
Convex Optimization — Boyd & Vandenberghe

3. Convex functions

• basic properties and examples

• operations that preserve convexity

• the conjugate function

• quasiconvex functions

• log-concave and log-convex functions

• convexity with respect to generalized inequalities
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Definition

f : Rn → R is convex if dom f is a convex set and

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ dom f , 0 ≤ θ ≤ 1

(x, f(x))

(y, f(y))

• f is concave if −f is convex

• f is strictly convex if dom f is convex and

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y)

for x, y ∈ dom f , x ̸= y, 0 < θ < 1
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Examples on R

convex:

• affine: ax+ b on R, for any a, b ∈ R

• exponential: eax, for any a ∈ R

• powers: xα on R++, for α ≥ 1 or α ≤ 0

• powers of absolute value: |x|p on R, for p ≥ 1

• negative entropy: x log x on R++

concave:

• affine: ax+ b on R, for any a, b ∈ R

• powers: xα on R++, for 0 ≤ α ≤ 1

• logarithm: log x on R++
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Examples on Rn and Rm×n

affine functions are convex and concave; all norms are convex

examples on Rn

• affine function f(x) = aTx+ b

• norms: ∥x∥p = (
∑n

i=1 |xi|p)1/p for p ≥ 1; ∥x∥∞ = maxk |xk|

examples on Rm×n (m× n matrices)

• affine function

f(X) = tr(ATX) + b =
m
∑

i=1

n
∑

j=1

AijXij + b

• spectral (maximum singular value) norm

f(X) = ∥X∥2 = σmax(X) = (λmax(X
TX))1/2
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Restriction of a convex function to a line

f : Rn → R is convex if and only if the function g : R → R,

g(t) = f(x+ tv), dom g = {t | x+ tv ∈ dom f}

is convex (in t) for any x ∈ dom f , v ∈ Rn

can check convexity of f by checking convexity of functions of one variable

example. f : Sn → R with f(X) = log detX, dom f = Sn
++

g(t) = log det(X + tV ) = log detX + log det(I + tX−1/2V X−1/2)

= log detX +
n
∑

i=1

log(1 + tλi)

where λi are the eigenvalues of X−1/2V X−1/2

g is concave in t (for any choice of X ≻ 0, V ); hence f is concave
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= UDU’    then   I + t UDU’ = U(I + t D)U’

Note that:   X+tV = X^½ (I + t X^-½ V X^-½) X^½    then   det(X+tV) = det(X) det(I + t X^-½ V X^-½)



Extended-value extension

extended-value extension f̃ of f is

f̃(x) = f(x), x ∈ dom f, f̃(x) = ∞, x ̸∈ dom f

often simplifies notation; for example, the condition

0 ≤ θ ≤ 1 =⇒ f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ)f̃(y)

(as an inequality in R ∪ {∞}), means the same as the two conditions

• dom f is convex

• for x, y ∈ dom f ,

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
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First-order condition

f is differentiable if dom f is open and the gradient

∇f(x) =

(

∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xn

)

exists at each x ∈ dom f

1st-order condition: differentiable f with convex domain is convex iff

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ dom f

(x, f(x))

f(y)

f(x) + ∇f(x)T (y − x)

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian ∇2f(x) ∈ Sn,

∇2f(x)ij =
∂2f(x)

∂xi∂xj
, i, j = 1, . . . , n,

exists at each x ∈ dom f

2nd-order conditions: for twice differentiable f with convex domain

• f is convex if and only if

∇2f(x) ≽ 0 for all x ∈ dom f

• if ∇2f(x) ≻ 0 for all x ∈ dom f , then f is strictly convex
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Examples

quadratic function: f(x) = (1/2)xTPx+ qTx+ r (with P ∈ Sn)

∇f(x) = Px+ q, ∇2f(x) = P

convex if P ≽ 0

least-squares objective: f(x) = ∥Ax− b∥22

∇f(x) = 2AT (Ax− b), ∇2f(x) = 2ATA

convex (for any A)

quadratic-over-linear: f(x, y) = x2/y

∇2f(x, y) =
2

y3

[

y
−x

] [

y
−x

]T

≽ 0

convex for y > 0 xy

f
(x

,
y
)

−2

0

2

0

1

2
0

1

2
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log-sum-exp: f(x) = log
∑n

k=1 expxk is convex

∇2f(x) =
1

1Tz
diag(z)−

1

(1Tz)2
zzT (zk = expxk)

to show ∇2f(x) ≽ 0, we must verify that vT∇2f(x)v ≥ 0 for all v:

vT∇2f(x)v =
(
∑

k zkv
2
k)(

∑

k zk)− (
∑

k vkzk)
2

(
∑

k zk)
2

≥ 0

since (
∑

k vkzk)
2 ≤ (

∑

k zkv
2
k)(

∑

k zk) (from Cauchy-Schwarz inequality)

geometric mean: f(x) = (
∏n

k=1 xk)1/n on Rn
++ is concave

(similar proof as for log-sum-exp)
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More clearly: a_k = v_k sqrt(z_k), b_k = sqrt(z_k), then <a,b> ≤ |a|_2 |b|_2



Epigraph and sublevel set

α-sublevel set of f : Rn → R:

Cα = {x ∈ dom f | f(x) ≤ α}

sublevel sets of convex functions are convex (converse is false)

epigraph of f : Rn → R:

epi f = {(x, t) ∈ Rn+1 | x ∈ dom f, f(x) ≤ t}

epi f

f

f is convex if and only if epi f is a convex set
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Text

(the norm cone is the epigraph
of the norm function)



Jensen’s inequality

basic inequality: if f is convex, then for 0 ≤ θ ≤ 1,

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

extension: if f is convex, then

f(E z) ≤ E f(z)

for any random variable z

basic inequality is special case with discrete distribution

prob(z = x) = θ, prob(z = y) = 1− θ
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show ∇2f(x) ≽ 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

• nonnegative weighted sum
• composition with affine function
• pointwise maximum and supremum
• composition
• minimization
• perspective
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Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, α ≥ 0

sum: f1 + f2 convex if f1, f2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax+ b) is convex if f is convex

examples

• log barrier for linear inequalities

f(x) = −
m
∑

i=1

log(bi − aTi x), dom f = {x | aTi x < bi, i = 1, . . . ,m}

• (any) norm of affine function: f(x) = ∥Ax+ b∥
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Pointwise maximum

if f1, . . . , fm are convex, then f(x) = max{f1(x), . . . , fm(x)} is convex

examples

• piecewise-linear function: f(x) = maxi=1,...,m(aTi x+ bi) is convex

• sum of r largest components of x ∈ Rn:

f(x) = x[1] + x[2] + · · ·+ x[r]

is convex (x[i] is ith largest component of x)

proof:

f(x) = max{xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}
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There are n choose r sets of r different indices

The example goes through all n choose r sets of indices i_1…i_r 

An index of a vector entry goes from 1 to n

We can define m = n choose r functions that sum r entries (See the first line of slide)



Pointwise supremum

if f(x, y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f(x, y)

is convex

examples

• support function of a set C: SC(x) = supy∈C yTx is convex

• distance to farthest point in a set C:

f(x) = sup
y∈C

∥x− y∥

• maximum eigenvalue of symmetric matrix: for X ∈ Sn,

λmax(X) = sup
∥y∥2=1

yTXy

Convex functions 3–16

f does not need to be convex in y
A does not need to be a convex set

x

y

C

(Example: definition of dual norm)



Composition with scalar functions

composition of g : Rn → R and h : R → R:

f(x) = h(g(x))

f is convex if
g convex, h convex, h̃ nondecreasing
g concave, h convex, h̃ nonincreasing

• proof (for n = 1, differentiable g, h)

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

• note: monotonicity must hold for extended-value extension h̃

examples

• exp g(x) is convex if g is convex

• 1/g(x) is convex if g is concave and positive
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nondecreasing: h’ ≥ 0

g

h



Vector composition

composition of g : Rn → Rk and h : Rk → R:

f(x) = h(g(x)) = h(g1(x), g2(x), . . . , gk(x))

f is convex if
gi convex, h convex, h̃ nondecreasing in each argument
gi concave, h convex, h̃ nonincreasing in each argument

proof (for n = 1, differentiable g, h)

f ′′(x) = g′(x)T∇2h(g(x))g′(x) +∇h(g(x))Tg′′(x)

examples

•
∑m

i=1 log gi(x) is concave if gi are concave and positive

• log
∑m

i=1 exp gi(x) is convex if gi are convex
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(generalizes previous slide)

n × n

f : R^n to R

k × k

n × k

k × n

1 × k

k × n × n

each g1...gk has R^{n × n} Hessian

each g1...gk has R^n gradient

Hessian

Hessian



Minimization

if f(x, y) is convex in (x, y) and C is a convex set, then

g(x) = inf
y∈C

f(x, y)

is convex

examples

• f(x, y) = xTAx+ 2xTBy + yTCy with

[

A B
BT C

]

≽ 0, C ≻ 0

minimizing over y gives g(x) = infy f(x, y) = xT (A−BC−1BT )x

g is convex, hence Schur complement A−BC−1BT ≽ 0

• distance to a set: dist(x, S) = infy∈S ∥x− y∥ is convex if S is convex
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(Example: Lagrange dual, we will see it next week)

(  iff  [A B; B^T C] ≥ 0  )



Perspective

the perspective of a function f : Rn → R is the function g : Rn ×R → R,

g(x, t) = tf(x/t), dom g = {(x, t) | x/t ∈ dom f, t > 0}

g is convex if f is convex

examples

• f(x) = xTx is convex; hence g(x, t) = xTx/t is convex for t > 0

• negative logarithm f(x) = − log x is convex; hence relative entropy
g(x, t) = t log t− t log x is convex on R2

++

• if f is convex, then

g(x) = (cTx+ d)f
(

(Ax+ b)/(cTx+ d)
)

is convex on {x | cTx+ d > 0, (Ax+ b)/(cTx+ d) ∈ dom f}
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The conjugate function

the conjugate of a function f is

f∗(y) = sup
x∈dom f

(yTx− f(x))

f(x)

(0,−f∗(y))

xy

x

• f∗ is convex (even if f is not)

• will be useful in chapter 5
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(very useful in Chapter 5)

Properties:

f* is convex (even if f is not):

                  y x - f(x) is convex in y
                  conjugate is pointwise supremum

f** = f,   if f is convex and epi f is a closed set

for differentiable f, f* is also called Fenchel conjugate or Legendre transform



examples

• negative logarithm f(x) = − log x

f∗(y) = sup
x>0

(xy + log x)

=

{

−1− log(−y) y < 0
∞ otherwise

• strictly convex quadratic f(x) = (1/2)xTQx with Q ∈ Sn
++

f∗(y) = sup
x
(yTx− (1/2)xTQx)

=
1

2
yTQ−1y

Convex functions 3–22



Quasiconvex functions

f : Rn → R is quasiconvex if dom f is convex and the sublevel sets

Sα = {x ∈ dom f | f(x) ≤ α}

are convex for all α

α

β

a b c

• f is quasiconcave if −f is quasiconvex

• f is quasilinear if it is quasiconvex and quasiconcave
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Examples

•
√

|x| is quasiconvex on R

• ceil(x) = inf{z ∈ Z | z ≥ x} is quasilinear

• log x is quasilinear on R++

• f(x1, x2) = x1x2 is quasiconcave on R2
++

• linear-fractional function

f(x) =
aTx+ b

cTx+ d
, dom f = {x | cTx+ d > 0}

is quasilinear

• distance ratio

f(x) =
∥x− a∥2
∥x− b∥2

, dom f = {x | ∥x− a∥2 ≤ ∥x− b∥2}

is quasiconvex

Convex functions 3–24



Properties

modified Jensen inequality: for quasiconvex f

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ max{f(x), f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

f(y) ≤ f(x) =⇒ ∇f(x)T (y − x) ≤ 0

x
∇f(x)

sums of quasiconvex functions are not necessarily quasiconvex
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values smaller than f(x)
level sets for different alpha

normal vector defines a
supporting hyperplane to the
sublevel set {y | f(y) ≤ f(x)} at x


