> +inf

o fo(r)=—logz, dom fy =R _;: p* = —0 fO(x) -> -inf as x-> +inf

e fo(r) =xlogx, dom fo =R, : p* = —1/e, x = 1/e is optimal see f0(x) in [0,2]
o fo(x) =23 — 3x, p* = —00, local optimum at z =1 See f0(x) in [-3,+3]
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spongebob


spongebob


f0(x) -> 0 as x -> +inf

f0(x) -> -inf as x-> +inf

See f0(x) in [-3,+3]

See f0(x) in [0,2]


Implicit constraints

the standard form optimization problem has an implicit constraint
m p
xeD= ﬂdomfi N ﬂdomhi,

e we call D the domain of the problem
e the constraints f;(x) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Zle log(b; — alx)

Is an unconstrained problem with implicit constraints a;-r:t < b; iff b i-a_ix>0
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spongebob

spongebob

iff  b_i - a_i x > 0


Feasibility problem

find T
subject to  fi(z) <0, i=1,...,m
hz(x) — 07 1 =1, 5D

can be considered a special case of the general problem with fo(x) = 0:

minimize 0

e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo Iif constraints are infeasible
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Convex optimization problem

standard form convex optimization problem
minimize  fy(x)

subject to fz(az) i=1,....,m
a; aj—bz, r1=1,...,p

e fo, f1, ..., fm are convex; equality constraints are affine

e problem is quasiconvex if fy is quasiconvex (and f1, ..., fm convex)

often written as

minimize  fy(x)
subject to fz( ) <0, i=1,....m
Ax =0

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(x) = 27 + 23
subject to  fi(x) = x1/(1 + 23) <0 denominator > 0 then x1 < 0
hl(a:) = (331 + 182)2 =0 x1 = -x2

e fy is convex; feasible set {(x1,x2) | x1 = —x2 < 0} is convex

e not a convex problem (according to our definition): f7 is not convex, hq
is not affine

e equivalent to the convex problem
. . . 2 2
minimize 7 + x5

subject to x1 <0
xr1 + Io9 = 0
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denominator > 0 then x1 ≤ 0

x1 = -x2


Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof: suppose x is locally optimal, but there exists a feasible y with

fo (y) < fO(ZU) (i.e., x not globally optimal) — not in tr_le
= |ocal region

x locally optimal means there is an R > 0 such that

z feasible, |z—z|: <R = fo(2) > fo(x) g

consider z = 0y + (1 — 0)x with 0 = R/(2||ly — x||2)

not in tf_le then 0 |y-x|_2 = R/2
local region

—> |ly—zfs> R, s00<6<1/2
e 2 is a convex combination of two feasible points, hence also feasible

° Hz — x||2 = R/2 and by convexity —p fol2) Zf9°1(=g(‘$(: (ﬁ))é)) fo(x)
z-X : g {;();I)-B)x -X < 0 fo(x) + (1-9_) fo(x)
|z-x|_2 f 6R/|g-x|_2 fO(Z) < 6f0(3/) + (1 o Q)fo(ili) = fo(x) -+« since fo(y) < fo(x)

which contradicts our assumption that x is locally optimal
since we found that fo(z) < fo(x)
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not in the
local region

not in the
local region

(i.e., x not globally optimal)

by convexity

since we found that fo(z) < fo(x)

z-x = θ y+(1-θ)x -x
      = θ (y-x)
|z-x|_2 = θ |y-x|_2
            = R/2

fo(z) = fo(θ y+(1-θ)x)
         ≤ θ fo(y) + (1-θ) fo(x)
         < θ fo(x) +  (1-θ) fo(x)
                           … since fo(y) < fo(x)
         = fo(x)

R

x

y

z

then θ |y-x|_2 = R/2


Optimality criterion for differentiable f

x Is optimal if and only if it is feasible and

1st order condition for convexity
foly) 2 fo(x) + dfo{x)" (y-x) Vfo(x)' (y —x) >0 for all feasible y

l. Assume dfo(x)’ (y-x) 2 0
then fo(y) 2 fo(x)
then x optimal

(If it were an unconstrained
problem the optimal x would
be in this region.)

Il. Assume x optimal and dfo(x)’ (y-x) <0
Let z(t) =ty + (1-t) x, for tin [0,1] ’

We will arrive to a contradiction
d/dt fo(z(t)) = dfo(t y + (1-t) x)’ (y-x)

—V fo(x)
d/dt fo(z(t)) (at t=0) = dfo(x)’ (y-x) < 0

Thus, fo(z(t)) decreases with respect to t
(starting at t=0) and there exist a small
t>0 such that: fo(z(t)) < fo(x)

Thus, x is not optimal

if nonzero, V fo(x) defines a supporting hyperplane to feasible set X at z
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(If it were an unconstrained
problem the optimal x would
be in this region.)

1st order condition for convexity
fo(y) ≥ fo(x) + dfo(x)’ (y-x)

I. Assume dfo(x)’ (y-x) ≥ 0
then fo(y) ≥ fo(x)
then x optimal

II. Assume x optimal and dfo(x)’ (y-x) < 0
Let z(t) = t y + (1-t) x, for t in [0,1]

We will arrive to a contradiction
d/dt fo(z(t)) = dfo(t y + (1-t) x)’ (y-x)
d/dt fo(z(t)) (at t=0) = dfo(x)’ (y-x) < 0

Thus, fo(z(t)) decreases with respect to t (starting at t=0) and there exist a small t>0 such that: fo(z(t)) < fo(x)

Thus, x is not optimal


Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

e eliminating equality constraints
minimize  fo(x)
subject to fz( )<0, i=1,....,m
Ax =10
Is equivalent to

minimize (over z) fo(Fz + xg)
subject to filFz4+x9) <0, i=1,...,m

where F' and z( are such that

Ar=b <= x = Fz+ xo for some z
Axo=b, AF=0, thenAx=A(Fz+x0)=AFz+Ax0=Ax0=b
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A xo = b,  A F = 0,  then A x = A (F z + x0) = A F z + A x0 = A x0 = b


e introducing equality constraints

minimize  fo(Aoz + bo)
subject to  f;(A;x+b;) <0, i=1,...

Is equivalent to

minimize (over z, ;)  fo(yo)

subject to fily;) <0, i=1,...,m

yz:AZI—I—bZ, izO,l,...,m

e introducing slack variables for linear inequalities

minimize  fo(z)
subject to alx <b;, i=1,...,m

Is equivalent to

minimize (over z, s) fo(x)

subject to alr+s;=0b;, i=1,...

Convex optimization problems
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e epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to fo(x) =t <0
fz( , 1=1,...,m

) -
730

@l/\

Ax

e mMinimizing over some variables

x2 not in the constraints
minimize  fo(z1, 72) /
subject to  fi(xz1) <0, i=1,...,m

Is equivalent to

minimize  fo(z1)
subject to  fi(z1) <0, i=1,...,m

where fo(z1) = infy, fo(z1, z2)
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x2 not in the constraints


Linear program (LP)

minimize ¢z 4d
subject to Gax <X h
Ax =D
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron
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Examples

diet problem: choose quantities z1, .. ., x, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient ¢

e healthy diet requires nutrient 7 in quantity at least b;

to find cheapest healthy diet,

minimize ¢!z

subjectto Axr >b, x>0

piecewise-linear minimization
minimize max;—1 . n(alx + b;)
equivalent to an LP

minimize t
subject to alx +b; <t, i=1,...,m

Convex optimization problems
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(example continues)

Chebyshev center of a polyhedron

Chebyshev center of ,\

P={x|alex<by, i=1,...,m}
is center of largest inscribed ball
B={zc+ullullz <r}

e al'z <b; for all x € B if and only if

sup{a; (z +u) | fullz <7} = aj zc + rllaill2 < b;

since sup_u (a_i u) =|a_i|_2 by norm duality
e hence, ., 7 can be determined by solving the LP

maximize 7
subject to  alx.+rllais <b;, i=1,...,m
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u

since sup_u (a_i u) = |a_i|_2 by norm duality

(example continues)


Quadratic program (QP)

minimize  (1/2)z!' Pz +qlaz +r
subject to Gz X h
Ax =10

e P c S, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Convex optimization problems
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Examples 1/2 |A X - b]_2"2
=1/2(Ax-b)’ (Ax-b)
=1/2x’A’Ax -b’ Ax+ constant

least-squares Making gradient = 0

minimize1/2|| Az — b||3 AAX -Ab=0
x* = (A’ A)A-1 A’ b

e analytical solution 2* = ATh (AT is pseudo-inverse)

e can add linear constraints, e.g., | < x < u

linear program with random cost

minimize ¢élx +~y2xlYr = Ecl'y + yvar(clz)
subjectto Gax =< h, Ax =D

e c is random vector with mean ¢ and covariance X

T T

e hence, ¢Lx is random variable with mean &% 2 and variance 21Xz

e v > (0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)
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1/2 |A x - b|_2^2
= 1/2 (A x - b)’ (A x - b)
= 1/2 x’ A’ A x - b’ A x + constant

Making gradient = 0
A’ A x* - A’ b = 0
x* = (A’ A)^-1 A’ b

1/2


Quasiconvex optimization

minimize  fo(z)
subject to  fi(x) <0, i=1,...,m
Az =0

with fy : R" — R quasiconvex, f1, ..., fm convex

can have locally optimal points that are not (globally) optimal

Convex optimization problems
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convex representation of sublevel sets of f

if fo Is quasiconvex, there exists a family of functions ¢; such that:

e ¢.(x) is convex in x for fixed ¢

e t-sublevel set of fj is O-sublevel set of ¢y, i.e.,

fox) <t <= ¢(x) <0

example

with p convex, g concave, and p(x) > 0, g(x) > 0 on dom f

can take ¢;(z) = p(x) — tq(x):
o fort >0, ¢; convex in x

e p(x)/q(x) <t if and only if ¢y (x) <O

p(x) =t q(x)
p(x)-tq(x)=<0

Convex optimization problems
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p(x) ≤ t q(x)
p(x) - t q(x) ≤ 0


quasiconvex optimization via convex feasibility problems

e for fixed t, a convex feasibility problem in z

e if feasible, we can conclude that ¢ > p*; if infeasible, t < p*

Bisection method for quasiconvex optimization

given | < p*, u > p”*, tolerance ¢ > 0.

repeat
L.t:=4+u)/2.
2. Solve the convex feasibility problem (1).
3.if (1) is feasible, u :=t; elsel :=t.
until v — [ < e.

requires exactly [log,((u —1)/€)] iterations (where u, [ are initial values)
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Linear-fractional program

minimize  fo(z)
subject to Gx X h

Ax =D
linear-fractional program
T d
folz) = % dom fy(z) = {x | T + f > 0}

e a quasiconvex optimization problem; can be solved by bisection

Convex optimization problems

(example)
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(example)


Second-order cone programming

minimize 1z
subject to ||z + il < clz+d;, i=1,...,m
Fr=g
(A; € R"*" F e RP™™)

e inequalities are called second-order cone (SOC) constraints:

(A + by, C;-rw + d;) € second-order cone in R"it1
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(example)

Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP
minimize clz
subject to alx <b;, i=1,...,m,

there can be uncertainty in ¢, a;, b;

two common approaches to handling uncertainty (in a;, for simplicity)

e deterministic model: constraints must hold for all a; € &;

minimize cl'zx

subject to alx <b;foralla; €&, i=1,...,m,

e stochastic model: a; is random variable; constraints must hold with
probability 7

minimize clzx

subject to prob(alz <b;)>n, i=1,...,m
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(example)


(example continues)

deterministic approach via SOCP

e choose an ellipsoid as &;:
E; = {C_Lq; + Pu ‘ HUHQ < 1} (C_LZ' & Rn, P; € Ran)
center is a;, semi-axes determined by singular values/vectors of P;

e robust LP

minimize ¢!z

subject to alx <b; Va; €&, i=1,....m

is equivalent to the SOCP

minimize ey

subject to  alz+ [|[Plz|a <b;, i=1,....,m

(follows from sup,,<1(@: + Piu)'z = aj z + || P z||2)

a_i’x is constant wrt u, only analyze (P_i u)’x
sup_{Ju]_2 =1} v’ P_i’ x = |P_i’ x|_2 by norm duality
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a_i’x is constant wrt u, only analyze (P_i u)’x
sup_{|u|_2 ≤ 1} u’ P_i’ x = |P_i’ x|_2 by norm duality

(example continues)


(example continues)

stochastic approach via SOCP

e assume a; is Gaussian with mean a;, covariance ¥; (a; ~ N (a;, %;))

T
)

b; —al
prob(alz < b;) = @ 1/32 u
13"

e a!z is Gaussian r.v. with mean @z, variance 7 ¥;x; hence

where ®(z) = (1/v/27) [*_e™"'/2dt is CDF of N(0,1)

e robust LP
minimize c¢l'x
subject to prob(alz <b;))>n, i=1,...,m,

with n > 1/2, is equivalent to the SOCP
minimize  clx
subject to &?334—(1)_1(77)“2,}/233”2 <b;, i=1,....m
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(example continues)


Geometric programming

monomial function

ai, a2 an

f(x) = cxitay? - - - xom, dom f =R

with ¢ > 0; exponent a; can be any real number
posynomial function: sum of monomials

K

flz) = eraf™ay? - agnk,  domf =R,
k=1

geometric program (GP)

minimize  fo(z)
subject to  fi(x) <

with f; posynomial, h; monomial
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Geometric program in convex form

change variables to y; = log z;, and take logarithm of cost, constraints

e monomial f(xz) = cxi'- -z transforms to
log f(e¥t,...,e"") =aly+b (b =logc)

. K
e posynomial f(z) =, _, cxx]Fas?* - - - xn"* transforms to

K
log f(e¥t,...,e¥") = log (Z ea£y+bk> (b = log ci)
k=1

e geometric program transforms to convex problem

minimize  log Zle exp(al,y + b%)>
subject to log Zle exp(aly + bzk)> <0, 1=1,....m
Gy+d=20
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize  fy(x)
subject to fz( ) 2k, i=1,....m
Ax =b

e fo:R" — R convex; f; : R" — R* K;-convex w.r.t. proper cone K
e same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)
conic form problem: special case with affine objective and constraints
minimize ¢’z
subject to Fr+ g <0
Axr =10

extends linear programming (K = R'") to nonpolyhedral cones
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Semidefinite program (SDP)

minimize ¢!z

subject to x1Fy + a0l + -+ x,F, + G X0
Az = b

with I, G € S”

e inequality constraint is called linear matrix inequality (LMI)

e includes problems with multiple LMI constraints: for example,

AN

o 44,y +G =<0, P14 4z,F,+G =0

~

is equivalent to single LMI

F, 0 F, 0 F 0 G 0
N N e, N > 1 =<0
5131[ 0 F1]—|—332[ 0 F2]-|- +x [ 0 Fn]-I—[O G]_

Convex optimization problems 4-36



(example)

Eigenvalue minimization

minimize Apax(A(x))
where A(z) = Ao + z1 41 + - - + 2, A,, (with given 4; € %)
equivalent SDP

minimize ¢
subject to A(x) < tI

e variables z € R", t € R

e follows from
Amax(A) <t <— A=<t]
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(example)


(example)

Matrix norm minimization

minimize [ A(x) ]2 = (Amax(A(x)TA(x))) "

where A(x) = Ag+ 2141 + - - - + x, A, (with given A; € RP™*Y)
equivalent SDP
minimize t

subject to [

e variables x € R", t € R

e constraint follows from

Let X = [W B;
B’ C] JAllz <t < ATAZI, t>0
Schur complement:
D=C-B’WA-1B t1 A
— —
If Win S_++ then [ AT tI ] ~ 0

XinS_ + ifandonlyif DinS_+ /
Assume this is X and you will see
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(example)

Let X = [W B;
              B’ C]
Schur complement:
D = C - B’ W^-1 B

If W in S_++ then
X in S_+   if and only if   D in S_+

Assume this is X and you will see


